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Pla SIMon-magnon interaction in magnetic semiconductors
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Abstract. In appreciably doped semiconductors (e.g. EuO, CdCr,.S,, etc.) plasmon
and magnon energies are comparable. Therefore, there will be resonant interaction
between these modes of excitations. On the basis of a new microscopic theory formu-
lated for plasmon-magnon interaction, the effect of this interaction on the energies
and lifetimes of plasmons and magnons has been calculated using the double-time
Green’s function. The energy shifts are very small and the lifetimes of plasmons, -2,
and magnons, +™, are of the order of 10~2 and 10-3 sec respectively.
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1. Imtroduction

Interaction between plasmons and magnons in magnetic materials has not received
much attention. The reason is that in ferromagnetic metals, the plasmon energy is
extremely  high (ﬁwp~15eV, where w, is the plasmon frequency) compared to the
magnon energy. In fact plasmon modes in the absence of external radiations are
not excited even at room temperature. The situation is rather different in doped
semiconductors, where the plasmon energy may be comparable to magnon
cnergies.

In recent years there has been considerable theoretical and experimental work
in the field of ferromagnetic semiconductors (e.g., doped Eu chalcogenides, doped
CdCrsSy) - Theoretical work on these systems has been directed mainly towards ex-
plaining their interesting optical and electronic transport properties. Apart from some
phc:nomenological discussions involving interaction of spin waves with the electro-
kinctic wawves in the plasma of a magnetic semiconductor (Baryakhtar et al 1966)
there does not appear to be any detailed microscopic theory of their interaction,
Baryakhtar el al (1971) have discussed the Raman scattering of light near resonance
between longitudinal plasma and spin wave modes in antiferromagnetic semi-
conductors.

In what follows, we consider a microscopic formulation of plasmon-magnon
interaction in doped ferromagnetic semiconductors. After formulating the interaction
Hamiltonian, its effect on the magnon and plasmon. energies and lifetimes are
considered. We found that there is no appreciable renormalization of magnon and
plasmon energles. However, there is some effect on their lifetimes.
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2. Interaction Hamiltonian

We consider a system which in the pure state is a ferromagnetic insulator (e.g., EuO).
The magnetic moments in such a system are localized on the paramagnetic
atoms (say in the d or f shells of the atoms). We shall not be concerned with
the origin of exchange interaction involving the electrons of the paramagnetic ions
and the electrons of the diamagnetic ions (Methfessel and Mattis 1968). We shall
take this problem as solved. Thus, we start with an effective exchange Hamiltonian
which describes the magnetic ordering in the solid. By introducing suitable impu-
rities in such ferromagnetic solids (e.g., Gd in EuO) one can produce sufficient num-
ber of electrons in the otherwise empty conduction band. These electrons are de-
localized and are responsible for the transport and other phenomena. The electronic
band structure of these ferromagnetic semiconductors has not been solved to a reliable
extent (Cho 1967, Kasuya and Yanase 1968). Nevertheless, there is evidence of the
usual parabolic conduction band which is unsplit in the spin averaged state. FHow-
ever, it will be split up into spin up and spin down bands on taking into account the
interactions with the localized spins.

The Hamiltonian of the system will comprise the electronic part, the exchange
coupled spin system, and the electron-spin wave interaction part (Rys e al 1967,
Woolsey and White 1968). In writing the Hamiltonian we shall introduce the mag-
non and plasmon variables straightaway. Thus, in the second quantized represen-

tation, the Hamiltonian of the system in the absence of an external magnetic field is
given by

I =ty + H,, (2.1)
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denote the electron, magnon and plasmon energies respectively and
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where m* is the effective mass of the electron, W is the number of magnetic atoms, 7

is the carrier concentration, o i.s the spin index and takes the values 4-1, 7 is the ex-
f:hangellrgetg:hral between t}.le nearest neighbour localized spins (S), I is the exchange
integrals between the localized spin and the conduction electron, €, is the static dielec-

tric constzn; of. the medium, z is the number of nearest neighbours for the magnetic
atoms an p is the corresponding vector connccting the nearest neighbour (6;2,,, Gka):
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('b:{, b,) and (a;, aq) are the creation and annihilation operators for electrons, mag-
rions and plasmons respectively, &, A, ¢ signifying the corresponding wave-vectors.

The plasmon-magnon interaction arises from the last term in the electron-magnon
Interaction Hamiltonian (Eq. 2.3) as explained below. The electron operator in the
last term of J, , is just the Fourier component of the electron density operator Pyos

-

i.e,

m

-f
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At very low temperatures and concentrations (7~ 1018 cm™) and when the band
splitting is larger than the Fermi energy of the electron, we can assume that
and therefore p, Nt

In the long wavelength region (i.e., for ¢ < g¢,) p, can be approximately written in
terms of the plasmon co-ordinates (Rickayzen 1959) by using the relation
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where Q (=MNa®) is the volume of the system and « is the lattice constant. Therefore
the third term of J£, becomes
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3. Effects of plasmon-magnon interaction

I nasmuch as we are interested in the plasmon-magnon interaction only, we will not
retain the first two terms of equation (2.3) and the second term of equation (2.6),
b ecause the first two terms of equation (2.3) do not involve density fluctuation opera-
tors. Also, the terms in J£, which give rise to the band splitting of electron energy
T as been taken in the electron Hamiltonian.

"L hus the truncated Hamiltonian is given by
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..;;t&%??‘i}'f"?ﬁ”}:y_,‘,«:; S oababadasl

B

SN S

R I

o
L QR




34 G Baskaran and K P Sinha

For calculating the effects of the interaction terms in equation (3.1) on the re-
normalization of magnon and plasmon energies and on their lifetimes, we make use
of the double-time Green’s function technique. The energy Fourier transform of the

relevant (magnon) Green’s function is given by (with usual definition for Green’s
function (Zubarev, 1960)):

%
(E — Ep) <br; b > = om D Ag iy (8] +a)); by > (3.3)
q

On calculating the higher order Green’s function < b, p (aZ + a_g); b1;\> and
decoupling the hierarchy at a suitable stage, the magnon Green’s function becomes

A
€ b by >»=
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(3.4)

where the self-energy zm (E, A) is given by

b m b _
zm (E, A) — EAZ[ (1 +nq + nh_q) + (np n?;l_q) .J’ (3.5)

and né’ and #} are the plasmon and magnon occupation numbers.

Similarly, we can calculate the plasmon Green’s function.

The equation of motion
for plasmon Green’s function is

: A T
(E—fiwp) < ag; a2§=§;+Aq§<b;‘b,\+q; agz. (3.6)

Calculating the higher order Green’s function <! 5,, g3 az?\,- and using the de-
E

coupling approximation, we get the plasmon Green’s function as

#
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where z (E, q) is the plasmon self-energy and is given by
I G
> (B, q) = A2 Ag T A 3.8
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.dTh'e self-energy can be written as the sum of real and imaginary parts using Dirac’s
1aentity.

Lt L

1
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(3.9)

As is well known the real and imaginary parts of the one particle Green’s function

gives the energy shift and lifetime of the corresponding quasiparticle. Hence, for
magnons the energy shift is given by ’

AET= Re Z™ (E, X).
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At low temperatures (for fiw, ~ 0-1¢V) nf is vanishingly small. Further in the long-
wave length region Ea ~ 275422, Thus, in this region we get

2-4 2
256m2¢275/ \278 a2 . hw,

An estimate with

m¥ xm, Faln6x107%V, a~5A, S=7% and ¢, ~ 10

gives
AEY ~ 1071 ¢V for A ~ 10% cm™.

The shift is rather negligible.

Similarly the plasmon energy shift is given by

m m
”)\—q—n/\
AE? =Re3? (E, q) ~ Re 4’ ( ) (3.11)

The plasmon cut-off wave-vector (g,) for a carrier concentration of n~ 101® cm™3
is of the order of 10% cm™, i.e., it lies in the very long wavelength region. Under this
condition we can assume E > (E,_,—£E,) and replacing E by Aw,

AEP P (kg T)F [(3) (L)i (3.12)
g 2567w, 23S/’
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where £ (2) is the Zeta function. For the choice of parameters given above
AE:; ~ 10712V for g ~ 10% cm™.

The lifetimes of the quasiparticles can be calculated from the imaginary part of X
using the. relation

A
_ 3.13
T Imz 519
Therefore, for magnons
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The g integration can be performed inside a sphere of radius g;- Under the above
mentioned approximations

Lo Pandfoy gy 5 Gnct (Beopl255a) (3.15)
% 1024n2FSAe? 2qp

=0 otherwise
The estimated life-time

'r;" ~2%10 3 sec for A ~ 10% cm™L.
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Similarly for plasmons, the life-time is given by

L. M[ coth {(ﬁ“’”” S“ZQQ)EE -_1] | (3.16)
£ 4096 7A8% " 8kpT 7Sa%g*
q

and the estimated life-time

T§~ 102sec for g~ 10% cm™,

4, Discussion

In the foregoing sections, we have considered the plasmon-magnon in‘tcraction.in
ferromagnetic semiconductors. The interaction arises from the non spin-flip scatten'ng
part of the electron-magnon interaction Hamiltonian. The spin-ﬂip‘ par.t c.an.not give
rise to plasmon-magnon interaction in the first order because no spin-flip is involved
in the plasmon creation or annihilation process. However, the spin-flip parts can
contribute to plasmon-magnon interaction in higher orders. The higher order inter-

action will involve operators such as p, +Pal o by. Owing to the restriction that p a ~0

these processes will be extremely weak in the ferromagnetic semiconductors in question.
An alternative way of looking at the result is the following. The magnon self-erllergy
E™(E, X) is related to the density correlation when all the electrons have spin-up

orientation. In the wave-vector region ¢ < ¢, this corresponds to virtual exchange
of plasmons.
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