PULSATING MAGNETOHYDRODYNAMIC FLOW IN
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Pulsating laminar flow of a viscous incompressible electrically con-
ducting fluid in an annular channel between two infinitely long circular
cylinders under 2 radial impressed magnetic field is considered, The
solutions of magnetohydrodynamic cquations have been obtained on
the assumption that the space between two cylinders is small compared
to their mean radius. The solutions were also obtained on the assumption
of small magnetic Reynolds number with special consideration of those
for low and high frequencies. ’

In his recent paper, Narasimhan! (1964) obfained the solution of
magnetohydrodynamic (hereafter called MHD) equations under the approxi-
mations (v/vm* € 1 and wo~ (v/vm)¥, where v is the viscosity, vpy the mag-
netic viscosity and w, the frequency.  Similar types of problems have been
investigated by Rudraiah and Blackwell (1963).* To obtain his solutions,
Narasimhan (1964)* assumed that the cylinders are infinitely long insulators
and at the same time he used the boundary condition (dHg/dr) Jpup = 0.
This boundary condition is true only when the walls of the cylinders are
perfect conductors, To derive his non-steady state solution, Narasimhan
assumed that (v/vm)* = (Rp/R}F <€ 1 and w, ~ (v/vm)¥. In this paper, we
try to demonstrate that Narasimhan’s solution can also be obtained on the
approximation of the magnetic Reynolds number Ry = woa%/vp € 1. The
solutions were also obtained under the narrow-gap approximation which
will be useful in some experimental work, [¢.g., see Chandrasekhar ( 1961)#].
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2. Basic EQUATIONS

We assume that the cylinders, of radii a and b (b > a), are infinitely
long perfect conductors. The equations governing the motion of an electri-
cally conducting incompressible viscous fluid in the presence of electric and
magnetic fields, under the usual approximations (Cowling, 1957)* are (in a
rationalized absolute unit system)

)Y -> > -
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where

> >

V, H, =, ¢ are the velocity, magnetic field, pressure and time, p, p, 0, v, v
are the density, magnetic permeability, electrical conductivity, kinematic
viscosity and magnetic viscosity (= 1/uc).

Let (r, 6, Z) be cylindrical co-ordinates referred to the common axis of
the cylinders as Z-axis.

The problem is assumed two-dimensional and axisymmetric with velocity
entirely axial and the fluid is driven by a (axial) pressure gradient where
magnitude is sinusoidal in time. The applied magnetic field is in the radial
direction and the resulting induced magnetic field is then entirely axial (Kapur
and Jain, 1960).> Then the special condition of the problem requires:

T = — Pt Z + U, | (5)
(P, w, real and P > 0), |

=->» s 4 oA

V=W()etz (6)
R |

=251 4 | %)

‘where Hp = A/r (A > 0) is an applied magneﬁc ﬁeld_- (Globe, 1959)* |
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Substituting (5) and (6) into (1) and (3) using (2) and (4) we find that

the induced pressure gradient /u; is entirely in the radial direction and H,
is entirely in the axial direction (Kapur and Jain, 1960). In fact if

w5 = pett ;. H; = H; i@t 7 (®)
we obtain
fwgW — %% =, T (c_i;%_’ v dr ) - 1o

Although exact solutions of equations (9) to (11) are possible, it is
believed that, in many practical applications, approximate limiting solutions -
of differing physical significances are likely to be more useful and such
solutions are considered in this paper. ‘

3. THE NARROW-GAP SOLUTION

We assume that d/a<€1, where d = b — q is the gap width. In this
approximation equations (9) to (11) become

3 .
% 5% K 3 ffg‘z | (12
. [.LA de da*w
lwgW — pad A& = + dz(dz'z (13)
. AdwW d*H
lonz d dzl Zg dzvzz‘) (14)
where
2:’;“,0<2<1
we then define

X(2)= f Hz (%) d. | 15)

7
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Substituting in equation (14) from equation (15) one then obtains %
ad Vi, 23X
W= ik - et 1e

From equation (13), using equation (16), we get |

d*X d*X
(!g‘ bl A‘;‘ dxﬁ s Agx s A;g (17)
where
. APd?®
Ar = i(R+ Rm) -+ M2 Ay = RRm, Ag = 0

" _
R = “’t;d is the Reynolds number,

Rm = “:"‘p is the magnetic Reynolds number,
m

M = [MAﬁdﬁ

3
ﬁ] is the Hartmann number.

pacvvm,

To solve equation (17), one needs four boundary conditions on X (Z).

They are as follows:

The first two are the no-slip boundary conditions on velocity and they
are
W (a, t) = W (b, 1) = 0, (18)

The remaining two boundary conditions depend on the magnetic field. The

current density f has only a 6-component, so that the current in the annular
channel is analogous to that in an infinite solenoid and may be assumed to
produce no field for r > b (Globe, 1959).% Thus continuity of tangential
component of magnetic field requires that

Hg (b, 1) = 0. (19)

Since the walls of the cylinders are perfect conductors, the tangential
component of electric field has to be continuous and hence zero at the walls.
Therefore

B(a, )=E(b ) =0, B (20)
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Since
fp=al By 1 (V x H)] - — dgz
then from (18) to (20) it follows that
Wl o @1

Henee. the required boundary conditions on (3 are: -

dXx | d*X

d& I’;ﬁ;-—: - cIﬁ”l}zml =0, (22)

The solution of (17) subject to the boundary conditions (22) is
X (&) == dy cosh A& - dy sinh )\18 -+ dg cosh AZ

4 dgsinh AgE - A, (23)
where
dy o A‘A* {1\132 sinh Ay cosh Ay — A2 cosh Ag sinh Ay
e (Ag? = 4,%) sinh A)
- "ﬁ 510 = A cosh Ay — Ay sinh Ay sinh A,
+ Ayt cosh Ay cosh Az — Ayl
dy = kjg [(Ag* ~ A®) sinh Ay -+ Mg sinh A, cosh Ay
- Ag* cosh Ay sinh Ag]

’\an {)&3’3 cosh Ay cosh Ay = Mg sinh Ax sinh Ay

d‘ E
== (Ag? =~ X %) cosh Ag — ;\12]
D == (Jkg" — M) (A sinh Xy — Ag simh Ay).
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From (16) and (15) using (23) the expressions for velocity and magnetic
field are:

W () == [a (dy cosh A& -|- dy sinh A ) 4 a, (dy cosh A2

+ d,sinb AZ) — i “’j{"f{”‘ﬁ] (24)
H (&) == Ady sinh A2 - Aidy cosh A E 4 Agdy coth AE
+ Ayd, sinh A2 (25)

where
(. A2 d (. Ay#
20 = &y + i&,, 24y =1y A iy
1o £ 7= 55 R + Rnd)t -+ MO¥ e MBS 4. {(R* -~ Ron)'
4 MHF . M2}
oy = 35 [{RY + R)® + MOF = M9 — {(RY — Renby
+ M9} 4 M,

Expressions (24) and (25), in general, are very complicated, These
expressions, however, will reduce to a simpler form with the use of the condi-
tions appropriate to laboratory or cosmical applications of MHD [e.g., see
Steketee (1959), Ludford (1959),% Axford (1960)°]. These conditions are
N<1, N>l and N =1, where N == Rp/R is the magnetic Prandtl
number,

Case 1 (N<€1):

Under laboratory conditions it is usually found that N = »/up <1
(v[vm = 107%/6 for mercury under laboratory conditions). In this approxi-
mation the expressions for A, and A, are:

M= M2+ IR} = f; + ify

| (RRw)?
Ag = (Kl,:[—a"jl:":-%j; ;Lgl'l" igy
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where

fifa ;KR"’ MO M

gy oo RE‘(RM )f.x 8y Rva )/; B

Using these expressions for A, and A, the expressions for velocity and
magnetic ficld can then casily be obtained from equations (24) and (25) respec-
tively.

Case 2 (N3 D:

Under cosmical conditions it is usually found that N3 1 (v/vey s 104
for corona). In this case, the expressions for A and Ay are:

h Ron)*
MM R, Ay (SRR

Case 3 (N == 1):

In somewhat artificial case when N = L, i, v = vy, the expressions
for Ay and Ay will bhe simplified and they are given by

Y

4. SOLUTIONS WITH SMALL MAGNETIC REYNOLDS NUMBER AND WITHOUT
THE NARROW-GAP APPROXIMATION

Equations (24) and (25) will reduce to simpler form on the approximation
of a small magnetic Reynolds number, In many practical applications it
is usually found that the magnetic Reynolds number Rp <€ 1, Hence
in this section we shall assume that Ry, <€ 1.

Introducing the non-dimensional quantities

... WHy PR ~
A b patw,®
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into equations (9) to (11) and using Rm = wea?/vm <€ 1, one then obtains
My __ _EJ__I;! ‘ .
%= 7S o (26)
a2V , 1dV , SRdH » ,
gt Tada ™o da  RV="h | @7
d°H |, 1dH Ry dV
dt Tada T T e da (28)
where
_ PR _ _pA® _ wod? ﬂoaﬂ
Pl. = E'Z;';ﬁ 3 S = ;&Twoz o BT T Rm == "

The co’"rxespondingbbundary conditions, from equations (18) to (21), are
V(1) =V(y=0

, dH -
H (y) = = =0 , (29
y) = da amy )
where y = bja.
Equation (28) may then be integrated yielding
dH __ _Rmy |
da — a (30)

where boundary condition (29), has removed the constant of integration,
Equation (30) may be u«ed to chrmnate H from equauon (27) and then we
obtain

S0 (- Ve 2

where 32 = — iR, M = (SRRp,)} is the Hartmann number. Equation (31)
is a non-homogencous modified Bessel equation with complex argument,
which is exactly that found by Narasimhan (1964)* with two approximations
(Rm/R)}<€1 and w, ~(Rp/R)* whereas equation (31) is derived with an
approximation Rpm < 1. One may express the solution of (31) in terms -
of Kelvin and Lommel functions (e.g., see Narasimhan, 1964). However,
for convenience, we can express the solution of (31) satisfying the boundary
conditions (29) in the form

V (a) = [BJy (Ba) + CYa (Ba)] o (31)
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where

B e g[\’u‘{(\ﬂ) LS f Y (BA) AdA]

¢ -7 [Jm(ﬂ " p, f Ty (BY) m]

= I (B) Yaa (vB) —- T (vB) Yo (P).
Eo= Py G "r aYy (Ba) da - P,Yy (yB) f ol (Ba) da.
; 1

Jm (x) and Yo (x) arc the Bessel functions of the first and second kinds,
of order M, respectively. :

Using equation (31) and the boundary condition (29), the magnetic
field H may be determined from equatjon (30).

In the two limiting cases of small and large |B] cquation ( 31 1) nmy bb
expressed approximately in terms of clementary functions,

Low Frequency Oscillations (|| b <€ 1):

In this case, using the asccndmg series uxparmom f’m the Bessel functions,
to order |Bb¥ the expression (31) becomes :

| Plt,‘ioat (y.sm - 1) aM m cya M .. 1) )
Vt ((‘M !‘) L (-Mz - 4) [ ) ‘) w ‘ e Y, ]
’ (32)

where Vi (a, £) is the time-dependent velocity obtained from (6) using (31).
In real notation .

, B pl c0$ @t Q&M )aMV M (ywum -1,

(33)
The expression for magnetic field, from (30) using (29) and (33), is

MP, cos wot [(y*M — 1) (M — uM)
He (a, 1) a - (M2 3 [”"‘ M (1= pamy

B (2-M 1) (qoM l . .
-+ vy M (.),mg j D V‘M) 2(“” mr?'ﬁ)} ! (34)
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It is apparent that the solutions given by (33) and (34) are true only when
M2 £ 4. However, for M? = 4 the singular solutions exist and they are
given by

Py cos wyt 13 W o fﬂgﬁ by , ‘
Ve (o, 1) & - 4’(3M ;’) {y‘ (lug }’) at oty o log rr.] (35)

b log "
. MP, cos wyt 14 ! a4 . 34 lop g ree
He (e £) s 4 (;‘4 l;' [W Pl [T 2;; v ) log u
IR GRS B CYL L ,‘
s W o }4? : \’] {36y

In the limit M =>0, equation {33) approaches the hydrodynamic limit
Large Oscillations (|Ba| 3> 1):

When the oscillations are large, f assumes very large values, We know
that for large values of Z (Hildebrand?®)

y 9 . '
I(Z) ~ «/w?g: cos (7 M7 ~ )

Yu (Z) N'\/j& sin (1 Mf \ z) ,

When these values are substituted in equation (31) we get

P, et [ sin B (a -

o 1) A 1) ap (- , |
Vet m Ty G B DM M) (W)

where

x .

3

5. CONCLUSIONS

In order to study the effect of the magnetic ficld on the pulsatory MHD
flow, the hydromagnetic solution (32) has been evaluated for M == 0, 3, 6, 12
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and for a fixed wof where M == 0is the hydrodynamic case. Typical behavi-
our is illustrated with the family of curves in Fig. 1 which refers to &= 2,
It is seen that the magnetic field flattens the velocity profile, which suggests
that the field tends to inhibit instability.

'5-..

13
1.2+
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Fia. 1. Velocity profile of Magnetohydrodynamic flow in an Annular Channel,

The problem of pulsating MHD flow in an annular channel with porous
walls is presented in another paper,
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