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Abstract. Two types of fundamental gravitational charges are suggested by quanti-
zation of the angular momentum (i.e. J = nfi, where n is an integer or half integer)
occurring in the uncharged and charged Kerr metrics. These charges turn out to be
e/v/o and efa, where e is the unit electric charge and a the fine structure constant.
The use of strong (f) gravity leads to corresponding fundamental masses M; (f)
~2-2 % 10°2g and M,(f)~2-3 x 10-22g, It is postulated that the hadrons
are composed of these fundamental entities (christened oms here). Thus
mesons are diomic particles and baryons are triomic particles. This has a close
resemblance to the quark model but here we deal with gravitational charges. The
charges constityting hadrons are bound together by strong (f) gravity which is
super strong compared to nuclear forces. Various hadron masses are obtained
as the vibrational excitations of these composite units. The above model is
capable of accounting for quantum numbers such as spin, baryon number, strange-
ness and isospin.

Keywords. Gravitational charges, quantum black holes, f-gravity, hadron mass
spectrum.

1. Introduction

The concept of the gravitational charge defined as 1/G,M, where G, is the New-
tonian gravitational constant and M the mass, in analogy with the electric charge
has been reemphasized recently by Motz (1972). Keeping in view the fundamental
unit of electric charge, there has been a search for a fundamental unit of mass.
The quantization of electric charge is connected with the dual property of matter
arising from the existence of both electric and magnetic charges. This has been
elegantly demonstrated by Dirac (1931, 1948) and Schwinger (1969) (see also Sinha
and Sivaram 1973). Thus the quantization of the gravitational charge can be
achieved by a procedure similar to the Dirac-Schwinger quantization condition.
In fact Motz has shown that by quantizing one of the angular momentum com-
ponents in the general relativistic equation of motion of two bodies as well as from
the Machian definition of inertial mass in a rotating universe, the following quanti-
zation condition for the gravitational charge is obtained:

GM?c =48 (1)
(h = Planck constant, c¢=speed of light).
This is analogous to the Dirac-Schwinger relation connecting the electric (e) and
magnetic (f) charges, namely,

effc =h (2)
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Earlier Motz (1962) had shown that the application of the Weyl principle of gauge
invariance to the Einstein-Ricci tensor gives rise to the same condition, G,M?® =
he, for a particle of inmertial mass M obeying the Dirac equation.  The above
procedure leads to a quantized unit of mass given by

M = (he/GY} 3

This mass turns out to be of the order of 2-2x 10~® g. This mass constructed
solely from h, ¢ and G, thus unites quantum mechanics, relativity and Newtonian
gravity and is referred to as the Planck mass (see Wheeler 1962). Motz attaches
considerable significance to this entity and has named it * uniton . He further
claims that this may play a universal role in determining the masses of elementary

particles, in cosmological problems such as energy generation of quasars and the
solar neutrino puzzle.

The purpose of the present paper is three-fold. First, we shall obtain the same
quantum condition for the gravitational charge by making use of the Kerr solution
of the field equations of general relativity. Secondly, by making use of the charged
Kerr metric we_shall derive a new condition which gives another quantized mass
which, in addition to h, ¢ and G, involves, the fundamental electric charge ¢. We
believe that this entity containing the four most important physical constants
has greater claim for universality. Thirdly, we shall show that on using the S
gravity coupling constant G, ~ 10% G,, these two fundamental masses are scaled
down to roughly the nucleon mass. Finally, a model for hadrons will be suggested
wheljcin' they are composed of these gravitational charges held together by strong
gravitational interactions. The ensuing mass spectrum is consistent with that
suggested earlier (Sivaram and Sinha 1973 a, 1974 ).

2. Kerr metric and mass quantization condition

%err(lf)(ﬂ) gavean egact particular solution of the Einstein vacuum field equations
wr ==V, waere Eg, is the Einstein-Ricci tensor. This is believed to represent

the gravitational field of a rotating body. This solution is best described by the
line element due to Boyer and Lindquist (1967) given by

ds® = gy,dr? + gg0d02 833dd?

-+ 830dpdt — goods? e
where
8y = (r* 4 a®cos?0)/(r2 — 2mr + a?) )
8ue = (12 + g2 cos6)
By = (1‘2 + a* @2. sin? )
r ¥ a¥ cosp ) Sin? )
. . ‘“mrasin?0
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Here m is the geometrized mass m = G, M|[c? M being the mass of the body, a is
the geometrized angular momentum given by a = J/M¢, J being the total angular
momentum of the body. The ‘event horizon’ or the one way membrane, which
is located inside the surface g,,=0, is described by the equation (see for example
Zeldovich and Novikov 1971)

r4+at—2mr=A=0 (N
This has two roots given by
r:*: = m _-_l: m (8)

where r, defines the ‘ event horizon’. Since we have the ultimate unit of spinning
body in mind, we assume thatthe angular momentum J of the body can
be quantized in integral or half-integral multiples of k. Thus we write

J =nh ®
where n is positive integer (or half-integer). Accordingly, we get
a = nh/Mc (10)

We shall call a body having this quantized angular momentum a kind of “quantum
black hole”, with a real value of r,.

Now for r, to be real (cf equation (8)) we must have m* — a*> 0, ie. m>a.
Using eq. (10) and n=1, we get the condition

G.M? =He (1)

This shows that for . to be real the quantum black hole must have a mass not
less than

M, = (he|G)t ~2-2 X 105 g (12)

As a result of the quantization of the angular momentum J, the mass M will be
quantized as M = (nkic/Gy)*.

The foregoing derivation cf the quantization condition i8 much simpler and has
the added advantage of directly bringing in the quantized angular momentum of
the entity through the Kerr metric. As stated earlier the relation (11) involves
the three fundamental constants h, ¢ and G,. This mass therefore carries the
quantum, relativistic and gravitational characteristics. However, theimportant
attribute of electric charge is still missing. As the unit of electric charge is most
universal in elementary particle physics, the above approach must be generalized
to include this attribute also.

We shall obtain a fundamental mass having all the four attributes from the
charged Kerr metric.

3. Charged Kerr metric and a new universal mass

Carter (1968) has given the appropriate form of the Kerr metric describing the
gravitatjonal field of a rotating body having an electric charge. Again using Boyer-
Lindquist coordinates the g,, component for the charged Kerr metric turns
out to be '
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. 2mr (13)
oo = (1 T F 0 Fat coSzB}

where O is the geometrized charge and is given by Q% = Ge?*[c*: here we ha';e
taken e to be the fundamental electric charge as that of the electron. A_s in the
previous section, @ = J/Mc. It may be noted that for a = 0, the expression (13)

reduces to the well-known solution given by Reissner (1?16) and by Nordstréom
(1918) of the Einstein field equation for a charged massive body.

The event horizen corresponding to equation (13) is now given by

rd—=2mr 4+ a4+ Q2 =7, =0

(14)
Hence, the roots are

ry =m+ (m? — a® — Q% (15)

where as before r, defines the “ event horizon’. Let us now consider the equation
of the event horizon in the Reissner-Nordstrom solution, namely,

2G6,M  G,e? 16

(1_. re? +c4r2 = Da =0 (10)

From this we get

ry = GaMJc® & (G2 M2[ct — Ge*/ct)} a7

It may be noted that

M? = ¢?|G does not yield a real value for r, when we make use of equation (15).

Choosing the next integral value for M2, i.e. 2e2/G, gives us (with n = GyM /c®)
m?® = 2G e?[ct

This shows that for r, to be real we must have M2 > ¢*/G.

(18)

Using this value of m? and with “a’ given by equation (10) together with the in-
equality for r, to be real, i.e.

m2—a®*—0*>=0
gives us the quantization condition for the mass, i.e.
G, M? = (nhcfe)?

(19)
Thus with n =1, we get a2 new fundamental inertial mass
M, =hc/A/Gye (20)
which is of the order of 2-3 x 10— g.

The above expression for mass contains the four most important fundamental

constants of modern physics, namely, G, for Newtonian gravitation, e for electro-
dynumics, ¢ for relativity and A for quantum mechanics. We believe that this
mass has greater claim for universality than the Motz uniton.

By analogy with
M,, we shall refer to entities such as M, as charged quantum black holes.

It may
be noted that these *bare’ quantum black holes having masses M, and M, are
unobservable.

4. f-gravity and the fundamental masses

In the foregoing sections, we have used the Newtonian gravity (characterized by
the eoupling constant G,) in all the calculations. In thefield theory of gravitation,
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namely Einstein’s linearized field equations, the interactions are mediated by mass-
less gravitons and hence infinite range. However, the discovery of f~mesons having
quantum numbers identical with the massless gravitons (e.g. JP =2%) strongly
suggests the possibility of a strong gravity field mediated by these spin 2+ mesons.
Isham et al. (1971) have shown that the f~gravity field couples strongly with hadronic
matter. Also, recently the present authors (Sivaram and Sinha 1973 b, 1974 g)
have shown that we must necessarily invoke the strong gravity (f~gravity) mediated
by massive f~mesons if one admits the possibility of general relativity playing some
role in determining the masses of elementary particles. It was alsoshown that the
range of this f~gravity is extremely short (~ 10~ ¢cm) as determined by the mass
of the f~meson. In contradistinction to Newtonian gravity, the coupling constant
for f-gravity, namely, G, is very large. This is easily estimated by equating the
Schwarzchild radius (with G;) of a nucleon (where gy, vanishes) to the Compton
length (see Sivaram and Sinba 19735, 1974 a). This gives

G; = he[2M 2 (21)
~ 67 x 10% dynes cm? gm~2 (CGS units)

This is consistent with the empirical value suggested by Salam (1973), namely,
G; ~ 6-6 X103 (CGS unit). Thus

G; =10® G,.
With this value of the f-gravity coupling constant, equation (12) gives
M, (f)=(0c/GDt ~ 22 X 107%¢g (22)

If we were to allow for J = nh, the value n = %, the above mass would turn out
to be 1-6 X 10~2¢ g which is the proton mass. Similarly, we find that

M, (f) =he/+/Ge ~ 2:3 X 10722 ¢ (23)

i.e. one order of magnitude larger than the nucleon mass. Thus, we see that the
fundamental masses M, (f) and M, (f) are not preposterously large. On the
other hand, they are close to the baryon masses. As remarked earlier, these bare
quantum black holes are unobservable.

5. Gravitational charges and hadron masses

As remarked earlier the gravitational charge is defined as M+/G. If we multiply
equations (12) and (20) by 4/G, or equations (22) and (23) by +/G, we get the
quantities (hc)? and (fic/e). These can be rewritten as

g, = (hcle®)t e = e[+/a (24)
and
g, = (hicle’) e = efa (25)

where o is the fine-structure constant. Thus we get two kinds of gravitational
charges g, and g,. It is remarkable that we get the same values of the fundamental
gravitational charges, whether we use G, or G,. This, of course, indicates that
the charge is truly fundamental quantity. Thke above analysis shows that the use
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of Newtonian gravitational constant leads to very large values for the fundamental
inertial masses M, and M,, whereas the use of G, gives much smaller values for
these masses, i.e. M, (f) and M, (f). Nevertheless, the interaction strength
between these entities remains the same. This is because for the large coupling

constant G, the masses are correspondingly scaled down, the reverse being true
for a smaller value of G, ie. G,

In further calculations, we shall make use of the fundamental gravitational charges
g, and g,. At this stage we postulate that the hadrons are composed of these funda-
mental gravitational charges. Before we proceed further, it is important as to
what names are giver to these fundamental entities. The names of particles ending
with -on has gone on without settling the question of elementarity. Accordingly
we make a slight deviation. We split the word atom and choose the second half,
i.e. OM. Thus these fundamental gravitational charges will be referred to as oms.

Perhaps it may be noted in passing that this word in Sanskrit means the ultimate
reality.

The postulate is that the mesons are composed of two gravitational charges
each with ef+/a and the baryons are composed of three charges, namely, two with
ef[+/a and the third having efa. Thus the mesons are diomic particles and baryons
are triomic particles. This model has close similarity with the quark model and
SU,; symmetry. However, the difference comes from the fact that guarks are
electrically charged particles and oms are gravitationally charged particles and
are responsible for the masses. They may also have electrical charges in addition.
Then they will have the property of Schwinger’s dyons (Schwinger 1969).

Let us consider the case of mesons first. Before considering the excitations of
this linear diomic unit, we discuss the equilibrium separation between these two
gravitational charges (e/4/a). For this, a simple calculation yields the desired
result. The energy of the system (kinetic + potential energies) is given by*

E = (r® h2[2ur) — e*/ar (26)

where the first term is the kinetic energy p%/2u, with p = hk, k = 2=/d, where u

is the reduced mass = (%) M, (f) and d = 2r; the second term is the attractive
potential energy of interaction between the two gravitational charges. The mini-

mization of energy with respect to r gives the equilibrium separation ro,
ro, = kw2 ajpe? 27)

~ 28 X 10713 ¢m.

If we were to displace the gravitational charges from the equilibrium configuration

* The relativistic expression for the energy
h” P CE )

_ , e?
E = R JIS 0.0 . -
also  gives
ah? n2 et )
Fgy == s ( - ﬂ_ﬁ?};ﬁ) s a h® 7%/ue?

the same as equation (27) obove.
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by an infinitesimal displacement, it is easy to show that a restoring force sets in
(Sivaram and Sinha 1973 a and ). The corresponding force constant is given by

K, = 2e?[ar? (28)
The frequency of oscillation (w,) cotresponds to the energy
K
h =h\/_—f — 35 MeV (29
“ B () )
where g, (f) is the reduced mass. For calculating the excited states, we make

use of the energy eigenvalues of the relativistic harmonic oscillator (Harvey 1972).
This is given by

E,=ho[(n +3) +3b(®* +n +3)] (30)
As indicated in earlier papers (Sivaram and Sinha 1973 a, 1974¢4) b ~ 1. Thus
E, =hw, [(n +1)?] (3D

Using this expression we get the following spectrum of meson masses (table 1),
Let us consider the case of baryons. As remarked earlier, the baryons are assumed
to comprise of three gravitational charges, i.e. two having magnitude e¢/+/a and
the third with efa. We assume that the three gravitational charges have a tri-
angular disposition. Proceeding in the same manner as done for the case of mesons
with gravitational charges, it can be easily shown that the equilibrium radius r,,
turns out to be

Fo, = B2 m? o82/e? M, () (32)
~ 4-8 x 10714 ¢m.

The corresponding force constant for the oscillation of the mass M, (f)relative
to the other two is given by

Ky = 2e2[a¥?r, 3 (33)

The corresponding frequency is
@y = V] (F) (34)

Table 1. Meson mass spectrum

! (in fffeV) Id;%?gigaon
0 35 ground state

1 140 (139, pions)

2 315

3 560 (549, 7 500, K)
4 875 (890, K*)

1264,
3 1260 { 1247 Rx)
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Table 2. Baryon mass spectrum (with n, = 0)

My E, Possible
(in MeV) Identification
0 835 (Unexcited ‘“ parton ”)
1 940 (938, p)
2 1115 (1115, 4, 2)
3 1360 (1320, B)
4 1675 {1672, 27)

where the reduced mass

L1 1
pe (f) M. (f) ° 2M, (f)°

Thus p, (f) =17 M, (f).
This gives

wy = 129 x 102 ¢fs,
The corresponding energy

hw, = 800 MeV.

The total vibrational energy of the system will comptise the excitation of the oscil-
lator with frequency w, and another with ;. In point of fact, the latter corres-
ponds to the excitation of the meson clouds and the former to the excitation of
My(f) relative to the meson cloud. The total vibrational energy is given by

E, =hw, (, + 1)? + koo, (1, + 1)2 (35)

For batyons, we choose n, = 0, i.e. the mode w, is not excited. Thus the various

states for the baryons are given in table 2.

Ttis interesting to note that the above sequence is in the order of increasing strange-
ness with AS = 1, for each consecutive mass. In fact, as shown earlier (Sivaram
and Sinha 1973 @, 1974 a) in a different context (n,, — 1) = | S|. The mass splitting
within individual multiplets ( 5 & etc.) which involves the dependence on the
other degrees of freedom such as isospin has not been considered so far. Such
internal degrees of freedom can be described within a general relativistic framework
in which the two de Sitter spaces, namely SO,,, and SO;,, appear. In this, one
of them can be treated as an external event space and the other as internal struc-
ture space. Theseinternal degrees ¢f freedom can be identified as internal rotational
and vibrational modes. Tt is worth mentioning that the ¢ iscrotational ’ excita-
tion of the units considered above gives the right order of energy. For example,
E. = (R*2I) K(K+ 1), with I =p, () r, 2 gives the various splittings of the
energy levels of the order of 2 to 4 MeV. This is of the same order as the observed
splitting within the multiplets. A detailed account will be given in a later com-~
munication including a group theoretical analysis of the model,
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6. Concluding remarks

In the foregoing sections, we have shown that for obtaining the mass spectrum of
hadrons as the vibrational excited states of some fundamental composite units
ore has to invoke the role of strong (/) gravity. This indicates a possible role
for Einstein’s general re ativity (but with the coupling constant G;) in determining
the structure and the masses of elementary particles (see also Sivaram and Sinha
1974 a).

In summary, the following important points considered in the present paper
may be noted. The fundamental gravitational charges were obtained by quantizing
the angular momentum occurring in uncharged and charged Kerr metrics (Sivaram
and Sinha 1974 b). This procedure, in effect, also amounts to the quantization
of the fundamental electric charge by postulating gravitational charges (M+/G).
This has close resemblance with Dirac’s work of quantizing electric charge by postu-
lating a fundamental magnetic charge (in this context Barut’s (1971) wcrk on dyon
may have some relevance). '

It should be noted that one could choose half-integral values in the quantjzation
condition for the masses. This will not affect the masses calculated to any appre-
ciable extent. We believe that each of the gravitational charges mentioned above
may have half-integral spin (3) A. Mesons, being made up of two such charges
with opposite spins, will have zero net spin. On the other hand, the baryons which
consist of three gravitational charges will have the residual half-integral spin of the
third cbject. Other combinations are also possible and one cannot rule out the
possibility of (3/2) k spin for baryons and k for mesons in some excited states. The
above model is thus capable of accounting for all the four quantum numbers, i.e.
the baryon number n, = (1, + 1), strangeness | S| = (#,, — 1), the spin as noted
above and the isospin being related to the * rotation > (spin) in isospace of the
composite system.

In sections 2 and 3, we have discussed the charged and uncharged Kerr metrics
for Einstein’s conventional field equations involving weak Newtonian constant
Gy. In section 4, we have invoked the role of f-gravity with the coupling constant
G;. This amounts to modifying the Einstein equations to E,, =IkT,,, where
E,, and T, are the Einstein’s tensor and energy-momentum tensors respectively
and k, =8nG;/c*. A detailed discussion of the modified field equations with
coupling constants of different interactions and modifications to incorporate the
short-range forces involving f-gravity via the redefined *“ cosmological > constant
has been given elsewhere (see Sivaram and Sinha 1973 b, 1974 a and ¢; Lord, Sinha
and Sivaram 1974, Sivaram, Sinha and Lord 1974).

The quantization conditions imposed in sections 2 and 3 are reminiscent of the
conditions used by Bohr for hydrogen atom and Dirac for magnetic charges. It
would thus appear that the quantization conditions have to be developed further
for a more complete theory. This will be discussed in subsequent papers.

Finally, it is worth mentioning that the ground states of both mesons and baryons
are unobservable. We believe they are the singlet states in each case, having zero
values of charge, isospin and hypercharge. This point will be further elaborated
in a group theoretical analysis of this model to be published later,
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Note added in proof :—

From the form of interaction energy between the gravitational charges g

and g,, it is easy to estimate the strong interaction coupling constant which
turns out to be efa3? ~ 30e.
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