Pramana, Vol. 23, No. 3, September 1984, pp. 381384 © Printed in India.

Black hole thermodypamics from a possible model for internal
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Abstract. Treating a black hole as a relativistic gas of microblack holes (planckions) which
have fermionic character, expressions for some thermodynamic quantities are obtained. These
have the same structure as those obtained by Hawking by other considerations.
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1. Introduction

In two outstanding papers, one dealing with the thermodynamics of black holes and the
other concerning the topological structures of space-time manifold at extremely short
length scales, Hawking (1975, 1978) has laid the foundation for the interrelation
between gravity, thermodynamics and quantum mechanics. The second paper add-
resses itself directly to the question of discrete nature of space-time. However, these
papers do not provide a connection between the thermodynamic properties of a black
hole and its possible internal structure. There is no classical way of treating the interior
of the black hole as a system and deduce its parameters. Now that we have relations
involving some thermodynamic parameters of a black hole e.g. entropy, temperature
and energy, it should be possible to develop a model of the system which can yield
meaningful results. |

2. A possible model

It is well known thatan alternative approach towards unification of fundamenta? forces
is to take them as derived interactions from a more fundamental interaction involving
matter (fundamental fermion-antifermion) fields (Sinha and Sudarshan 1978; Akama
1978; Terazawa and Akama 1980). In this approach the fundamental spinor fields
generate the various other fields (e.g. bosons and gauge fields which give rise to various
forces) and the space-time metric which becomes composite. In the context of black
holes these pregeometric entities (fermionic in character) should be of fundamental
significance.

Thus the central point of our model is to treat a black hole as a superdense object of
elementary units which behave like fermions in the sense that no two elementary units
can overlap. These may be pictured as a gas of microblack holes which may be akin to
space-time foam (Hawking 1978). Thus in effect we shall be treating an assembly of
microblack holes having fermionic character. In fact, we identify these microblack holes
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with the planck mass

M, = (hc/4GN)1/2’ ‘ (1)
which is obtained from
h c
MPC —_— '2‘ LP ‘
Ly = (hGy/c*)'7?, @)

where G is the Newtonian gravitational constant and h and c are the usual universal
constants. In the context of the present model these elementary units (planckions or
unitons (Sivaram and Sinha 1979)) are to be treated as fundamental fermions. It is also
assumed that the fundamental quantum principles such as the uncertainty and the
exclusion principles hold inside a black hole.

The number N, of planckions in a black hole of volume V3 is (Landau and Lifshitz
1969)

v V,
b= i pt = 25 (E/hG), ©

where g is the degeneracy factor and we have taken the Fermi momentum

Py = h/L,. (4)

The number density of planckions is given by

Np v, g"i (€ /hGy)* 2. )
Thus the number density of such units is constant in the sense that it depends on the
universal constants (4, ¢ and Gy). i

The equilibirum size of the black hole can be derlved by a very simple argument. The
system is in equilibrium under two opposing forces namely, the gravitational attraction

and the degeneracy pressure (P,) of the constituent fermions (here the planckions). This
gives

Gy M '
Po=—f— Mpnp, | (6)
where
1
P, = 2 (672/g)*"® hc n,*3. : (7)

From these relations (¢f equations (1)-(7)) we get
R, = 2Gy My/c?, (8)

- which is identical with the Schwarzschild radius of the black hole. In the above we have

taken a low temperature situation kT < cpy, k; is the Boltzmann constant.
Now for an assembly of fermionic systems in equilibriym, we have

V,T? = constant.
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Thus we can write, using (8),
1

T = a(3/4n)'® —, . &)
R,
where a is a constant and from dimensional consideration we can put
a = he/ky. (10)
Thus
_he 13 1
T—k—B(3/41t) R | (11)
which on using (8) becomes
ke ' ‘
T=r——(3/4m'3. . ' 12)
2ky Gy M, / (

The expression (11) is similar to that obtained by Landsberg (1981) for an extremely
relativistic fermion or boson gas for a closed universe in terms of the scale factor R. The
relation (12) is close to the Hawking temperature for black holes apart from a small
numerical factor. - :

The thermodynamic potential of an assembly of relativistic fermions is given by
(Landau and Lifshitz 1969)

(e kyT)?
Qp=Qy ——"
| B 0 12 (hc)3 g VB, (13)
- where Q, is constant. From this the volume entropy is easily calculated as
S, = —(09Q/0T),

2 13 4k Gy M3
=3 (3/4m) PV (14)

where the Fermi wavevector is taken as the reciprocal of planck length giving
1 = hckp = he (3 /RG ) 12 = 2 (he/Gy)*>.
In order to calculate the surface entropy of the system of fermions, we consider the
standard expression
do
d]w’
where A4 is the total surface area and « the surface tension (negative for the present case)

which is defined as the potential energy per unit area of the surface. A simple estimate of
the surface tension may be given as

&= —Gy M%/Ro4nR2. . (16)

S,=—4 (15)

Inserting the value for R, obtained earlier this becomes

31 c®

S n
g32n  GiM, (17
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which on making use of (12) becomes

kgT

o= — (31t/1692)”3
dndy’

(18)
where

AO = L»zs (19)
and represents the elementary surface area first 1ntroduced by Bekenstein (1972, 1973).
Thus from (15) we get
kg Gy M}

ke (20)

S, = (4n/3)173

Again, apart from a small numerical factor, this is close to the Hawking result. Of
course, in the present context, the total entropy

S=8,+8,
From the volume entropy, we can get entropy per planckion as
M, ks |
4u)t/3 £ 2 : 21
? (3/4m)! > =22 1)

B

It is interesting to note that like the temperature this also depends inversely on the
mass of the black hole.

3. Concluding remarks

In the foregoing, we have attempted to describe black hole thermodynamics (e.g.
temperature, entropy etc) from conventional points of view. For this, we have treated a
black hole as an assembly of fermions having the size and mass of planckions. The
expressions obtained are close to those of Hawking’s apart from small numerical
factors. These pregeometric objects with fermionic character may arise due to

breakdown of metric structure of space-time under the extreme conditions of black
holes.
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