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A chaotic signal loses the memory of the initial conditions with time, and the future behavior becomes
unpredictable. Here we propose a method to understand the loss of memory with time from a time
series. This is done by introducing time-dependent generalized exponents. The asymptotic behavior of
these exponents is interesting and can distinguish between chaotic systems that lose memory of the ini-
tial conditions completely, those that partially retain the memory, and those (borderline of chaos) that
fully retain the memory. We discuss these features with some illustrative examples.

PACS number(s): 05.45.+b, 06.50. —x

I. INTRODUCTION

Sensitivity to initial conditions is probably the most
important characteristic that differentiates a chaotic sys-
tem from an integrable system [1]. This sensitivity to ini-
tial conditions is reflected in the fact that errors grow ex-
ponentially with time. This exponential growth is
characterized by the Lyapunov exponent. Equivalently,
two close-by trajectories diverge exponentially in time.
This leads to the unpredictability associated with the
chaotic systems in the following sense. A small but finite
uncertainty in the initial conditions grows very rapidly
with time and after some time it becomes almost impossi-
ble to predict the phase-space trajectory. We may say
that the system progressively loses the memory of the ini-
tial conditions. This loss of memory of the initial condi-
tions obviously depends on the exponential divergence of
the trajectories and also on the amount of uncertainty of
the initial conditions.

The initial exponential divergence of close-by trajec-
tories is well characterized by the Lyapunov exponent
[1]. However, the Lyapunov exponent does not remain a
very useful parameter for larger times. This is because,
as the distance between the trajectories increases and
reaches scales of the size of the attractor, the trajectories
start folding back on the attractor and a simple descrip-
tion in terms of the exponential divergence is no longer
valid. Thus a different quantity is needed to characterize
the long-time behavior of a chaotic signal. One would
also like to know whether the memory of the initial con-
ditions is completely lost and how much time is required
for this to happen. The purpose of this paper [2] is to in-
troduce a method of quantitatively analyzing loss of
memory of a chaotic signal which is suitable for all the
times. The method makes use of the notion of the fractal
dimension and generalized dimensions [3-8] and intro-
duces time-dependent generalized exponents. It reduces
to the analysis given by the Lyapunov exponent for short-
er times. For larger times the analysis gives the progres-
sive loss of memory of initial conditions. We also find
that in some chaotic signals there is never a complete loss
of memory. Our method has an advantage of being able
to characterize this situation.

In Sec. IT we introduce the time-dependent generalized
exponents for a one-dimensional case and discuss their
properties. Section III gives illustrative examples. The
higher-dimensional case and examples are discussed in
Sec. IV. We conclude with a discussion in Sec. V.

II. TIME-DEPENDENT GENERALIZED EXPONENTS

A. Definitions and formalism

Consider a time series {x,}, k=1,2,... specifying
values of a physical observable x at successive times .
We assume that the transients, if any, have already died
out and our time series gives the points of a trajectory on
the attractor. We begin by discussing a one-dimensional
situation first. Divide the maximum range of the variable
in N parts of equal length /. Here the length scale /
specifies the uncertainty or error in the initial conditions.
Let p; be the probability that the variable x lies in the ith
interval. We define a joint probability of p;;(1),
i,j=1,2,...,N, as the probability that the variable x lies
in the ith interval at some time ¢’ and in the jth interval
at time ¢ +1¢’, i.e., after a time z. The joint probability of
p;,;(t) will be independent of ¢ since we assume transla-
tional invariance in time.

We now introduce the time-dependent generalized ex-
ponents D, ,(t) (Refs. [2-8]) for the above cover by the
following relation (— o0 <g < ®):

Dq,,(z)=G1:1—)¢q,,(t> @.1)
where
In [2‘7,‘3‘(:) ]
T ()=—2t— 2 (2.2)

Inl

The prime in the summation of Eq. (2.2) means that the
sum is over only those i and j values for which the proba-
bility p; ;(#) is nonzero. In particular, for ¢ =0 we get the
time-dependent fractal exponent D ,(t) [6], and for ¢ =2
we get the time-dependent correlation exponent D, ()
[4]. For g =1 we get the time-dependent information ex-
ponent D, ,(t) [8], and its expression is obtained by tak-
ing the limit g —1 in (2.1) and is given by
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E'Pi,jlnlo(Pi,j )

D, (1)=-" (2.3)

In(1)

The exponents defined above use the capacity notion of
exponents since we use equal length scales. We also note
that D ,(z) defined by Eq. (2.1) can be treated as the gen-
eralized exponents in the two-dimensional space defined
by the vectors (x;,x; 4+, ),k=1,2,. .. .

Let us consider the following two limiting cases.

(@ t=0. In this case, the joint probability
p;;(0)=p;8, ;. Clearly our time-dependent generalized
exponents reduce to the usual time-independent general-
ized dimensions of the attractor [9].

D,,(0)=D, . (2.4)

(b) t = 0. The asymptotic behavior is more complicat-
ed. Consider the following two extreme possibilities.

(i) Suppose there is no loss of memory. Then writing
P, j(t)=p;;(t)p; where p;;(¢) is the conditional probabili-
ty, we note that for no loss of memory p;; =1 for some
value of j and O for the remaining values. Thus from Egs.
(2.1) and (2.2), we find that the time-dependent general-
ized exponents do not change with time.

(ii) Consider the situation when the system has com-
pletely lost the memory of the initial conditions. Then
we get p; ;(t)=p;p; and from Egs. (2.1) and (2.2) we see
that D, ,(z)=2D,. Thus the doubling of the generalized
exponents indicates complete loss of memory.

We will see that in some cases this doubling does not
occur though the time-dependent exponent increases, i.e.,
the memory is never completely lost even though we have
initial exponential divergence of trajectories as indicated
by a positive Lyapunov exponent.

We note that our condition of complete loss of memory
corresponds to the mixing property which states that
lim, , ,Pr(¢ ‘BN A)=Pr(B)Pr( A) for all sets 4 and B
and ¢' is a dynamical map [10].

Let us compare the time-dependent generalized ex-
ponents of Egs. (2.1) and (2.2) with the autocorrelation
function, {(x,x; ) —{x; Y{x;4,). Itis easy to see that
these quantities, though similar in nature, behave
differently. For example, consider a sine function for
which the autocorrelation function oscillates with time
giving no indication of this perfectly predictable system.
On the other hand, our time-dependent generalized ex-
ponents remain constant with time indicating a perfectly
predictable signal. Thus, for studying the loss of
memory, correlation function is not a good quantity.

B. Relations between invariants of the attractor
and the time-dependent generalized exponents

1. Time-dependent fractal exponent and Lyapunov exponent

It is possible to approximately relate the time-
dependent fractal exponent D, ,(t), the Lyapunov ex-
ponent A, and the length scale /. In ¢ time steps an inter-
val of width / will be mapped into length R ~Ie*’. If for
times larger than some time 7, R becomes of the order of
the size of the attractor, we can roughly say that the

memory of the initial conditions is completely lost, i.e.,
given an uncertainty of / in the starting value of the vari-
able x, the value of x after time 7 may lie anywhere in the
attractor and is thus completely unpredictable. The %ize
of the attractor when measured with the scale /is I ~°L
Thus we get the relation [11]

(2.5)

For time ¢ <%, R is less than the size of the attractor.
The number of lengths that R covers is R /I. If we start
from M initial lengths they are mapped into MR /I
lengths. Starting with the entire attractor, i.e., M ~I ~°,

we get

At
In(l) ~

Dq,(t)=D, (2.6)

2. Time-dependent information exponent
and metric entropy

Equation (2.3) for the information exponent can be
rewritten as

Zpi,jln[lei(t)]

D, (=1 D) +D, Q.7
where
>piln(p;)
D=

and p;;;(¢) is the conditional probability that the variable
x is in the jth interval at time ¢ +¢' given that it was in
the ith interval at time ¢’. Now if we assume that we are
able to approximately write

Pjli =Pjli,i,iv, . ..

where pj); + » . is the probability that the variable x is in
the jth interval at time ¢’'+¢ given that it was in the ith
interval at time ¢’, (i")th interval at time t'—¢, ("' )th in-
terval at time ¢’ —2¢, etc., then Eq. (2.3) can be written as

> Pijiiv,.. Alnpjli,i',i”,. ..
Dy (0)=D, +Eh0e

In(]) ’
2.8
h (2.8)

(D)

where h is the metric entropy [12]. The relation between
the metric entropy and the probabilities used to obtain
Eq. (2.8) holds provided the original partition is a gen-
erating partition, otherwise Eq. (2.8) can be treated as an
approximate relation.

D, ()~D

3. Other time-dependent exponents

Noting the similarity of the form of Egs. (2.6) and (2.8)
above we may conjecture that for any ¢ we may have
At

~ _ q
Do =Dy =30

(2.9)
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where A, is some generalized exponent and A,=A and
A=h.

C. f-a structure

We can introduce the time-dependent singularity index
a(t) through the scaling relation

_ o)
Pi,j_l .

It is possible to show that [3-5,13] 7, ,(¢) defined in
Eq. (2.1) is related to a;(z) through a Legendre transform

(2.11)

(2.10)

Tq_1(1)=q(11(t)_f1(t)

where f;(t) is the fractal dimension of the support of the
singularity index a,(t). For t =0, we get the usual time-
independent f(a) curve for the attractor. For large
times if there is a complete loss of memory, f,(¢) and
a,(t) will go to twice their values at t =0. In the other
extreme case of no loss of memory for large times the
values of f;(¢) will remain unchanged in time.

III. EXAMPLES

We will now illustrate our formalism with various ex-
amples.

A. Tent map

Consider the tent map defined by
px, 0=x=1

fx)= p(1—x), l<x<1 (3.1)

where 0=p <2. The tent map gives chaotic solutions for
|

_ ln(zm +t/2)
In(/)
_ ln(2m+(t—l)/2) ln(2_q+2_1)
In(/) (g — DIn(1)

if ¢ is even
D, ,(1)=

If we approximately take / ~27" Eq. (3.3) gives

t
1+—
o’ t even
(4 =D _ In@79+271)
2m (g—1)mIn(2) ’
The asymptotic behavior is obtained for F=2m —2 steps
and is given by

Dq’l(t)2 (3.4)

t odd .

Dq’l(t)zZ—%, 1>

(3.5)

Thus we see that asymptotically D_,(¢) does not give
twice the original value and the correction is dependent
on the logarithm of the length scale or the uncertainty in
the initial conditions. This is clear due to the band
periodicity of the attractor mentioned above. A trajecto-

1 <p =<2. We study the following two cases.

Case (a), p=2. For this case we obtain a fully
developed chaos and have a natural partition of the inter-
val [0,1] into N =2 cells of size / =2~ ™. The probabili-
ty p;=27"™. It is easy to see that after ¢ iterations each
cell expands into 2‘ cells with equal weights. Hence for
each such cell p; ;(£)=2"""". For time ¢ >m, the num-
ber of cells to which a single cell expands becomes a con-
stant equal to 2™. Thus we obtain

Dq_,(t)=Dq—%((12))
=1+—;7 fort<m (3.2a)
and
D, ()=2 fort=Zm . (3.2b)

Equations (3.2) are g independent. The Lyapunov ex-
ponent and metric entropy for the present case (p =2)
are both In(2). Thus our expression for D, ;(¢) matches
exactly with Egs. (2.6) and (2.8) and complete loss of
memory is obtained in =m steps. [See Eq. (2.5).]

Case (b), p=V'2. In this case the tent map has a
chaotic attractor which is split into two bands 4 and B
given by the open intervals (V2—1,2—V2) and
(2—V2,1/V2), respectively. The variable x keeps on
jumping from one band to the other at each time step.
Let us cover the attractor in the following way. Divide
each band into 2™ ~! equal parts [14]. The probability p;
of each box is equal to 27 ™. It is easy to see from the
map that one length of band 4 maps into two lengths of
band B while one length of band B maps into only one
length of band 4. This allows us to calculate our time-
dependent generalized dimensions and we obtain

if ¢t is odd .

[

ry completely loses the memory of its location inside the
band but retains the memory of the band permanently.

B. Logistic map
Consider the logistic map [15] defined by

xn+1=I.an(1_xn) . (3.6)

Here we discuss four different values of p.

Case (a), p=4.0. This is a case of fully developed
chaos. Here we observe doubling of the time-dependent
exponents D, ;(z) for larger times. Figure 1 shows the
plots of the fractal exponent D, ;(¢) as a function of ¢ for
different values of /. The curves start from D, ,(0)=1.
There is a monotonic increase and a subsequent flattening
as we approach D ,(t)=~2, i.e., twice the original value.
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FIG. 1. The fractal exponent D, ,(t) is plotted as a function
of t for four different values of / for the logistic map with
©=4.0. The dashed line shows the behavior of D, ,(t) for
1=0.003 and A=In2 according to Eq. (2.6). The number of
points of the time series chosen in this and all the other calcula-
tions is such that each box has at least 40 points on the average.

The rate of rise and the time required for doubling clearly
depend on the length scale. The sharp rise in D (1)
from ¢t =0 to 1 is an artifact of choosing equal length
scales and not the natural length scales of the system.
Using the region of steady rise of D () to obtain an esti-
mate of the Lyapunov exponent we get A ~0.60 while the
exact analytical value is A=1n2~0.69. In Fig. 1 we have
also plotted the behavior of D ,(¢) for / =0.003 expected
from Eq. (2.6) with A=In2 (dashed line). We see that the
numerical values show a systematic deviation. They are
larger than those given by Eq. (2.6) for small ¢ and small-
er for large r. Hence the estimate of the Lyapunov ex-
ponent is smaller than the actual value and serves as a
lower bound in this case. Though the cause of this sys-
tematic deviation is not clear, it is probably due to the
jump at the first time step. We also find that the estimate
of A improves as / decreases.

In Fig. 2 we plot the time-dependent information ex-
ponent D, ,(¢) as a function of time. Using the region of
almost linear rise of D ,(¢) in time and Eq. (2.8), we get
the metric entropy 4 =0. 60.

The behavior of the time-dependent exponents for oth-
er values of g is similar to Figs. 1 and 2. However, the
plots are not very smooth for larger values of q. Figure 3
plots 7,,(z) as a function of g for various times for
1=0.01. At around t=~9, 7,,(¢) values reach the values
which are twice those at ¢t =0. For g >0, the 7,,(¢)
curves increase steadily with time. However, for g <0,
the 7, ,(z) values first decrease rapidly and then increase.
The behavior for negative g values corresponds to low
probabilities. In this region numerical errors are larger

2.0
1.9
1.8
1.7
1.6
1.5

D]’{ (t)

t

FIG. 2. The information exponent D, ,(¢) is plotted as a
function of ¢ for / =0.003 for the logistic map with u=4.0.

and it is difficult to interpret the result. Similar behavior
to that of Fig. 3 is obtained for f,(¢#)—a,(¢) curves also.
Using Eq. (2.9) we have found A, for 0=¢ <5 using
linear portions of the graphs of D, ,(¢) versus ¢ for
[ =0.003. (Numerical errors for the negative g values are
higher as explained earlier.) The behavior of A, as a
function of g is shown in Fig. 4.

Case (b), p=3.5699. .. . For this value of u we have
a period-doubling attractor. The time-dependent fractal
exponent Dy ,(¢) of this map is plotted as a function of
time in Fig. 5. The Lyapunov exponent is zero in this

50.0

20.0

-10.0

L

1

o ;
¥ _40.0

-70.0

FIG. 3. The 7,,(t) vs q plots are shown for different times for
the logistic map with £=4.0 and /=0.01. The two dashed
curves correspond to the 7,,(¢) values for £ =0 and values ob-
tained by doubling its values [16]. The solid curves correspond
to 7,,(¢) values for different times.
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FIG. 4. The A, values are plotted as a function of g for the
logistic map with / =0.0033 and p=4. The values of A, are cal-
culated using the linear portion of the D, ,;(¢)—t curve and Eq.
2.9).

case. Thus we expect time-dependent fractal exponent
D, ,(t) to remain invariant in time. We find that this is
indeed the case. [There are some small oscillations which
may be due to not using natural length scales and the
D, ,(t) values are larger than fractal dimension for the at-
tractor due to finite value of /.] This indicates that there
is no loss of memory and the future is completely predict-
able [17].

Case (c), p=3.6785735. This value of u shows the
band-merging case of the logistic map. This value
separates between two-band and one-band attractor re-
gimes of the logistic map. As in the band-joining tent
map, in the band-merging case of the logistic map also
the third iterate of the maximum falls on the unstable
fixed point and the points on the right and left sides of
the unstable fixed point are visited alternately. The plot

1.00
~ o7sf
o
(=] 000000000000000 _0000900000000,5 00000
o
0.50 L L L
0 10 20 30 40

t

FIG. 5. The fractal exponent D ,(t) vs ¢ is plotted for the
period-doubling attractor of logistic map for / =0.003.
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FIG. 6. The fractal exponent D ,(¢) vs t is plotted for the
band-merging case of logistic map (squares) and band-merging
case of tent map (triangles) for / =0.01.

of Dy ,(t) versus time is shown in Fig. 6 for / =0.01 by
points represented by squares. The behavior for small ¢ is
like the u=4 case. However, asymptotic behavior is
quite different. First, the asymptotic value of the time-
dependent fractal exponent is clearly less than twice its
value at t =0. This shows that the system never loses
memory of the initial conditions completely. This is be-
cause the variable x, keeps on alternating between the
two bands on the right and left sides of the unstable fixed
point and we always know the band in which it lies at any
time once the initial band is known. Secondly, asymptot-
ically the D, ,(¢) alternates between two values. This is
because the two bands have different widths and we have
used capacity notion of dimensions. For small ¢ a
straight line fit to the linear portion of the data in Fig. 6
yields A=0.27 against the actual value 0.34.

Let us compare this result for the time-dependent frac-
tal exponent with the one obtained for case (b) for the
tent map p =V'2 discussed above. The two are obviously
similar and the band periodicity is reflected in the fact
that the fractal exponent does not double asymptotically.
In Fig. 6 we also plot Dy, ;() as a function of time for the
band-merging tent map for / =0.01 (shown by triangles
in the figure). Both have almost the same Lyapunov ex-
ponent. From Fig. 6 we can see that points in the case of
the band-merging tent map and band-merging logistic
map evolve parallel to each other for short times since
both maps have the same Lyapunov exponent and asymp-
totically D(/,¢) alternates between two values less than
twice the value at ¢ =0 in both cases.

Figure 7 shows the plot of D, ,(¢) as a function of ¢ for
the present case. We notice that the asymptotic value
does not double but is almost a constant nonfluctuating
value in contrast with D, ,(z). In fact, investigation of



730 P. M. GADE AND R. E. AMRITKAR 45

1.60

1.50

1.40

1,30

1.20

Dy ¢ (t)

1.10

1.00

0.90

0.80 L L L I !
0

FIG. 7. The information exponent D, ,(z) vs t is plotted for
the band-merging case of logistic map for / =0.01.

other g values reveals that ¢ =1 is a special case and for
all other values of g the asymptotic value fluctuates.

Case (d), p=3.82779. We know that for u=1+V'8,
we get a tangent bifurcation. We have period 3 window
for larger values in p and intermittency for smaller
values. In the case of intermittency we find the doubling
of fractal exponent. The time-dependent fractal exponent
against time is plotted in Fig. 8 for / =0.01 (shown by
squares in the figure). The Lyapunov exponent calculated
from the linear portion of the curve in Fig. 8 gives
A=0.37 while the actual value is 0.32. We find that the
fractal exponent doubles around ¢ ~43. This shows that
there is a complete loss of memory of the initial condi-
tions. The numerical calculations reveal that this dou-
bling takes place for the entire range of g values for large
enough time. The time required for the doubling is far
higher than predicted by Eq. (2.5). We also find that this
time increases indefinitely as p approaches the tangent bi-
furcation value. This is expected since A—0.

The intermittency serves as an example to illustrate the
fact that our formalism gives certain information not
given by the Lyapunov exponent alone. We choose
another value of u having almost the same value of
Lyapunov exponent, namely, u=3.674 but in the two-
band attractor regime. In Fig. 8 we also plot for the
time-dependent fractal exponent as a function of time in
this case (see triangles in figure). There is a clear distinc-
tion in asymptotic behavior. In the case of intermittency,
we see the doubling of the fractal exponent asymptotical-
ly whereas in the case of the two-band attractor we do
not see the doubling asymptotically.

C. Limiting behavior

We now discuss the effect of the two limits / —0 and
t— . We find that these two limits are noncommuting.

2.00

1.80}

AAAAAALALALDAAALLLLALA

1.60 CABABDABBABALLDLLALNS

FIG. 8. The fractal exponent D, ,(¢) vs ¢ is plotted for the in-
termittency case (1 =3.82779) and two-band case (1 =3.674) of
the logistic map for / =0.01. The points in the intermittency
case are represented by squares while those in the two-band case
are represented by triangles.

The behavior in the limit ¢ — o is clear from the exam-
ples discussed above. The asymptotic behavior gives us
information about the extent of loss of memory. In the
case of the limit /—0 we can define time-dependent gen-
eralized dimensions D,(#) as [Eqs. (2.1) and (2.2)]

D, (= limr, /(1) . (3.7

_
(g—1) 1>

From Eq. (2.6) we see that the slope of Dy ,(z) versus ¢
tends to O as / —0 and hence for any finite ¢, D ,(¢) tends
to Dy and not 2D, as [ —0. The slopes of actual curves
of D () in Fig. 1 are also decreasing as / —0 and seem
to support this conclusion. Similar behavior is seen for
other values of q. [See also Egs. (2.8), (3.2a), and (3.4).]
Based on this let us conjecture that lim, oD, ,(£)=D,.
This conjecture implies that there is no loss of memory if
the initial conditions are specified with infinite precision.
This is natural since we have deterministic chaos. Thus
the above conjecture allows us to conclude that the loss
of memory of the initial conditions is a property of coarse
graining [18]. Thus the two limits /—0 and ¢ — « are
not interchangeable. Taking the /—O0 limit first and
t— o limit afterwards gives us the generalized dimen-
sions D,. On the other hand, taking the f— oo limit first
we get different types of asymptotic behavior as discussed
above.

IV. HIGHER-DIMENSIONAL SYSTEMS

The formalism introduced in Sec. II is easily extended
to higher-dimensional systems. For a d-dimensional sys-
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tem, Eqgs. (2.1) and (2.2) can be generalized by letting the
indices i and j represent d-dimensional boxes. If we have
a time series in only one variable, we can use the method
of time delays to construct the state vectors
X =(Xp, Xg 415+ - » Xk +a—1) K=1,2, ... where d is the
embedding dimension [19-20]. The index i for the box is

]

replaced by the string (i,,i,,...,iy;) where i,, is the in-
dex for the length intervals in the mth direction of the
embedding space. The time-dependent generalized ex-
ponents are now given by Egs. (2.1) and (2.2) with the
summation indices i and j now representing d-
dimensional boxes,

In o li, . iy nip @]
1 (s nighlUips e oodig)
D, ,(1)= 7—1 Inl (4.1)
|
where p, R NI is the probability that the state = loses memory of the initial state vector, then
vector x lies in the box (i, . ..,i;), at time ¢’ and in the  P,,...,ip, ;) =Pq,,...,iHPj- For a chaotic attractor

box (j;,...,j;) at time ¢'+¢. Again, for t =0

Pa,,.. (0)=p,,.

cighUpse e iy ..,id)si,,jl ""Sid,jd

and the time-dependent generalized exponents are the
usual generalized dimensions of the attractor. For large
times there are two extreme cases.

(i) When the memory is completely lost the arguments
similar to the ones used in the one-dimensional situation
show that the time-dependent generalized exponents will
double asymptotically.

(ii) The other extreme case is obtained when there is no

loss of memory. In this case writing
pij(O=p,, .. P,y
where  p; . ioly,...,i(E)  is  the

probability, we note that for no loss of memory
p(jl"'"jd)l(il"“’id)(t)=l for some box (j;,...,j;)and O

for the remaining boxes. Thus from Eq. (4.1) we find that
the time-dependent generalized exponents do not change
with time.

The definition (4.1) above though correct becomes
cumbersome to implement in higher dimensions since one
has to work in the embedding space which has double the
dimension of the space in which the original dynamical
system is embedded. For dimension d > 1 a different ver-
sion of the time-dependent generalized exponents which
gives essentially the same information can be introduced
by defining the modified time-dependent generalized ex-

ponents D (1) as

iy, )

conditional

In| 3 [pa,...ip;0OF
_ 1 (N AY
D, ()= 4.2
01(1) 7—1 nl 4.2)
where p iy,...,iy),j(t) is the probability that the state vec-

tor x lies in the box (i, ...,i;) at some time ¢’ and the
variable x lies in the length interval j after a time
t+d—1, _i.e., at time t'+t+d—1. The definition
(4.2) of D, ,(t) requires calculations in a space of
d +1 dimensions only. For t=0, we have
p(,-l,,,,,;d),j(0)=p(,-l,__,,,-d)S,-d,j. Hence we get the usual
generalized dimensions Bq, 1(0)=D,. In the other limit of
large time if we assume that the variable x completely

with D, > 1, the projection along any direction is expect-
ed to be continuous. Thus in this case D ;(t)=Dg,;+1if
we normalize the total range of the variable to unity.
Also if for large times there is no loss of memory the ex-
ponents will not change with time.

We now discuss some illustrative examples.

(a) Hénon map: The Hénon map [21] is given by

(x,,+1,y,,+1)=(y,,+1—ax3,bx,,) . 4.3)

Let a =1.4 and b =0.3. We consider the time series in
only one variable, say x. We next construct the state vec-
tors x; =(x;,x; ;). Using this state vector the time-
dependent generalized exponents can be calculated. We
have carried out this calculation using both Egs. (4.1) and
(4.2). For Eq. (4.1) the numerical results show that the
fractal exponent D, (t) doubles asymptotically. Thus
there is a complete loss of memory of the initial condi-
tions. The value of the Lyapunov exponent obtained
from the slope of the D, ,(t) versus ¢ curve is 0.32 [see

1.4 1 I 1
0

5 10 15
t

FIG. 9. The figure shows D, ,(t) as a function of ¢ for
1=0.05 for the Hénon map [Eq. (4.3)].
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_ FIG. 10. The figure shows time-dependent fractal exponent
D, (t) as a function of ¢ for / =0.04 for the variant of Hénon
map [Eq. (4.4)] in the two-band case.

Eq. (2.6)] for  =0.05. The known largest value of A for
the Hénon map is 0.418 (Ref. [22]).

Next we use Eq. (4.2) and obtain the modified ex-
ponents D, ,(t). Figure 9 shows Dy () as a function of
for 1 =0.05.... The increase of 1 in fractal exponent
confirms the fact that there is complete loss of memory.

(b) Our next example is of a two-band attractor. We
consider a modified version of the Hénon map

(Xp+pYn+1)=(p -xr%_']yn’xn) (4.4)

with J=0.3 and p =2. Figure 10 shows the time-
dependent fractal exponent D ,(t) as a function of ¢ for
1=0.04.... We see that D (t) does not increase by
one in this case. This is enough to conclude that the
memory is not lost completely. The information ex-
ponent D ,;(¢) also shows a similar trend.

(c) Cat map: We have also analyzed a case of an area-
preserving map, the cat map [23]. The cat map is defined
by

x, +1=(x,+y,), modl, @s)

Yp+1=(x,+2y,), modl .

In this case we find that the memory is lost completely.
The time-dependent fractal exponent Dg,(¢) [Eq. (4.1)]
doubles in a few time steps. In Fig. 11 we have plotted
50,,(t) [Eq. (4.2)] as a function of ¢ for / =0.013... . As
shown in Fig. 11 the time-dependent fractal exponent
Eo,l(t) also increases by 1. The largest value for A in this
case is In[(3+V'5)/2], i.e.,, 0.962. .. whereas the value
calculated from the slope of the linear portion in Fig. 11
is 0.98 which is near the actual value.

3.0

B, (1)

2.4}

2.2+

2.0 . 1 i 1

_FIG. 11. The figure shows time-dependent fractal exponent
D, (1) as a function of ¢ for I =0.013 for the cat map [Eq. (4.5)].

V. CONCLUSIONS

In this paper we have presented a method of analyzing
the time evolution of a chaotic signal. We have dealt
with the problem of the loss of memory of initial condi-
tions as time evolves which is one of the central charac-
teristics of a chaotic system. In particular we know how
the loss of memory of the initial conditions takes place at
each time step. The change in the time-dependent fractal
exponent is a measure of this loss of memory. Complete
loss of memory is represented by doubling of the time-
dependent generalized exponents. Our method is able to
distinguish between chaotic signals which lose memory
completely and those which retain partial memory of the
initial conditions. The partial loss of memory represents
some kind of band periodicity still persistent on the at-
tractor. Thus we expect our method to be useful in
knowing the kind of chaotic attractor that one has. We
do not know of any other simple method which can give
the above kind of information from a time series. In ad-
dition we also get a rough estimate of the Lyapunov ex-
ponent and metric entropy. We also note that the loss of
memory is a property of coarse graining.

Our analysis has relevance for predicting a chaotic
time series. Farmer and Sidorowich [24,25] find that the
normalized error of prediction approaches one for large
prediction times in some systems while it remains less
than one in the other cases. These two situations will
correspond to an asymptotic value of D,,(¢) which is
twice the original value and an asymptotic value which is
less than twice the original value.
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