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Recent progress in surface instabilities of the Rayleigh—
Taylor type at the ablative surface of laser-driven in-
ertial fusion energy (IFE) target is reviewed with the
objective of increasing the efficiency of IFE by reduc-
ing the growth rate of Rayleigh-Taylor Instability
(RTI) using the following two mechanisms: (i) porous
lining in the absence of electric force at the ablative
surface of the IFE target, i.e. hydrodynamics and
magnetohydrodynamics and (ii) porous lining of smart
materials of nanostructure in the presence of electric
force at the ablative surface of the IFE target, i.e. elec-
trohydrodynamics. The former mechanism deals with
two cases. Case 1 is the study of linear and nonlinear
RTIs in an ordinary viscous fluid past a densely
packed porous lining considering combined lubrica-
tion and Stokes approximations. Case 2 deals with RTI
considering only Stokes approximation. Mechanism
(ii) deals with RTI in a poorly conducting fluid in the
presence of a transverse electric field called electrohy-
drodynamic RTI (ERTI). In both cases a simple theory
based on replacing the no-slip condition with Saffman
condition with and without thermal radiation is pro-
posed. Both analytical and numerical techniques are
used to study RTIL. It is shown in both mechanisms, that
the porous lining reduces the ratio of growth rates by
about 80% compared to about 45% predicted in the
literature, over the value that it would have if the target
shell is bounded by an impermeable boundary. This
finding is useful in the effective extraction of IFE by
reducing the asymmetry caused by laser radiation in
fusing deuterium—tritium in the target. These mecha-
nisms are also useful in biomedical engineering problems
in controlling the effects of plaques in coronary artery
diseases and in trachea (i.e. wind pipe in the body).

Keywords: Electrohydrodynamics, inertial fusion energy,
porous lining, surface instability.

THE depletion of fossil fuels and atmospheric vagaries
have given rise to tremendous strain in providing the re-
quired uninterrupted energy supply for the overall develop-
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ment of a country. The crux of the problem in this regard
is to find new unconventional sources of energy that are
affordable, practical and provide uninterrupted supply of
energy which do not have as great an adverse impact on
the environment as do fossil fuels. It has been realized' that
among the many unconventional methods of power gen-
eration, one of the effective, efficient and everlasting
sources is the inertial fusion energy (IFE). The fuel used in
IFE is usually deuterium-tritium (DT), the two isotopes
of hydrogen, because they are easily available abundantly
in nature, environment-friendly and everlasting sources of
energy. One of the important problems faced in the design
of IFE target is the loss of symmetry of the target caused
by laser radiation in the process of fusing DT to overcome
the forces of repulsion between D and T. For efficient ex-
traction of IFE, it is essential to reduce the asymmetry of
the target by reducing the growth rate of surface instability
at the laser-accelerated ablated surface of the IFE target.
Reduction in the growth rate of the surface instabilities
represents a field of fundamental research having myriad
applications in structural, and biomedical engineering,
stellar physics and inkjet printing in addition to IFE. For
example, in coronary artery diseases, to remove plaques
formed on the walls of the arteries (i.e. endothelium) due to
accumulation of cholesterol and other fatty substances
and also to remove plaques formed on the walls of the
wind pipe (i.e. trachea) due to deposit of unsolvable tiny
aerosols, laser radiation is used. This laser intensity erodes
the walls causing side effects due to surface instabilities.
To reduce the side effects in IFE and in biomedical engi-
neering problems, it is essential to control surface insta-
bility. The following three different types of surface
instabilities are observed:

(i) Rayleigh-Taylor Instability (RTI), which occurs at an
interface between dense fluid and less dense fluid
when the latter is at high pressure.

(i1) Kelvin—Helmholtz Instability (KHI), which occurs at
an interface subjected to shear.

(ii1) Richtmyer—Meshkov Instability (RMI), which occurs
due to shock-accelerated interface and is regarded as
a special case of RTI.
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In the present review we concentrate only on RTI, which
is one of the physical mechanisms limiting the perform-
ance of laser fusion targets and hence additional mitigation
of RTI growth rate is needed in order to achieve high gain
in IFE target by reducing the side effects caused by laser
radiation in IFE and in biomedical problems explained
above.

At present the following mechanisms are used to re-
duce the RTI growth rate:

(i) Gradual variation of density assuming plasma as an
incompressible heterogencous fluid in the absence
of surface tension.

(i1) Considering compression of DT caused by laser radia-
tion without surface tension.

(iii) IFE target shell with foam layer.

(iv) Ablation surface lined with porous lining of nano-
structured smart material.

Numerous numerical and experimental data on RTI growth
rate at the ablative surface fit the formula (see Rudraiah
et al.h)

n=AJlgl(1+€lL) - Blv,, 1)

where #n is the growth rate, ¢ the wavenumber of the per-
turbation, g the acceleration due to gravity at the inter-
face, € a constant multiplying the density gradient
correction term, L the density scale length at the ablation
surface, A the Atwood’s number, 8 a constant multiplying
the ablation stabilization, and v, the flow velocity across
the ablation front. The first term on right hand side of eq.
(1) is the growth rate ny, for the classical RTI, namely an
incompressible inviscid fluid in the absence of any addi-
tional mechanism to reduce the growth rate; the second
term is the effect of considering a mechanism to reduce
the growth rate. The values of A, € and 8 provided by
various authors fit eq. (1) are given in Table 1.

At present the available work on the use of foam and
variation of density to reduce the RTI growth rate pertain
to experimental work and no simple theoretical formula
similar to eq. (1) is available. Recently, Rudraiah® found
an analytical expression analogous to eq. (1) using nano-

Table 1. Ratio of maximum growth rate

Author A £ B T/ Tpm

Takabe et al.'? 090 0.0 3.00  0.45 ny,

Lindl et al.”’ 1.00 1.0 3.00 Silent

Betti et al.®® 0.98 1.0 1.70  Silent

Kilkenny et al® 090 1.0 3.00  Silent

Knauer et al.*® 0.90 1.0 3.02  Silent

Rudraiah® 1.00 1.0 0.75  0.79 nom (@ =0.1,6=4)
2.86 0.26 npy (@ =4, 0=20)
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structured smart porous lining at the ablative surface
made of foametal or aloxite®, of the form

n=m —PBy,, (2)

where n, :%ﬁz(l—(ﬁle)), B = i’y is the Bond num-
ber, 6 = g(p, — pr) and 7 the surface tension. = (3ao/
(4 + ao)) and v, = (4 + o)/ (12(1 + ao))l(1 - (£*/B)) is
the velocity of the ablation front. The other quantities
have the same meaning as in eq. (1). The first term on
right hand side of eq. (2) is the classical growth rate in
the absence of nanostructured porous lining and in the
presence of surface tension, which is the same as the one
given by Babchin er al.>. The maximum growth rate n,,
for maximum wavenumber, [ =+/B/2 is

B(4+ao)
Hy, = ———. (3)
481+ ao)
Data obtained from eq. (3) are also listed in Table 1.

In IFE, ablatively laser-accelerated surface induces
RTI both in acceleration and deceleration phases, which
destroys the symmetry of the imploding target and re-
duces the efficiency of extraction of IFE®.

In this review we discuss the following problems with
the objective of reducing the asymmetry of IFE target
caused by RTI.

(i) Linear and nonlinear RTT in an incompressible viscous
fluid in a channel bounded on one side by rigid
boundary and on the other side by a porous layer,
considering combined lubrication and Stokes ap-
proximations (i.e. unidirectional flow). Linear RTI
will be called Problem 1 and nonlinear RTI as Pro-
blem 2.

(i1) Linear RTI with the same geometry given in prob-
lem 1 considering only Stokes with lubrication ap-
proximation, that is, two-dimensional flow. This will
be denoted as Problem 3.

(ii1) Effects of laser radiation and porous lining on RTI
in an ablatively accelerated plasma. This will be de-
noted as Problem 4.

(iv) Effects of magnetic field, laser radiation, nanostruc-
tured porous lining on RTI in an ablative laser ac-
celerated plasma. This will be called Problem 5.

(v) ERTTIin thin IFE target lined with smart materials of
nanostructure porous lining in the presence of trans-
verse electric field. This will be called Problem 6.

The results obtained are of immense use in some bio-

medical engineering problems as discussed earlier.

Objective of this review and a brief literature
survey

At present as stated earlier, mechanisms like gradual
variation of density instead of abrupt change at the abla-
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tion interface, compression in a non-viscous fluid and
target shell with porous foam have been generally used in
the literature (see Table 1) to reduce the growth rate of
RTIL.

The work of Desai and Pant® on the reduction of RTI
growth rate was based on experiments involving X-ray
transport pertaining to the use of plastic foil targets. Bo-
risenko and Merkuiev’ used viscoelastic forces and the
induced magnetic field to reduce the growth rate of RTI.
Recently, Mikaelian'® has studied the effect of surface
tension to reduce the growth rate of RT1. Rudraiah et al."!
have considered the combined effects of surface tension,
viscosity and magnetic field as additional factors in re-
ducing RTI growth rate during acceleration. The works
mentioned above were concerned with incompressible
fluid in the absence of heat transfer and radiation mecha-
nisms. However, the study of RTI in a compressible fluid,
including heat transfer is sparse. A good estimation of the
growth rate of linear RTI in a non-viscous fluid taking
into account the compression due to laser without heat
transfer has already been reported'* ',

Takabe et al.'* have expressed the growth rate of RTI
in the form

n=09lg - Btv,, 4)

where 8 = 3—4, v, is the flow velocity across the ablative
front and ¢ the wavenumber. The first term on the right
hand side of eq. (4) is the classical growth rate of RTI,
i.e. in the absence of compression and the second term is
the effect of compression. The result given by eq. (4) is in
conformity with the fact that compression reduces the
growth rate in comparison with classical growth rate per-
taining to incompressibility. Physically, this reduction in
the growth rate due to compression of a non-viscous fluid
is due to the fact that compression absorbs some of the
energy which would otherwise enter into the fluid motion.
Apart from the compression effect, during the past one and
a half decades, porous IFE-relevant ablation layers made up
of foams have been considered by researchers'*' to reduce
the RTI growth rate. Sethian et al.'* have developed and
evaluated experimentally, new type of targets using low
density CH foam shell filled with DT, which minimizes
the RT growth rate. Recently, Carles et al.'® have used a
magnetic field gradient to study RTI both theoretically
and experimentally; good agreement was found between
the results of theory and experiments. They have concluded
that the technique of magnetic levitation promises to
broaden significantly the accessible parameter space of
gravitational interfacial instability experiments. We note
that the foam used as a porous medium in IFE may de-
form causing contraction and expansion of flow in the
pores resulting in turbulent flow'’. To achieve laminar flow
it is advantageous to consider nanostructured, non-
deformable porous matrix like foametal for which the
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permeability k = (1.1-2.7) x 107° sq. in and aloxide with
k= (1.0-2.48) x 10™° sqg. in (see the experiments of Beavers
and Joseph"), and with low porosity (0.016-0.027) where
the creeping flow prevails.

In the case of nanostructured porous lining, the voids
made up of nanocrystals are small and hence in this re-
view we use densely packed porous matrix layer satu-
rated with dense fluid of density p, lined with IFE target
shell to reduce the growth rate of RTI, with the aim to
improve the efficiency of extraction of fusion energy.
The assumption of incompressibility assumed in our work
is adequate since the perturbations considered here are
not bounded by gravitational scale height'®, but depends
on the surface tension scale of the system. Though these
assumptions are severe, our aim is to show that the dense
incompressible fluid-saturated porous lining in the ab-
sence of heat transfer reduces the growth rate of RTI con-
siderably compared to that in the absence of porous
lining. Physically, the porous layer absorbs the energy of
the fluid and dampens the system, which is analogous to
the compression case discussed by Takabe er al.'. In spite
of the simplicity of the model explained above, much
work has not been done using a simple model of densely
packed non-deformable incompressible fluid-saturated
porous lining to reduce the growth rate of RTI in the IFE
target. Therefore, the primary objective of this review is
to use a porous lining to suppress the growth rate of RTI
modes. In the case of radiation considered in some of the
problems, we will deal with Boussinesq fluid.

To achieve the objective, the plan of this review is as
follows. The basic equations and the relevant boundary
and surface conditions, using suitable approximations'”,
are discussed in detail. The velocity distribution and dis-
persion relation are obtained analytically while dealing with
particular problems using linear and nonlinear stability
analysis. Important conclusions are drawn in the final
section.

Mathematical formulation

We consider a thin target shell in the form of a film of
unperturbed thickness % filled with an incompressible,
viscous, light fluid of density ps bounded on one side by a
rigid surface and on the other side by a dense incom-
pressible viscous fluid-saturated densely packed nano-
structure porous lining of large extent compared to the
shell thickness 2 (Figure 1). The assumption regarding
density is necessary for RTI and the assumption on porous
lining is necessary to maintain laminar flow using the
Darcy equation'’ and Saffman® slip condition. The fluid
in the shell is set in motion by acceleration normal to the
interface and small disturbances are amplified when the
acceleration is directed from the light fluid in the shell to
heavy fluid in the porous lining. This instability at the inter-
face is the RTI as defined earlier. We consider the rectan-
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gular coordinate system (x, y) as shown in Figure 1, with
x-axis parallel to the shell and y-axis normal to the shell
and with 7(x, ¢) as the perturbed interface between fluid
in the film shell and in a porous lining. We note that the
Saffman® condition is derived on the assumption of
nominal surface'®. It is defined as a smooth geometrical
surface drawn in the fluid such that the outermost perimeters
of all surface pores of the permeable material are on this
surface. If the surface pores are filled with fluid to the
level of the respective perimeters, a smooth boundary
would result called nominal surface at y = 2. We note that
since the porous lining is a non-deformable porous matrix,
it cannot move and perturbation in the fluid penetrates the
porous lining through the pores and produces oscillations.
This assumption which is used in the experiments of Bea-
vers and Joseph'” is needed to use the Saffman®’ slip con-
dition given below.

The basic equations of the film—porous lining composite
system, following Rudraiah'’ are the conservation of
momentum

(9 . . . ool

p[a—i]+(q-V)q]:—Vp+,us2q—Kq, (5)
the conservation of mass for Boussinesq fluid

V-q=0, (6)
the equation of state

P = poll—en (T; Ty, ™

where ¢ = (u,v) is the velocity, T the temperature of fluid
in the shell.

_ P
p=p;|1+X, [—p—lﬂ,
L Pt

the density,

— e
|
L L

Figure 1. Physical configuration.
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the viscosity,

_ te  PrCo
K=X, [7+—Iql}

Jk

and suffixes p and f denote porous lining and fluid film
shell respectively, L. is the effective (or Brinkmann) vis-
cosity, f viscosity of fluid within the shell, £ the perme-
ability (which has the dimension of length-squared) of
porous lining, C, the drag coefficient and

{O for shell
P

1 for porous lining.

These equations have to be supplemented with suitable
boundary and interface conditions to be discussed later
and the conservation of energy will also be discussed later
while dealing with the effect of laser radiation on RTI.

We deal with linear unidirectional and two-dimensional
RTI by considering an infinitesimally small disturbance
superposed on the basic state and nonlinear RTI is stud-
ied numerically using both harmonic evolution of the in-
terface and numerical integration. The basic state is
quiescent and the interface is a nominal surface’. We note
that the two-dimensional analysis is sufficient for draw-
ing conclusions about linear stability analysis because the
results can be readily used to predict the behaviour of
three-dimensional motion?'. For example, the three-
dimensional disturbances with wavenumbers ¢ and m
along the x- and z-directions respectively, have the same
stability behaviour as a two-dimensional disturbance with
the wavenumber o = (¢* + m*)"’?. Further, to understand
the physics of the problems considered in this review, fol-
lowing Babchin er al.® and Rudraiah ez al.”®, we restrict our
analysis to flows satisfying either the combined Stokes
and lubrication approximations'’ or Stokes approximation
only'’. That is (i) << h, where 7 is the elevation of the
interface and / the thickness of the film. These assump-
tions help to neglect the variation of u with respect to x.
(ii) The Bond number B = §h*/y<< 1, which implies
gravitational force is negligible compared to surface ten-
sion force, where 7y is the surface tension and 6 = g(p, — Py
is the normal stress. (iii) The Reynolds number R =
UK*/Lv << 1, which ensures laminar flow and also en-
ables to neglect inertial force. (iv) The Strouhal number
S, which is the measure of the ratio of local acceleration
(i.e.dg/dr) to the inertial acceleration ((¢-V)qg) is small,
i.e.

S=—-<<1,

L L=[1).
toU )

where ¢, is the characteristic time and U the characteristic
velocity which enables to neglect local acceleration in the
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momentum equation. Approximations (i)—(iv) are the
usual lubrication and Stokes approximations which help
to neglect many terms, particularly the non-linear terms
in the basic equations (eqs (5) and (6)). We also assume
that heavy fluid in a porous lining is almost static because
of creeping flow approximation in a densely packed porous
medium, which is needed to use Saffman®’ slip condition.

Particular problems in hydrodynamics and
magnetohydrodynamics

Problem 1: Effects of porous lining on the reduction
of growth rate of RTI in IFE target in hydrodynamics
with lubrication and Stokes approximations

In this section, following Rudraiah®, we consider a porous
lining at the ablative surface and obtain the classical RTI
(i.e. absence of porous lining) as a particular case when
the permeability of the porous lining k — . Under lubri-
cation and Stokes approximations discussed earlier fol-
lowing an analysis of Rudraiah’, the basic equations (eqs
(5) and (6)) reduce to

dp 02u O_a_p

Ly O o
o Mg Ty -

and 8_u+_ 0,
dx dy

(8a—c)
where u and v are the x and y components of velocity of
fluid in the film-shell and p the pressure (see Figure 1).
These equations have to be solved using the following
boundary and surface conditions.

The no-slip condition at the rigid surface is

u=v=0 aty=0. )
The Saffman® slip condition at the porous lining and
thin-film interface is

Ju :—iu at y=n,

EX

where « is the slip parameter and & is the permeability.
The dynamic condition at the interface is

(10)

2
pe—on—y2N ay=n (11)
dx2
and the kinematic condition at the interface is
Jn 9n
v=—T4u— aty=h, 12
o ox (12)

where 1] is the elevation of the free surface. For the linear
case this kinematic condition reduces to

aty=h. (13)

V=—

ot
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Making these equations dimensionless using the scales &
for length, 8h for pressure, 8h’/u; for velocity and i/ Sh
for time and solving them, we get

y
U =—
Z{y

where ¢ =h/+k is the porous parameter.
Integrating eq. (8c) with respect to y from 0 to 1, using
eq. (14) and simplifying, we get

_(2+O£G):|a_p (14)

(l+ao) |ox’

(15)

21+ac) |ox?

V(D:_%{l_wma)}azp

This is analogous to v, in eq. (1) given by Takabe et al.'
for compression of non-viscous fluid. From eq. (8¢c), using
the normal mode solution of the form 7 =nyei®+" and
using eqs (11) and (15), we get the dispersion relation of
the form

a5}
3 4(+ao) B

where n is the growth rate and B = §h*/y the Bond num-
ber.

In the absence of porous lining (k — oo, i.e. ¢ — 0), the
growth rate (eq. (16)) reduces to

£2 £2
nb :? 1_E 5

which coincides with the expression given by Babchin et
al’. Hence,

(16)

a7

oo > 7?
=ny———— 1= |=n, - v, 18
" 41 ra0) [ B] o~ At (18)
where
300 (4+ao) 72
= vazif 1_— .
(4+oo) 121+ ao) B

The second term on the right hand side of eq. (18) is analo-
gous to the second term in eq. (1) given by Takabe et
al."*. Some important conclusions are drawn later in this
review.

Problem 2: Nonlinear evolution of interface in
hydrodynamics

In the kinematic condition (eq. (12)) for u, we use the ap-
proximation
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1

u(n)=u(h)+§—"
n

y=h

This, using eq. (10), becomes

w() = u(h) —%u(h)n - [l—aa%]u(h). (19)
Then using eq. (19), eq. (12) becomes
an n an
h=—+|1-ac— u(h)—. 20
v(h) 3t+[ OtGhju()ax (20)
From eq. (8c), we get
h
u
v(ihy=—|—dy 21)
ox
0
Solution of eq. (14) in dimensional form is
u:La_p{ _hw} ] (22)
24 0x (1+ao)
Using eqs (11), (21) and (22), eq. (11) becomes
21—l
an | 1-ao h on  o’n|on
—+ S—+7y— |—
o 2u(l+ao) ox | 9x° |ox
3 2 4
_r@+ao) | gom o) 23)
Ru(l+ac)| ox* " oxt

If nis very large, i.e. 7 >> hs, then the linear terms in eq.
(23) can be neglected and we obtain:

nl1-p1 ,
ot 2u(l+p) ox = oxd | ox

where ff = ao.

The process described is quite different from that in
which the film is bounded by a fluid layer with moving
boundaries instead of a porous layer, as discussed by
Babchin er al.’. Therefore, we use eq. (23) to study
nonlinear evolution. Equation (23) is not amenable to
analytical treatment and hence we solve it numerically
using fourth order central differences in space and time as
explained below. For time-integration of eq. (23) Adams—
Bashforth predictor and Adams—Moulton corrector steps
of fourth order are used, as described in Chapra and Ca-
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nale™. Spatial derivatives are discretized by the following
central difference formulae of fourth-order accuracy:

an(x) 1 oy e Ny
o l—>—12Ax[77(l 2)-8nG—-D+8ni+D)—n+2)],

(25)
a’n(x) 1 . . .
PRIy [-n(i—2)+161(i — 1) — 307(i)

+16nG+1)-n@+2)], (26)

9’'n(x) 1 . . .

Do g D80G~ 2) + 13 -]
130G+ +8nE+2)—n(i+3)], 27)
and

a*n(x) 1 . . .

0 = 6Ax4 [n(E-3)+12n(G-2)-39M3(E-1)
+56n() -3+ D +12n(+2)-n@i+3)].  (28)

The abbreviated notation, e.g. n(i — 2), stands for the
value of 1 at the position x — 2Ax. The integer i indicates
the ith grid point.

The initial condition used in the numerical integration
is a sine-wave with wavenumber ¢:

1(x,0) =1, sin(£x). (29)

The amplitude 1 is assumed to be small. Its non-dimensional
value is 7, = 1074

Periodic boundary conditions have been applied in the
x-direction.

In Figures 2 and 3, we present not only linear, but also
nonlinear results for two different values of /= hi(ylé )1/2
of the fluid layer, namely h=0.1 and 1, and three values
of the parameter 8 = oo, namely 0.1, 2.0, 100.0, which
are the representative values. While the linear results are
characterized by curves with the symbols 0O, O, A, the
nonlinear results are represented by simple curves (solid,
dashed and dashed—dotted). In the case of linear results,
the vertical axes of Figures 2 and 3 represent the growth
rate ii= ,un/\/yF of the interface perturbation #j=#/h. In
the nonlinear case it provides the relative time rate of
change of 7, (/M0 )ON 0 /01). 7 denotes the
maximum nondimensional perturbation of the interface. It
turns out that both the quantities coincide perfectly for
thick fluid layers, given by h=0.1, ie h= (79)"* (Fig-
ure 3). In other words, if the thickness of the fluid layer is
of the order of (7/8)'?, the interface evolves linearly. On
the other hand, thin fluid layers (e.g. h=0.1, Figure 2)
are more sensitive to buoyancy and/or surface tension
effects and undergo a nonlinear temporal evolution, irre-
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spective of the wavenumber T=20, A =.J7/6. Again
r=1 represents a special case. We also conclude from
Figures 2 and 3 that the shape of the dispersion curves in
the linear and nonlinear cases is controlled by the porous
parameter 8 alone. There are no qualitative differences
between ‘thick” and ‘thin’ fluid layers. When / becomes
very large, however, the approximations mentioned ear-
lier make the linear and nonlinear results coincide.

Finally, it is interesting to discuss the spatial structure
of the relative growth rate of the interface in terms of the
quantity

My, _”NI,,nmx

at an early stage, before instability occurs for two wave-
numbers £ = 0.75 and 2.0, and the three porous parame-
ters B selected in Figures 2 and 3. In fact, the instant of

Nyt — Mt maxd 1074

=2 T T
0.0 0.5

R 15
L

Figure 2. Linear {curves with symbols) and nonlinear (simple curves)
dispersion relations for three different values of f§ (f=0.1: -

B=2.0: - B=100.0: ———) and a thin fluid layer of thickness,
h=0.1(y8".
02 !
£
z
<
Figure 3. Linear and nonlinear dispersion relations for three different

values of B (f=0.1: - f=2.0;
layer with i = (p&)'".

. B=100: ——-) and thick fluid
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time considered in these thin layers results in ?=5x%x107",
which is close to the initial time. We found six waves in
the interval 16x. The peaks exist and reflect the positions
of the wave modes. Since nyp max = 0 for = 100, the peaks
are the positions where the growth rate is maximum. This
is not true for §= 0.1 and 2.0, where the positions for
finLmax COINCide with those of the wave crests. In the case
of large wavenumbers, 16 complete waves are stored in
the interval 16z Compared to the ? = 0.75 case the ampli-
tudes have increased, but the shapes of the interface
growth rates are qualitatively the same. We found that
full numerical solutions deviate from a simple harmonic
behaviour of 7, namely n(x, 1) = ny(f)sin({x) and the general
solutions were close to the simple harmonic waves for the
long interval considered. Computations at the later times
became unstable. The presumed solution deviates earlier
from the general solution when the wavenumber is small
(for details see Rudraiah er al.*").

Problem 3: Two-dimensional linear evolution of
interface using only Stokes approximation in
hydrodynamics

Using the approximations discussed earlier, except the
Stokes approximations™, namely h/L << 1, egs (5) and
(6) as k — oo, for two-dimensional flow, take the form

d’u a%_ 1 a_p

ox? a;—3 - E ox’

du dv
+

&ay

v v 19
v,ov_1lop

S - =— and
ox” a__V" He a_.V

=0. (30a—c)

The required boundary and interfacial conditions are
given by eqs (11)-(14) replacing eq. (12) by the condition

du N v a
—t—=——Fu
dx dy Ak
The question of interest here is to determine the growth
rate for a small periodic perturbation of the interface. For
this we look for the solution of the form

3D

(e, v,1) ={u(y), v(y), n(y) yexp(nt +ifx). (32)

Substituting eq. (32) into eqs (30) and (31), and simpli-
fying®, we get

D*v=20°D*v+ f41’=U, (33)

where D = d/dy. This has to satisfy the following conditions:
v=Dv=0 at y=0,

2 (49
(D> +0%yw=——Dv aty=h,

%
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p= %(D% —’Dv) aty=h and ¥(h)=mj. (34a—d)

Following the same procedure in deriving eq. (18), we get

~

i=a-H Y, (35)
7
where
qe SC—th+ BQRLhy ™ (Ph* - 5%)
2C% + 021 - BA+5C)
A=t i=ar, A=Y
N 5
and C = cosh(¢h), S =sinh(¢h), B =ao. (36)
In the limit f — 0, N — Ny, where
SC—(h §—y0*)N
N, = SZC Zz,nb:( 7Ny (37)
2C*+0°h ul

Problem 4: Effects of laser radiation and porous
lining on RTI in an ablatively laser-accelerated
fluid in hydrodynamics

In this case, in addition to the conservation of momentum
given by eq. (5), conservation of mass given by eq. (6)
and equation of state given by eq. (7), we need the con-
servation of energy with radiation given by

(Xp(M —1)+1)8—T+(c7-V)T
ot

= (X, (K" =D +DV2T +[,Qe, (38)

where the temperature T = T, for porous layer, 7" = T} for
fluid in the film, and T = T for rigid surface. ¥ = k.¢/k,
where «x is the thermal diffusivity of the fluid, x.r the ef-
fective thermal diffusivity in the presence of porous
layer. Q is the absorption coefficient, M = (pc,,),/(pcp)s
the heat capacity ratio. All other quantities have the same
meaning as in eqs (5) and (6) and (%) in the last term of
eq. (38) will depend on the physical situation, namely
whether energy is gained or lost.

We use the conditions given by eqs (11)-(15) and fol-
lowing the same procedure in obtaining eq. (18) and using

6= 8Py =pPs), Py =poll—ar (T, =Ty,

P = poll—or (T; =13)],
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we get

fraab o)
3 4l+ao) B

where 6(1)=6;, —6;, H—g Ty , Ggfor T=T¢and 6, for

T =T,, nis the growth rate anc? B 8h*/ythe Bond num-

ber, Gpl and Hfl are the values of 6, and 8;at y = 1. Suf-

fixes f and p refer to fluid and porous lining.
Substituting for (1) in eq. (39) and simplifying, we get

/2
2
/é [efl - epl - E].

The expressions for 6, and ¢ will be given later. In the
absence of porous llnlng (k — oo, i.e. 0 — 0) the growth
rate (eq. (39)) reduces to

(39)

_ 4+ao)

12(+ao) (40)

m, = g; [1—%]—%(1+0f1—0p1)£2. (41)
Then eq. (39) can be rewritten as
- Bov,, (42)
where
B 43fa66’ E 1?(;3;;) ! [efl_ %" %j @

For the shell-film

a7 92T,
v, — =k -+ [ Qe (44)
dy dy*
For the porous lining
82Tp o
0=x, P T+ 7,Qe . (45)

Case 1: The fluid in the shell-film and porous lining is
homogeneous and incompressible, with temperature 7, in
the porous lining assumed to be constant, which maybe
higher than the fluid temperature.

Case 2: The fluid in the shell-film as well as in porous
lining is assumed to satisfy Boussinesq approximation
with varying temperature 7, and 7t Equation (44) in di-
mensionless form is

2
90 _ 190, Neoy

- 46
Ya dy R, dy? (40)
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where R, = 8l°/xts) is the Rayleigh number because §
has the dimensions of pgargTy, N = [(Qqud 6Ty and v, is
given by eq. (43) with 6 — 6, = &1), that is § is constant.
Equation (46) is solved using the following two sets of
boundary conditions.

Set 1:

6=1laty=0 and 8=6aty=1, (47a)

Set2: O=1laty=0 and ((11—0:—Bi(0b—1) aty =1,
y

(47b)
where B; = h.h/x;is the Biot number, & the heat transfer
coefficient from porous layer to the film and 8, the tempe-

rature at y = 1. The solution of eq. (46), satisfying eq.
(472a) is:

NR, e Y

0 (M=ay+ae” ——
(M)=ag+a 0Oy +5)

NR, (el —e ) 1-6e?

dg = s
Q,(Q, +bh)et —D  1-e?
BR
b= (4+066)’ 48)
48 l+ao
6,-1 NR, 1-c=9
a = + - ,
1-¢b Qy(Qu+b) 1-¢
R
() - M o pen (49)
W )y (Qp+b)

The solution of eq. (46) satisfying the boundary condi-
tions of set 2 is

-Qy
NR (1-e 0
0(y)=1+a2(1—eby)+M (50)
Q(Q, +b)
where
R e~ (Qyth) B
a, :NaeioJr_l(gB “1eb,
b(Qy+b) b
1
ay = s
(1-B (e —1)/b]
1 MR, (1—e)
Q,(Q, +b)
%=1 VR e B (O 1b) - Ob
| AR T e )
b(Q, +b)
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Similarly, eqs (44) and (45) in dimensionless form are

26, _ 1 6,

y = — 2+ Ne=$%y, 52
‘ ay Raf ayz 0 ( )
020 1,91
0=——T-Nye %, N,=-L2 (53)
dy Ty
The boundary conditions on 6 and 6, are
0, —> 0 aty— oo,
0, 9
K, —2—= 9 aty =1,
dy Oy
K
Kr:—p and ;=1 aty=0. (54)

K¢

Then the solutions of eqs (52) and (53) satisfying the
above conditions are

R
e :1+A(l—e—goy)—A4(l—eby),
Qy(Qy +b)
— _ P
0, =—¢ Qy, (55a, b)
0
where b = R v,, and v, is given by eq. (43) and
N
4 :l KelVp _7NR3 e~ (Q+b)
bl Q, (Q,+b)
From eqs (55a, b) we get
NR (1—e%) N
6, —6; =—1+A,(1—¢")~ wllze ) T (s

Q,(Q, +b) Q2

The growth rate n given by eq. (40) is computed for dif-
ferent values of 8, — 6 (0.1, 1, 10) and for different values
of B (0.01, 0.02, 0.04, 0.06). The results are depicted in
Figure 4 a—c. Conclusions are drawn later in the article.

Problem 5: Effects of magnetic field, laser radiation
and porous lining on RTI in an ablatively laser-
accelerated plasma in magnetohydrodynamics

In this section, we discuss the effects of magnetic field,
laser radiation and porous lining of nanostructure on RTI
at an ablative surface of a thin target shell using linear
stability analysis. We consider both incompressible homo-
geneous and compressible Boussinesq electrically con-
ducting fluid bounded below by a rigid surface and above
by a porous layer. The growth rate of RTI, including the
effect of radiation is derived, which is analogous to the
form given by Takabe ez al.'? for compressible fluid and
that given by Rudraiah’ for incompressible fluid with porous
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Figure 4a—c. Growth rate vs wavenumber.

lining. It is shown that the magnetic field and porous lining
greatly reduce the growth rate. The cut-off and maximum
wavenumbers and the corresponding maximum frequency
are obtained. The ratio of maximum to classical growth rate
is numerically computed and the values are tabulated for
different values of the Hartmann number, slip and porous
parameters. We found that the combined effect of mag-
netic field and porous lining reduces the growth rate of
RTI considerably compared to the classical growth rate.

Mathematical formulation

The conservation of momentum from eq. (5), by the addition
of volume force given by the magnetic field called the
Lorentz force m,J x H is
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5[2—?+ (q- V)c}’]= ~Vp+ V3G — K+ @I xH. (57)

The conservation of mass for compressible Boussinesq fluid
is the same as eq. (6) with the equation of state

p=poll—ap{X, (T, -T;)+T; =Ty} 1. (58)

The conservation of energy is then given by eq. (38).
Here, the current density,

J =6, [E+,gxH]
Maxwell’s equations
V-H=0, VXE=—p ajH

dt

, V-E=0,

magnetic permeability,

1+Xp #_p_]
L .u'lt

electrical conductivity

Iy =y

5 =0 [14x, | 2
Uh_op + p a_

and all other quantities are as defined earlier.

Dispersion relation with laser radiation

In this section we derive the dispersion relation as well as
temperature distribution incorporating the laser radiation
effect. Under the approximations discussed earlier eq.
(8a) in the presence of magnetic field becomes

op N d’u 5

0= —M?u,
ax ayz "

(59)

whose solution satisfying the boundary conditions, eqs
(9) and (10) is

M ch[M (1- y)]+oo sh[M (1- y)]
+ ac[sh(My)—sh(M)]- M ch(M) o P
[M ch(M)+ao sh(M)] M?

» o (60)

where

M =puth |20
L

is the Hartman number, o, the electric conductivity,
o= MJL_' the porous parameter, and cosh(8) and sinh(8)
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are denoted by ch(6) and sh(8) respectively. From eq.
(8c), using eq. (60) and integrating, and using v(0) = 0 at
y =0, we get

2a0(1—ch(M)]+(axo —1)
XM sh(M)+M> ch(M) |2°p
M3[M ch(M)+ao sh(M)]| ox*

v = (61)

Then, following the procedure in deriving eq. (18), we get
n=n,— flv, (62)

where 7 is the growth rate, / is the wavenumber,

6ac(chM —1)
MchM

ﬂ:
3| M —thM +ac thm + 220 1=chM)
MchM

M?-3(M -thM)+ac(M> -3)thM +

(63)

is a constant, v, is the velocity of flow across the ablative

front given by
2
{5_%_],
B

(64)

2a06(1-ch M)
- MchM

M3[1+a6thMj
M

M—-thM +oacthM +

thM =tanh M, B = 50h2/y is the Bond number, § =1 or
(Hfl—le), where suffix 1 denotes the values of 8 at
y=1, and

s s
nb :? _E .
When M — 0, eq. (62) reduces to eq. (18) and we call it
as 1.

In the absence of porous lining (k — o0, i.e. ¢ — 0), the
growth rate eq. (62) tends to

(65)

M3 —3(M —th M)
ny=m,=fhlv, ., By= 3M—thM)

_w —thM) (-1 /B)

IYE (66a—c)

ay

In the case of using eq. (62) which is (n,),, we have
1y = (1) = Batv,,, (67)

638

where
M3 =3(M —th M)+ac(M? -3)th M
Sao(ch M=) 30 i3 vaoth o)
b = MchM
: 200(1—ch 1)

3l M —thM +acth M +
MchM

and v,, is the same as eq. (61).

Temperature distribution in the absence of
Ohmic dissipation

For the shell-film and for the porous layer, the energy
equations are given by eqs (44) and (45).

The selection of a particular sign in eq. (45) will depend
on the physical situation. If we choose the positive sign,
then 6, will be negative implying energy will be lost. The
problem considered in this article requires the addition of
energy to fuse DT. For this we have to choose a negative
sign in eq. (45) to ensure positive 8,. In this section, as
earlier, we consider two cases: eq. (46) with v, given by
eq. (45) and the same boundary conditions given by eq.
(47a).

Case 1: Homogeneous incompressible fluid: 1In this case
the solution of eq. (46) using eq. (64) and satisfying the
conditions, eq. (47a) is

NR e
0(y)=a, +ae” e
Qy(Qy+b)
ao(eby -1 0
=l+——+g(1-e"), 68
o hal ) (68)
where
NR
ay =6, -1-a(1-e*0), gqg=——2 __ b=y,R,
Q) (Q, +b)
R
_[8_0] :Le_ﬂo +bae?. (69)
ay =1 (Qy+b)

Similarly, the solution of eq. (46), satisfying the bound-
ary conditions, eq. (47b) is

NR, (1-e )

7
Qy(Qy+b) 70

6(y)=1+a,(1-e?)+

where

NR,(1—-¢™)

O, =a,|1+
BT Q,(Q, +b)
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_QD — D
N [NRae B.(Q, +b) ](e‘b—l)}, an

b(Qy +b)

~©Qth)
a, = MJri(gB —De?,
b(Qy+b) b

1
=B (et -1/b]"

as

Case 2: Boussinesq fluid: The solutions of eqs (52)
and (53) using eq. (64) and the boundary conditions

00
—L 50 asy—oo, 6 =1 aty=0, (72)
dy

96
aﬂ:-}f}i(ef -1, —2=-Bj@6,-1 aty=1 (73)
dy ! dy

where 6; and 6, are the values of 6; and 6, at y = 1, are

B
;= 1+a;(1—e %) +7‘(eﬁ —Det(1-eb)

+ —QZ“I e=(@pth) (] _eb), (74)
and
6,= 1+N—pe_QD +N—pz(e_QD —e o), (75)
B
0+ 0
From these we have
N,
S()=6; -0, =1-a;——L—e
fi P a -QOBi
o . (B —Qqae™) L
—ay | a (1-¢ 0)+T(l—e )|. (76)

Problem 6: ERTI in thin IFE target lined with
smart material of nanostructure porous lining in
the presence of transverse electric field

In this section we study ERTI in electrohydrodynamics
(EHD) following Rudraiah er al.”>. EHD is the study of
the motion of a poorly conducting fluid in the presence of
conservative electric field intensity. The electrical con-
ductivity o, is very small so that induced magnetic field
is negligible and there is no applied magnetic field. There
will be the effect of both conduction (i.e. dynamic) and
convection currents with negligible polarized current.

CURRENT SCIENCE, VOL. 93, NO. 5, 10 SEPTEMBER 2007

As pointed out in the earlier sections, the interfacial
sciences continues to be the frontier area of research in
view of its importance in understanding, control and exploi-
tation of many physical, chemical and biological processes,
such as IFE, solidification processes in materials science,
biomedical engineering, processes involving friction bet-
ween surfaces and their mitigation, etc. In IFE, the hollow
shells are filled with an equal mixture of D and T fluids
at high pressure and then solidified to the cryogenic tem-
perature so that the DT-fluid freezes forming a thin,
mushy coating on the inside of the ablative surface of the
shell wall. The direct-drive laser heat at this ablative sur-
face causes surface instabilities. The applications cited
above, particularly for efficient extraction of IFE, as
stated earlier, are required to reduce the growth rate of the
surface instability at laser-accelerated ablative surface of
IFE target to reduce the asymmetry of the target caused by
laser heating. In this section we discuss EHD porous lining
concept to reduce growth rate. The physical mechanism
involved is explained below.

The physical characteristics of DT are based on a
poorly electrically conducting nature, where the electrical
conductivity, o is a strong function of the temperature, or
concentration of the mixture of D and T may also be signi-
ficant in controlling the growth rate of RTI due to the fol-
lowing physical mechanism that prevails in a poorly
conducting fluid. The variation of electrical conductivity
with temperature produced by laser radiation applied to
fuse DT or with concentration arising from the mixture of
DT induces free charges not only in the bulk of the fluid
in the target but also at the ablative surface. These free
charges induce electric field called thermal or concentra-
tion electric field. In addition, there may be an applied
electric field generated by segmented electrodes that exist
at the boundaries of the target. The density of charge dis-
tribution p., interacting with the total (i.e. combined, in-
duced and applied) electric field, E, produces the current
density J which acts as sensing and also produces the
force peE which acts as actuation. These two properties,
namely sensing and actuation, make the material, by
definition, a smart material. Further, we consider a mate-
rial of very low electrical conductivity o, of the order 107''—
10 (ohm.m)™ and permeability k of the order 107°-10" m*
which are in the nanoscale range. In other words, the
porous lining that we consider here is a nanostructure
smart material. This smart material is an alternate to the
one made up of piezoelectric material. The mushy layer
at the ablative surface by definition is a mixture of solid
and fluid phases, and hence can be regarded as a porous
lining of nanostructure smart material”>. That is, we can
regard it as a densely packed porous layer. It is of practi-
cal importance in IFE to know whether this electric force
together with mushy coating may also control RTI growth
rate. These aspects have not been given much attention and
the study of their effects is the main objective in this sec-
tion.
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To achieve this objective, this section is planned as follows.
The mathematical formulation is given below. Here, we
mainly deal with very small electrical conductivity, so
that we can easily neglect the induced magnetic field.
Further, there is no applied magnetic field and hence the
Faraday’s law of induction reveal that the electric field is
conservative. This implies that the electric field can be
expressed as the gradient of scalar electric potential ¢.
This potential is determined first using the relevant Max-
well’s equations and the continuity of charges together
with suitable boundary conditions. Velocity distribution
is determined using the modified Navier—Stokes equation,
modified in the sense of addition of electric force p,E
together with Stokes and lubrication approximations and
Saffman®” slip condition. Different types of ERTI prob-
lems with or without radiation are investigated. The dis-
persion relation is obtained using the dynamic and
kinematic conditions at the ablative surface. The cut-off
and maximum wavenumbers and the corresponding maxi-
mum growth rate are obtained and some important con-
clusions are drawn.

Mathematical formulation: Consider a thin target shell
in the form of a film of unperturbed thickness h (region
1) filled with an incompressible, viscous, poorly electri-
cally conducting light fluid of density p; bounded below
by a rigid surface at y = 0 and above by an incompressi-
ble, viscous, poorly conducting heavy fluid saturated in a
dense, nanostructured, porous lining whose thickness is
large compared to the shell thickness /i, of density p,. The
fluid in the thin film is set in motion by an acceleration
normal to the interface, whereas in the porous lining it is
assumed to be uniform and small perturbations amplify
the interface when acceleration is directed from the lighter
fluid in the thin film to the heavier fluid in the porous lining.
This instability at the interface is known as RTI. To in-
vestigate RTI, we consider a rectangular coordinate system
(x, ¥) (see Figure 5) with the x-axis parallel to the film and
y-axis normal to it. (x, ?) is the perturbed interface and is
along the y-direction. There are embedded electrodes at the
rigid boundary at y =0 and at the nominal surface at
v =h.

The basic equations of the film—porous lining compos-
ite system are as follows:

The conservation of mass for an incompressible fluid is
given by eq. (6). The conservation of momentum is given
by eq. (5) with the addition of electric force ch', i.e.

p{?}—q+{é-V)é]:—Vp+‘uqu'+pL_E. (77)
t
The conservation of electric charge is
0 -
Pe yv-i=o, (78)
ot
640

where J =GE+ p.g- The first term on the right hand side
is conduction (i.e. dynamic) current and the second term is
convective current. Substituting J into eq. (78), we get

d L
%w-vme+6V-£+(E-V)c=0,

o =0yll+a, (C-Cy)], (79a, b)
where o, is the volumetric coefficient expansion of
conductivity o. The Maxwell’s equations are

V-E:%, V x E =0, which implies £ =-V¢, (80a, b)

e

where ¢ is the electric potential. Since the electrical con-
ductivity o varies with concentration C of DT as in eq.
(81) below, with negligible advection of concentration,
we have

d*C
djy'2

=0 withC=Cyaty=0andC=Cyaty=h.
(81)

Solving eq. (81) using the given conditions and substitut-
ing this solution in eq. (79b), we get

0'20'[)[1+a§]=0'0c‘”, (82)

where @ = a8, << 1, ) = AC = C, - Cy, 0y is the con-
ductivity at ¢ = ¢y.

In solving eqs (77) and (79a) following Rudraiah et
al.", we make use of the following EHD approximations:

(i) The electrical conductivity of the liquid o, is negli-
gibly small, i.e. o << 1.

S

Electrodes
Figure 5. Physical configuration.
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(i) The film thickness / is much smaller than the thick-
ness H of the dense fluid above the film. That is
h<<H.

(ii1) The surface elevation 7 is assumed to be small com-
pared to film thickness /. That is 17 << A.

(iv) The Strauhal number §, a measure of the local ac-
celeration to inertial acceleration in eq. (78) is neg-
ligibly small. That is S = L/tpU << 1, where the
quantities are as defined earlier.

These approximations are usually called Stokes and lubri-
cation approximations, which help to neglect many terms,
particularly the nonlinear terms in the basic equations.
We also assume that the heavy fluid in the porous lining
is almost static because of creeping flow approximation in
a densely packed porous medium, which is needed to use
the Saffman’ slip condition.

Under the approximations discussed above the basic
equations, i.e. eqs (6) and (77) for fluid in the film reduce
to

du dv dp  d%u
O=—+—, O=——+u—+p.E,

ox | dy o Moy TP

op
0=—g+peEy. (83a—c)

Making eqs (83a—c) dimensionless using
2

MUY N L a——
! 51"} 5 He P

peh2 Yo y
= ) E*_—’ *:—’ 84
P L = (84)

and for simplicity neglecting asterisks (*), we get

Ju ov dp  0%u
== O=——"+—+Wep L,
0 ax+ay £l X ayz epe X

dp
0= —g+WepeEy,

(85a—c¢)

where We =gv3 /5,h* is the electric parameter.

Solution for electric potential ¢: From eq. (79a) using
eq. (80a, b), we get

2
a_¢+a_¢a_62 0. (86)
ayr 9y dy
This using eq. (82), becomes
2 2
a—¢+a—¢+oca—¢:0. (87)

ox>  ay? dy
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This equation has to be solved subject to the boundary
conditions

¢=xaty=0 and ¢=x-xpaty=1. (88a, b)
The nature of these boundary conditions permits a linear
variation of ¢ with x. Then the solution of eq. (87), using
the above boundary conditions, eq. (88a, b) is

o

=x- 1—e ™). 89
0= (l-e™) (89)
Using eq. (89), eq. (80a) becomes
_ xOO‘2 —-ay
£ l—e® ’
so that
dp  ole™
E =—p—="— 90
pe X pe ax (1_e_a) ( )

Dispersion relation: To find the dispersion relation, we
have to find the velocity distribution from eq. (85b) using
the dimensionless form of boundary and surface condi-
tions given by eqs (9) and (10), with dynamic condition,
eq. (11) in the presence of electric field takes the form

2

191
=—(1xtWeyn———— aty=1, 91
p=—( em B3 aty O

2
X

where * in the first term on the right hand side will de-
pend on whether the applied voltage is along or opposing
the gravity.

The solution of eq. (85b), using eqs (9), (10) and (90)
in dimensionless form is

2 —oy

u:Py?—WeaOea—z+a1y+a2, (92)

a,o, + 2 Wea,,
a =- 2(er,0, +1) az(apap +1) |,

- -
X (e +oe ,0,)

Wea,
ay=—3-—.
o

In dimensionless form, the kinematic condition eq. (13),
takes the form
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an

v=—

ot ©3)

aty=1.

From the continuity eq. (83a) and after integrating it using
eq. (92), we get

! 4+a.0 2
W(y=y = [ % % _|0°p

) ox Y :[12(1+ap6p) Jaxz '

94)

Using eqs (91) and (94), eq. (93) becomes

2 4
mn_ ]|:(1iW€)a—n+ ia—n} . (95)

o

~ 4+ap6p
ox? B ox*

12(1+ .0, )

To investigate the growth rate, n of the periodic perturba-
tion of the interface, following the procedure in obtaining
eq. (18) from eq. (95) we get

_ [ 4+ a,o, 96)

— PP 2 {(1 + We)—ﬁ} .
12(1+ap6p) B

The Bond number B measures the relative importance of
gravitational effect to surface tension and We physically
represents the measure of electric energy to pressure en-
ergy. In the absence of electric field and porous lining,
that is We — 0 and o, — 0, the growth rate given by eq.
(96) reduces to n, given in the earlier sections. Accordingly,
eq. (96) can be written as

2 [1—£]i %% 4 ﬁWe.
B a0, +1 |B
The positive or negative sign in the third term in eq. (97)
will depend, as stated earlier, on whether the potential
difference is along or opposing the gravity. In our con-
figuration the lower plate is maintained at a higher potential
than at the upper plate. That is, the potential differences
opposes gravity and hence we have to choose the nega-

tive sign in eq. (97), and obtain a dispersion formula of
the form

*,0p

- 4((xpc7p +1) N

n=rnm,

n=n, —Bv,, (98)
where

£2
30tp6p [l - E — We(4+ 0,0, )

B= B
(4+ap6p)[l—B—We]

and

(4+o,0,)0 | (2 W
Vo =—/—— | l-——We |.
a 12(1+0,6,) B
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The expressions are computed and the results are dis-
cussed in the final section.

Conclusion

Linear and nonlinear RTI have been discussed in this article.
The linear RTI in a thin film-shell lined with an incom-
pressible fluid-saturated porous lining with uniform den-
sities has been investigated using normal mode analysis.
The dispersion relations are given by eqs (18), (42), (62)
and (97) and they are analogous to those given by Takabe
et al.'* as shown in eq. (4). The dispersion relation (17)
coincides with one given by Babchin ef al.’ in the ab-
sence of porous lining (i.e. ¢ — 0).

Setting n = 0 in dispersion relations mentioned above,
we get the cut-off wavenumber (. above which RT insta-
bility is stabilized. Setting dn/df =0, we obtain the
maximum wavenumber, ¢,,. Substituting this ¢, in the
dispersions relations we get the maximum growth rate ny,.
As a sample, this procedure is illustrated by considering
Problem 1. The same procedure can be applied to other
problems as discussed in the article.

Setting n = 0 in dispersion relation, eq. (16) we get the
cut-off wavenumber

(. =+B/2,

because «, o and £ are different from zero. The maximum
wavenumber £, obtained from eq. (18) by setting dn/d¢ =
0, is

(99)

0, =L, 2. (100)
Equations (99) and (100) are true even for the case in the
absence of porous lining obtained from eq. (17), and for
convenience we call them as classical results. The corre-
sponding maximum growth rate, n,, is

" _ B (4+a0) N _B n, _ (4+ao)
™48 l+ac) M 120 m, 4d+00)
(101a—c)

It will be of interest to compare these results with those
given in eq. (4) by Takabe et al.'?. In their case

0.81g _ 081g (et
(gct)Ta = ﬂzvf and (gm)]'a _W_ 1
(102)
The corresponding n,, is
()7 =045(1)7 & =0.45(m,)r (103)

where the quantities with suffix 7, correspond to those
given by Takabe et al.'”. They have shown that the maxi-
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mum ratio of growth rate was reduced to 45% of their
classical value (np)r, using eq. (103). However, the re-
duction of maximum ratio of growth rate in the case of
porous lining given by eq. (101c) depends on & and o of
the porous lining. For the type of porous material used in
the experiments of Beavers and Joseph®, a ranges from 0.1
to 4.0 and o ranges from 4 to 20. Then, for & = 0.1 and
o = 4, the maximum ratio of growth rate, G, given in Ta-
ble 2 is reduced to 78.57% of the classical value ny,
whereas for & = 0.1 and ¢ =20, the maximum growth rate
is reduced to 50% of the classical value. Similarly, for
a=4.0 and o =4, n, is reduced to 29.41% of ny,, whereas
for & = 4.0 and o = 20, n,, is reduced to 26.15% of nyy,.

From these, we conclude that a simple model of in-
compressible homogenous fluid, with a proper choice of
material (i.e. & and o) for porous lining, reduces the
growth rate of RTI mode even up to 80% compared to the
classical value without porous lining. This is a consider-
able reduction in the ratio of growth rate compared to that
achieved by Takabe et al.'* without porous lining. This
conclusion on the reduction of growth rate of RTI mode
is useful in the design of suitable pellets for effective ex-
traction of IFE. This mechanism is also useful in some
biomechanical problems like coronary artery diseases,
where plaques are formed on the endothelium (i.e. walls
of the arties) due to accumulation of cholesterol and other
fatty substances which cause a constriction called steno-
sis. Nowadays, instead of bypass surgery, like laser sur-
gery is used to dissolve the plaques. This has a side
effect, for example, eroding the endothelium. To over-
come this, it is advantageous to have nanostructure po-
rous lining. The porous lining is essential to transport
nutrients from the arteries needed for the body.

The nonlinear problem discussed earlier is quite differ-
ent from that of Babchin er al.’, considering plane Cou-
ette flow. The present problem is influenced by the slip
velocity at the interface between the porous layer and thin
film. It is not amenable to analytical treatment as in the
case of Babchin ef al.’. Therefore, numerical solutions
are obtained using fourth-order accurate central differ-
ences for spatial discretization. For large porous parame-
ters of the order of ¢ = 10*, however, it was not possible
to obtain smooth solutions. Instead, chaotic but bounded
solutions appeared which could not be avoided by in-
creasing the number of grid points dramatically. A remedy
might be to use upwind discretizations or to add artificial
viscosity terms to the centrally discretized terms.

From the two-dimensional RTI investigation we can
conclude that eq. (35) is in agreement with the results of
Brown®®. As in the case of Brown, we found that even in
the case of finite thickness film bounded on one side by a
porous layer, the size scale of RTI was controlled by the
ratio of surface tension to the density gradient when the
film was thin.

Effects of laser radiation and porous lining on the
growth rate have been determined, and computed for dif-
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ferent values of the Bond number B and temperature dif-
ference 6, — 6 The results are depicted in Figure 4 a—c.
From these we conclude that the nature of the dispersion
curve is influenced by both the difference in temperature,
namely 8, — 6;, and the bond number B. From Figure 4 it
is clear that the growth rate decreases with a decrease in
B, implying increase in surface tension, and an increase
in 8, — 6 increases the growth rate. That is, increase in
surface tension makes the interface more stable and in-
crease in 8, — 0; makes the interface more unstable.

Expressions for &, 4n, nm, nyy and Gy, = ny/ny, have
been obtained. We note that since n,, and ny, are both
proportional to (8, — 6y, they disappear from G,,. These
are computed and the results are given in Table 2.

From Table 2, it is clear that an increase in « as well as
o decreases Gy, considerably. It is clear that when o= 4
and a = 0.1, ratio of growth rate decreases about 79%
compared to the classical growth rate, which is favour-
able for efficient extraction of IFE.

The temperature distribution given by eq. (48) is com-
puted for different values of buoyancy parameter N and
the results are graphically represented in Figure 6. From
Figure 6 it is clear that for small values of N < 0.1, the
temperature is parabolic in nature, while for curves of
N 2 0.1, the temperature decreases and almost becomes a
straight line. That is, large values of N flatten the tem-
perature profile.

The value of 8 given by eq. (51) is computed for dif-
ferent values &, ¢ and N, and the results are graphically
represented in Figure 7 a—c. From Figure 7, we conclude
that 8g increases with an increase in a. It is clear that for

Table 2. The ratio of maximum growth rate

Gm
c a=0.1 a=40 a=12.0
4 0.7857 0.2941 0.2653
20 0.5000 0.2593 0.2531
30 0.4375 0.2562 0.2521
1300 -
1100 -
900 -
e 700 | -~ N=0.1
500{ /| N=1
300 N=10
100/, cam e
-100 ‘ ‘ ' ‘
0 02 04 06 08 1

Figure 6. Temperature distribution vs y for different values of N.
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values of ¢ < 10, 6 increases slowly and saturates for
larger values of o > 10. The temperature gradient at the
wall y = 1 is computed for different values of N and the
results are given in Table 3. Form Table 3 it is clear that
an increase in N increases the temperature gradient and is
hence favourable for heat transfer.

The linear RTI in an IFE target modelled as a thin elec-
trically conducting fluid-film in the presence of transverse
magnetic field lined with an incompressible electrically
conducting fluid-saturated porous lining with uniform
densities has been investigated using normal mode analy-
sis. The main objective of this study is to show that the two
mechanisms, i.e. having a suitable strength of magnetic

N=10, =01
N=10 =4

20 30

12000
11900
65 11800
11700
11600
11500

N=100, a=0.1
N=100, =4

20 30

Figure 7a-c. Ablative surface temperature 6g.

Table 3. Temperature gradients

N _(8_0] from eq. (49) —(8—0] x 107 from eq. (49)
ay y=| \a}' v=I

1 0.3649 0.3193

10 2.7917 3.1935

100 27.0594 31.9350
1000 269.737 319.350
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filed and suitable porous material, reduce the growth rate
of ablative surface of IFE target considerably compared
to that in their absence. The dispersion relations given by
eqs (62)-(66a—c) are analogous to those given by Takabe
et al."* for non-electrically conducting fluid. The disper-
sion relation given by eq. (65) coincides with the one
given by Babchin e al.” in the absence of both magnetic
field (M — 0) and the nanostructure porous lining
(6 —0).

In the presence of magnetic field and absence of porous
lining (¢ = 0, & = 0), it is clear that the maximum growth
rate i, depends on the Hartman number M. We note that G,,,
purely depends on porous lining when M = 0, and generally
depends on M, & and o.

The expressions for £, €y, iy, Hym and Gy, = n,,/ny,, are
obtained and numerically computed for different values
of M (0.1, 1, 10, 100), & (0, 4, 10, 20) and « (0.1, 4).
From this it is clear that the percentage of decrease in ra-
tio of growth rate compared to the classical growth is
maximum, for example 99.99 for small values of M, say
0.1 and decreases for large values of M. The same behav-
iour is true for increase in ¢ and o.

Equation (62) is plotted in Figure 8, for the growth rate
n vs wavenumber £ for M = 1, ¢ = 0.1 and ¢ = 4, and for
different values of B. From Figure 8 we conclude that the
perturbation of the interface having a wavenumber
smaller than £, is amplified when 6> 0 (i.e. p; < p,) and
the growth rate decreases with decrease in B, implying
increase in surface tension. That is, increase in surface
tension makes the interface more stable even in the case
of electrically conducting fluid. Similar behaviour is ob-
served for M > 1 for fixed values of & and o. Increase in
o is more significant than increase in M in reducing the
ratio of growth rate.

The ablative temperature 6y given by eq. (71) is com-
puted for different values of M, ¢ and for fixed values of
o (Tables 4 and 5). The results of 83 vs M for different

B=006

0.003

B=004
0.002
B =002
0.001 oo ““\\\\ f e
J?T m m
by ¢ { . /

-0.001 -
-0.002

-0.003

Figure 8. Growth rate n vs wavenumber £ for M = 1 and for different
Bond numbers B.

CURRENT SCIENCE, VOL. 93, NO. 5, 10 SEPTEMBER 2007



values of ¢ are plotted in Figure 9, and 8, vs o for different
values of M are plotted in Figure 10. We conclude that
for small values of M and o, 6 increases slowly, and
saturates for larger values of M and o.

The effect of transverse electric field and nanostruc-
tured porous lining on the linear ERTI in a thin shell
filled with incompressible, poorly conducting fluid has
been studied using normal mode analysis. The analytical
simple formula for dispersion relation, eq. (97) is analo-
gous to the one given by Takabe er al.'? for compression
of fluid by laser, and is analogous to the one given by
Rudraiah® for incompressible fluid with nanostructured

475 /
S a a=0
rd
0 / a=4
s a=20
425
375
0 5 10 15 20

M

Figure 9. Ablative surface temperature 8 for different o.

M=20
350
0 5 10 15 20
[+3
Figure 10. Ablative surface temperature &g for different M.
Table 4. The values of 8g for different o

o M=0 M=1 M=10 M=20
0 382.264 410918 496.739 498.861
4 403.504 423.383 496.756 498.865
8 416.156 431.443 496.772 498.868
12 424 549 437.081 496.786 498.871
16 430.523 441.247 496.799 498.874
20 434991 444 .45 496.812 498 876
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porous lining and in the absence of electric field. The
dispersion relation ny, given in eq. (98) coincides with the
one given by Rudraiah® in the absence of electric field.
The expression for (., (y, 11, M5y and Gy, are obtained. They
are computed for different values of We, & and o, and
percentage of decrease in the ratio of growth rate compared
to classical growth rate is given in Table 6.

We note that in the case of applied voltage opposing

gravity £ =,/B(1-We) and { = {_ /A2 are real only if

We < 1. However, in the case of applied voltage in the
direction of gravity, 7, =./B(1+We)and / = fc,!«/f.
Here, we get (1 + We) and hence in that situation £, and
{,, are real for all values of We.

The corresponding maximum growth rate, n,, for ap-

plied voltage opposing gravity is

oo B apop+4

L =—
48| ay0, +1

(1—We)?. (104)

iy, Will be zero for We = 1. Physically this implies the equi-
partition of energy (i.e. electric energy balances pressure
energy). Since pressure has the dimension of kinetic en-
ergy, this equi-partition can also be stated as electric en-
ergy balances kinetic energy. If we choose the voltage
such that We = 1, asymmetry can be completely reduced
and hence maximum efficiency of IFE may be achieved.
Since (= NB/2, npw = B/12, then Gy, = ny/npy, 18

o0, +4
= —2E _ (1-We)2.

(105)
4(.951,0'p +1)

m

G,, is computed for different values of ¢, 6, and We (Ta-
ble 6). From Table 6 it is clear that nanostructured porous
lining and external constraint of electric field are more ef-
fective than the effect of compression due to laser in re-
ducing the growth rate of RTI. In particular for We = 1,
complete symmetry can be maintained because n,, = 0 and
hence G,, = 0 for We = 1.
The growth rate n given by eq. (96) takes the form

4+QPUP ) {.';2
n=— PP g2l (1_We)——|. (106)
12(x, 0. +1) B
PP
Table 5. The values of 8 for different M
M o=10 o=4 o=20
0 3823 403.5 434.99
1 4109 4234 4445
& 486.9 487.1 487.5
10 496.7 496.8 496.8
15 498 .86 498.86 498.88
20 499 .64 499.64 499.65
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Table 6. Comparison of results

Authors G Percentage of reduction in the ratio of growth rate
Takabe et al."* 0.45 45 (for compressible fluid)
Present study — Problems 1 and 4 0.79 79(a,=0.1,0,=4)
Present study — Problem 5 for ¢ =0, 6=0 0.99996 (for incompressible fluid)
0.7152 99.99 for M = 107
0.0027 71.52 for M = 10°
0.0003 2.7 for M = 10
0.03 for M = 10° (for MHD)
Present study — Problem 5 for ¢ =0.1, 6 =4 (.7296 T3 (e, =0.1,0,=4, M=0.5)
0.59 59 (@, = 0.1, 6, = 10, M = 0.5)
0.48 48 (e, = 0.1, 0, = 20, M = 0.5)
0.29 29 (@, = 4.0, 0,= 4, M=0.5)
0.60 60(a,=0.1,6,=4,M=1)
0.50 50 (ay=0.1,0,=10,M=1)
0.42 42(a,=0.1,0,=200M=1)
0.26 26({a,=4.0,0,=4.M=1)
Present study — Dispersion relation 0.98 98 for We = 107*
fora=0,0=0 0.81 81 for We = 107"
Present study — Dispersion relation 0.64 64 (a,=0.1, 0,=4, We=0.1)
for different values of We for fixed a,. o, 0.442 442 (e, = 0.1, o, = 4, We =0.25)
0.1964 20(a, =0.1, 5, =4, We = 0.5)
0.0491 0.5 (e, =0.1, 5, =4, We =0.75)
0 0(a,=0.1, 0,=4, We=1.0)
0.0008 We = 0.5 0.0008
0.0004 0.5 0.0004 -
n n
0.75
0.0000 . . . . 1
0.0000
0.04 ¢ 0.08 0. 0.16 0.16
10
0.0004 -0.0004
-0.0008 -
-0.0008
Figure 13. Growth rate n vs wavenumber ¢ for different values of
Figure 11. Growth rate n vs wavenumber ¢ for different values of  porous parameter o,, when @, = 0.1, B = 0.02 and We = 0.25.

electric parameter We, when a, = 0.1, 0, = 4 and B = (1.02.

: B=10.04
0.001 03
.02
n
01
0.000 e : N W
0.04 0.0 0.1 186 0.20
- !
-0.001
+0.002
Figure 12. Growth rate n vs wavenumber ¢ for different values of

Bond number B, when ¢, = 0.1, 0, = 4 and We = 0.25.
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If 1 — We = ¢*/B, then n =0 and hence the interface is
neutrally stable. If We < 1 — £%/B, then n > 0 and hence
the surface is unstable. If We > 1 — ¢*/B, then n <0 and
hence the surface is stable. From this we conclude that by
suitably selecting the values of We it is possible to con-
trol a growth rate. The growth rate n given by eq. (106) is
numerically computed for different values of We, B and
o,, and the results are given in Figure 11 for n vs ¢ for
different values of We. From Figure 11 it is clear that the
decrease in growth rate compared to the classical growth
rate is steep for We in the range 0.5-1.0. Equation (106)
is plotted in Figure 12 for growth rate » vs the wavenum-
ber ¢ for We = 0.25 and for different values of the Bond
number B. From Figure 12, it is clear that the perturba-
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tions of the interface having ¢ smaller than the ¢ are am-
plified when 6> 0 (i.e. pr < p,) and the growth rate de-
creases with a decrease in B, implying increase in surface
tension because B is the reciprocal of surface tension.
From this it is clear that an increase in surface tension
decreases the growth rate and hence makes the interface
more stable. Also, eq. (106) is plotted in Figure 13 for the
growth rate n vs the wavenumber ¢ for different values of
porous parameter o, for fixed o, B and We. From Figure
13 we conclude that the decrease in the growth rate is
steep compared to the classical growth rate for different
values o, in the range 4-20.
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