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An electron in the field of phonons and magnons
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Abstract, The behaviour of a conduction electron in the presence of two Bose
fields, namely, phonons and magnons in ferromagnetic semiconductors is studied.
The effects of both electron-magnon and electron-phonon interactions on the energy
renormalization are calculated.
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1. Introduction

Ferromagnetic semiconductors have generated considerable experimental and
theoretical work owing to their interesting transport and optical properties (Meth-
fessel and Mattis 1967). In pure state these materials are very good insulators.
However, by appropriate doping, one can introduce carriers in the conduction
band. The magnetic semiconductor thus produced (e.g., doped EuO)is a system
of interesting interactions involving the free carrier and other excitations such as
phonons, magnons, etc. These magnetic systems (e.g., rare earth chalcogenides),
in addition to showing magnetic ordering, are also good examples of ionic solids.
One therefore expects strong interactions of an electron (or a hole) with both
magnons and phonons (Shah 1970, Klama and Klinger 1971). Following the
analogy with the ionic polaron case, several theoretical studies of interaction
between an electron and magnons have been made (Wolfram and Callaway 1962,
Woolsey and White 1970, Izyumov and Medvedev 1970, Richmond 1970).
These have also led to the concept of small or large magnetic polaron.

In what follows, we consider the behaviour of a conduction election interacting
with two Bose fields, namely, phonons and magnons in ferromagnetic semicon-
ductors.

2. The Hamiltonian
The Hamiltonian of the system described above can be written as

H = H, + Hyy + H, + Hyy + I, 2.1)
where

Hy, = 2 oCustCroy =;? E\" (a\fan + 3
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g, = 2 EP (bgt by + %) (22)
Ho — — T I (CuytCrntan + CongTCrvan® (2-3)
kA
Hop = 2 —Pack+ao’T Cro (b, + b_t) 2. 4)
k.qo

Here (Cigt, Cro)s (ant> an) and (b1, by) are the electron, magnon and_ phonon (crea-
tion, annihilation) operators respectively in corr63pondlgg states \..Vlth k, » and ¢
representing the wave vectors; o is the spin index. The su'ngle pz.u‘-txcle electron ¢4
and magnon E,™ energies already incorporate the corx_‘ecnoq arising from the T;wo
magnon clectron-magnon terms and the ferromagnetic ordering of the localised
spins.

Explicitly
h2k* I 1
Cio 7T oagmE T paFled — ) (‘S‘ N Z (Nxm>) | (2.5)
Y
i
Ex™ = Ry -+ 55 (114} — () (2.6)

where m*is the effective electron mass, H,, is the external magnetic field, o takes the
values = 1 and 7 is exchange constant of the contact type between conduction elec-
tron and localised spins of magnitude S. Here N)™ is the average inagnon occu-
pation number and {14) — (i1y) is the net spin polarisation of the conduction elec-
trons. Furthermore, E; = hw, is the phonon energy. The remaining electron-
magnon interaction term H,, involves emission or absorption of a magnon along
with spin flip scattering of a conduction electron with I, = 3(2S/N)*¥ I. In ecjua-
tion (2.4) J,, represents the electron-phonon interaction term wherein the general
form of the coupling constant P, can be written as (Shankar and Sinba 1973)

1 h NG '
P"“‘W(ima) F @D

where F is the deformation potential field, M is the atomic mass and N the number

of unit cdl.s. We have ignored any direct interaction between phonons and
mugnons (Sinha and Upadhayaya 1962, Shah 1970).

3. Electron Green's function

We cileulate the Green’s function for an electron in the field of phonons and
mignons. We follow the method of doubletime thermal Green’s function technique
for computing the relevant single particle and higher order Green’s functions
(Zub;alre:v 1960). These calculations are rather lengthy and involved. Accordingly,
we will be content with writing significant results and conclusions. The Green’s

functzu?‘i "',“.H contain informatic?n about relevant properties of the electron, i.e.,
renormulisation of energy, effective mass, life time, etc.

The electron Green’s function is dencted as follows (Zubarev 1960):
!;M'm’, == ((Cka (1); CTk'o" (t')»
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Setting up the equations of motion of these Green’s functions and taking their
Fourjer transform we get the foliowing chain of equations:

(E — er){Chss CuoH

h
e OgqrOin — 2 Iy (6, 2) 354 {Cring anT5 CueT)

_ %'Im (ka )\) o} «Ck-?\‘fak; Ck'o"T»
_}_ 2 'PQ {((pk'?'Q.quT; Ck'o"T)) + «Ck—a,a'bq; Cl.:'a’T ))} (32)

The right hand side contains four higher order Green’s functions. The equations
of motion of these will in turn contain still higher ¢rder Green’s functions.

At this state it will be expedient to reduce these by appropriate decoupling.
For example some of the Green’s functions involved at this stage are decoupled
in the following manner:

Enoire (gt T Dobe, T Cumny s Cre ™)
== (Db 1) (T Crne s Crrorth
= (I -+ N {anT Cimni s Cuoort)
also
<<"l>\l‘l‘qla?\+a.i. a?\i'(lck+>\¢ ; CA'O"T» 8(1,"01
= (Myig™ (@t Crny s Crort))
where (N ), (N\™), etc., are phonon and magnon occupation numbers. Further
the average values of (b,), (b.1), (ar1), etc., and of products of two creation or two

annihilation operators will be taken as zero. After decoupling these higher order
Green’s functions the various lower order Green’s functions are solved.

For example
(E— ey + Ex™ — A(E k + ) (Crny nF5 Cro)
= - Im [(N\m> + (nk-l-?\lr>] «ClaT‘a Cl;'o"T»

Z (N\") + (Mrar—qy)
m — € i—ad + E)\

55 (Cenibei Cuort)

(M) + (M 21) ,
-+ E__ €eihiad + E)\ T E, p((CHqurzTJ Ck'o"T»} (3.3)

where
A(E, k4 Xy)

Z p2 14N D) — (Mp I-(N,) + <qu> + (”H?\-—ad«) }
! ?F"‘ €k FA—qy + E\" — Eap E— €At + E\™ + Eap

(3.4

Similarly, we can solve the equations of motion for the remaining three higher
order Green’s function on the right hand side of equation (3.2), Substituting



192 S S Shah and K P Sinha

these in equation (3.2), we finally get two equations from equation (3.2), one for
up spin electron and the other for down spin electron. Explicitly,

h
{Crts C”T»:ZW[E——GM——Z,'(E,kT)] (3.5)

where the full form of £ (E, k1 ) is given by
YEk) =) L AN + (o]
o - E— ey +E\* — A(E, k+ A )

Y e (NG + (ira™)]
Ll

— €4ar F EL —B(E, k+4q1)

KL NP — )]
E— ey —EP—PB(E kb — (/1)}

o P 2] 2 [(N)\m> + <”k+)\¢)]
a 4m X
Z\q E— oy + Bi® — A(E, k +X3)

e { [(qu> -+ (Nlc+7\+q¢>] n
E— einiqy + E\®+ EP) (E — eryqt — E;° — B(E, k + ¢1))

- {1+ NS — (Mzir—ai ] }
(E— eirgy + EA®— EP) (E— exqt — E;° — B(E, k —q 1))
(3.6)

Sumilarly we get

. _ h
UChy 2 C;ﬁ';,)} —ZW[E"' &y — & (F, k\l,)] e

where Y(E. A |} is given by
Z (ELA ) = Z AP 1 — )]
— E— ey — E\® — A(E,R— 1)

+ IR [(N®) + (hyay )]
Z; {E‘-€k+q-}+Eqp-—B(E,k+q¢)+

[{1 + NP — (m_oy)]
+ E— e ¢y — EpP — B(ICE,J}C —q \[,)}

. Z Paﬁ [wz [(Nlm> -+ (1 —_ n,‘_M.)]
E—axt—EB"— A, k—a7) ¥

LN

= [V 4 (enig )]
NV ER) B~y FEF—B(E kK + g \D))
K14 NPy — (Msr—q4)]

—EN(E— e,y — Ep — B(E, k — qi))}
(3.8)
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where A (E, k — A1 ) is defined in the same way as in equation (3.4) by reversing
the spin index and changing sign wherever A occurs.

%’ L2 [{(N\™ + (Briagay)]

B(E’k:bQT)zE—ek-}-)\iq\l,_l"E}\m:tEqp (39)
Similarly
2L 4 NN — (e )]
B(Ek+qg{)=">2 (3.10)

E — egpaqt — EN" L EF
4. Renormalization effects

4.1 Renormalization of electron energy

From equations (3.5) and (3.7) we obtain the energy of the conduction electron
in the 4 and | spin states, i.e., from the poles of the two Green’s functions.

Eyp = e +2(E k1) (4.1)

where the explicit forms of Z(E,&k1) and Z(E,k|) are given by equations
(3.6) and (3.8). The real parts of these terms give the renormalization of electron
self-energy. We can also get the effective mass enhancement from these terms.
2 (E, ko) contains three type of terms:

() ZIr2(....), (i) ZP2(....) and (i) TP2L2(....).

Their explicit forms are given in equations (3.6) and (3.8); (i) and (ii) are the self-
energy corrections owing to electron-magnon and electron-phonon interactions
respectively. They depend implicitly on each other and on the occupation number
of electrons and relevant bosons. One important conclusion emanating from the
above two interactions is that the energy of the spin up electron is further lowered
relative to ¢4 even at the absolute zero of temperature. This will be seen in the
calculations given later in this paper. This is in contradistinction to the situation
when only electron-magnon interactions are taken into account (Woolsey and
White 1970, Richmond 1970).

The term (iii) mentioned above is a consequence of our consideration of simul-
taneous presence of two boson fields (Sinha 1973). Energy renormalization owing
to these processes become comparable to that due to the terms (i) and (ii). This
will give rise to different power laws (temperature dependances) in specific heats,
relaxation time and some of the transport phenomena.

It turns out that contributions from (i) and (ii) neutralize each other (see con-
cluding remarks for spin down case). A similar situation obtains for terms in-
volving P2 and I,2. Thus terms like (iii) are expected to play an important role.

4.2 Calculations

Keeping in view the formation of polaron with up spin electron even at absolute
zero, we caloulate the renormalization energies Z(E, ko) at T=0K. This
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.implilies the task very much. We can take the boson occupation numbers to be

zero. Only terms involving interaction with zero point phonons survive.

Thus at T=0 equation (3.6) reduces to

. 1
Z (E. k1) = ZP; EY — e, — E& 4.3
4

We take the case of EuO for our numerica! estimates. This has the rock salt struc-
ture with lattice constant ¢ = 5-14 A, §=7/2, I =0-3 x 10712 erg (Rys e/ al
1967).

Furthe1, F~ 10-3 dynes and o, &~ w, ~ 10 ¢/s for optical phonons (Shankar
and Sinha 1973). Changing the summation to integration and using the above
patameters. equation (4.3) reduces to

Ay L EmE R | 4.4
Z.(E"‘ R > 7 o, -4

~ —6-25 x 10~? eV, using m* = free electron mass and M ~ 50 x 10~ g.

Equation (4.4) is obtained under slow electron approximation. Thus we see that
even at the ubsolute zero of temperature for the up spin electron energy is lowered
by the phonons. For low doping (very low fermi energy of cnoduction electromn.)

in EuO the relaxation effects involving optical phonons will not be important at
T =0.

Unlike in the up spin case, the down spin conduction electrons will be affected
by both electron-phonon and electron-magnon interactions.

@) = Z -

(Ey T St — B\ — A(Ey,k — AY) -
n: ;‘he xtenom}alization arising from electron-magnon interaction corrected by
Atby b — A1) due to the presence of phonons. Taking E,® =— DM, where

D = 278" with J = {‘—:‘8"‘ k i
= 5g» Kz being the Boltzman constant and 6, Curie tempera-
ture _(fm Eu0. 6, ~ T0K (Methfessel
= IS und JS..DA2, for all valueg o
ALE A — A

Mattis 1967)), and Ey ~ ey, we get £, — ex_x 4
o i [ Xincluding A,,,. Further, we estimate that
)=4 < 10" eV and B(E,k —g )~ 12 x10-% eV ~ 10~% eVt

Accotdingly, uat
omsider Cquation (4.5) reduces to /16 ~v 1-2 % 10-2 eV. Let us mnow
Lisy = Z e e Pq2
Ey — T E YT E TR — 4.6
" ¥ €k-gqd E, ~B(E,k—q\f,) : ( ° )

%‘, !&ﬂ.@gﬂ fﬁ,ﬁ' t}’e pre en — e exac t Sllll
3 F3 3 ce Of B E i i i
3; VU %3?‘1{‘ np % pin S . ! l (, ’ii,() i q,l,) the C&lCUlatl ons ar ]y ]]

- estimated to be of the order of — 102 eV,
4w

tingy o Poor%q. ... }
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the last expression of equation (3.8) is taken into account. This will reduce to

_ermnt o, e
(The presence of B (E, k — g |) is taken into account. This is of the order of
— 103 eV, if «w, is between 1013 and 10 c/s).

When we add all these contributions from (i) to (iii) we get the total reduction
in electron energy to be — 10-3 eV.

At this stage we do not consider relaxation effects in that they will not be impcrtant
at T =0K.

5. Conclusions

The main results of our calculations are summarised as follows:

(@) There is a possibility of polaron formation for up spin electron even at
T=0 K.

() The simultaneous consideration of electron-magnon and electron-phonon
interaction cflects suggest new features concerning energy renormalisation and mass
enhancement of conduction electrons. For the spin down conduction electrons
the effects of electron-magnon and electron-phonon interactions (i.e., the terms
(i) and (ii) tend to compensate each other. Accordingly, if only these terms were
to be considered there will be slight enhancement or lowering in effective mass.
The interference term (iii) thus plays an important role.
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