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Surface instability in a finite thickness fluid saturated porous layer
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Abstract. The Rayleigh-Taylor (RT) instability at the interface between fluid and fluid
saturated sparsely packed porous medium has been investigated making use of boundary layer
approximation and Saffmann [8] boundary condition. An analytical solution for dispersion
relation is obtained and is numerically evaluated for different values of the parameters. It is
shown that RT instability can be controlled by a suitable choice of the thickness of porous
layer, ratio of viscosities and the slip parameter.
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1. Introduction

Rayleigh-Taylor instability (RT) in viscous fluids has been extensively investigated in
the last few years [3], because of its importance in inertial fusion target design,
astrophysics and geophysics. Diffusional instabilities of the form first discussed by
Saffmann and Taylor [9] which are normally encountered in viscous creeping flow
limit are also studied because of their applications in areas of failure of materials.
Recently, Brown [2] has studied RT instability in a finite thickness layer of a viscous
fluid under the assumption of creeping flow. Rudraiah et al [7] have investigated the
effect of oblique magnetic field on the RT instability of a finite conducting fluid layer.
However, there is a rather different subject area of interest, namely, instability between
fluid and fluid saturated porous media where RT instability is relevant. Examples of
this may be found in the areas of the failure of metallic glasses, grain boundaries, failure
in metals, failure of polymers and so on.

It is also important for the study of motion of contact line where the effective
slip of the interface reverses the singularity in the rate of strain which was otherwise
introduced by the no-slip condition. In the present situation the interface may be
a smooth surface or a rough surface depending upon the solid matrix of the porous
material. In the former case the surface can be considered as a nominal surface
(postulated by Beaver and Joseph [1] hereafter called as BJ) at which BJ slip condi-
tion exists due to transfer of momentum from fluid to fluid saturated porous media.
Later Saffmann [8] used a modified version of BJ slip condition to study the flow
past a fluid saturated porous media. The BJ slip condition is independent of the
thickness of the porous layer and hence valid when the thickness of the porous
layer is very much larger than the thickness of the fluid layer. In many industrial
and biochemical applications the thickness of the porous layer is comparable to
that of fluid layer and hence the slip condition should involve the thickness of

213




e S

214 N Rudraiah et al

the layer. Later Rudraiah [6] has derived the slip condition known as BIR slip
condition involving the thickness of the layer. This BJR slip condition reduces
to BJ condition for large thickness of the layer. In the case of rough interface
the effective slip condition can replace the rough boundary by a smooth surface and
this introduces an effective slip condition applied in the mean position of the
interface. In this situation the velocity slip is proportional to tangential stress along the
surface; the constant of proportionality is called the slip coefficient. This slip coefficient

can be determined using the asymptotic analysis as in the case of fluid in the absence of
porous material [4].

In this paper, we study the RT instability at the interface between fluid layer and
porous layer of finite thickness using Saffmann slip condition [8]. It is shown that the
thickness of the layer, the slip coefficient and the ratio of viscosities of fluid greatly
influence the RT instability.

2. Formulation of the problem

The physical configuration considered in this investigation is shown in figure 1. It
consists of two regions 1 and 2. The region 1 (i.e., y > h) is concerned with a viscous fluid
of viscosity u.g, bounded below at y =0 by a rigid impermeable material with an
interface at y=h. To derive the basic equations, for this physical configuration
considered here, we make the following approximations:

i) The fluid in region 1 is quiescent.

ii) The fluid saturated porous medium in the region 2 is incompressible and per-

forms steady, two-dimensional boundary layer motion, governed by Brinkmann’s
equation.

Under these approximations the basic equations governing the flow are (Nield [5])
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Figure 1. Physical configuration.
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p_, [Gv, Fv]_(n
ay_lueff Ox2 ayz k D, (22)

where p is the pressure and u and v are the two-dimensional velocity vector components
of the fluid saturated porous medium with components 4 and v along x and y direc-
tions, respectively; k is the permeability of the porous material. Since the fluid is
incompressible the continuity equation is given by

ou v _
ox  dy

and

(2.3)
These equations are governed by the following boundary conditions.
The no slip condition is
u=v=0aty=0, (2.4)
which on using the continuity equation becomes
v=Dv=0|at y=0, o (2.5)
where D =d/dy.

At the interface, we use the Saffmann condition [§8]

ov 0Ou Q
—+—|=— ty=h. 2.
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Physically, this represents the continuity of the tangential stress at the interface. Here

Q is the slip parameter which depends on the structure of the porous material. The
continuity of normal stress at the interface leads to

02 0
T

Here, § is the stress gradient, y is the surface tension and 6%4/0x? is the curvature of the
interface, 7 is the elevation of the interface satisfying the dynamic equation

on
Vn=0. 2.8
o +(q'V)n=0 (2.8)

This leads to the condition
on 0 ‘
p=, 0 (9
In the regime of linear theory eq. (2.9) may be written as

on

=_1 2.10
v ot (2.10)

We invoke solutions for the quantities #, u, v, p varying as

[7(), u(¥), (3, P(y)] €xp (i x + ne), | (2.11)
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respectively, where »n is the growth rate of the interfacial disturbances and « is the
wavevector. From egs (2.3), (2.6) and (2.11), we get

icu+ Dv =0, (2.12)

Dzv+oczv=(%>Dv aty=h. (2.13)
Eliminating pressure term between egs (2.1)-(2.3) and using eq. (2.12), we get the
stability equation

D*v + (2u* + a3)D?v + a®(@® + o2)v =0, (2.14)
where af=1/Mk and M=p_/u
Equation (2.1), using (2.11) leads to

P = (Mege/0?) (D30 — [® + 2] D). (2.15)

Equating (2.15) with (2.7) and rearranging the terms we get for the growth rate n the
expression

. v[ya? — 6] at
(Hege/a®) [D30 — {20% + 02} Dol + (u/ /kv)

=h (2.16)

Making eq. (2.16) dimensionless, using 4 = . /(y/d) the scale for length
o*=ol, D* = DAL h* =h/i,n* =np (/7 9)
we get,

« va*2(1 _ 06*2)
nT =

=h, (2.17)
[(2a*? + af?)D*p — D*3p] — |:~——
where asterisk denotes the dimensionless quantities. The solution of eq. (2.14)is
uy)=A;ch(ay) + 4,sh(ay) + A;ch(ay) + 4,sh(ay), (2.18)
where a =, /(o + «Z) and for brevity, we have denoted cosh(x) and sinh(x) by ch(x) and

sh(x), respectively. The coefficients 4,(i =1 to 4) are determined using the boundary
conditions (2.4) to (2.6) and (2.13) and they are given by

Al +A3=O, (2.19)
a

A4 + Az; = 0, (2.20)

A, +RA; =0, (2.21)

A, — A, R(x/a) =0, (2.22)
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where
R
\ R==",
> R,

R, = [20*ch(ah) — (2 + a?)ch(ah)] + (—Q—> [ash(ah) —ash(@h)], (2.23)
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R, =| 20*sh(ah) — ﬁ) ch(ah) + <—\/—E> ch(ah) - (E) («* + a?) sh(ah)].

(2.24)

The constants 4, (i = 1 to 4) in (2.19) to (2.24) are expressed in terms of A, and obtain,

. | o(h) = A, | (ch(oh) — ch(ah)) + R < [—ﬂ sh(ah) — sh(och)) } (2.25)
Du(h)= A, ~(sh(och) — ash(ah)) + Rch(ah) — o ch(och))} (2.26)
D3v(h)= A, —ozs sh(ah) — a®sh(ah)) + R(xa*ch(ah) — o ch(och)):l . (2.27)

The expression for the growth rate of instability of the interface given by eq. (2.17)
may be computed numerically for typical values of thickness h, viscosity ratio M, the
porous parameter D, and slip parameter Q. This aspect is given in the next section.

3. Numerical computation and discussion

Analytical expressions for the dispersion relation in the case of RT instability past
- a porous layer is obtained and several interesting conclusions are made.

In the limit of Q —» 0 and M — 1, the dispersion relation (2.17) tends to that given by
Brown [2]. This can be seen from the numerical results depicted in figure 2. For
different values of Q, M and h*, the dispersion relation (2.17) is numerically evaluated
and the results are shown in figure 3,4.

For hi* <1, M <1, D, <1 and Q <1, the growth rate n* is always positive for all
values of o* as can be seen in figure 3 (curves 1 and 2) exhibiting instability as in the case
of RT instability in the absence of porous medium, discussed by Brown [2]. For these
values of parameters although the magnitude of growth is one order less than that of
Brown [2], the slip at the porous media has a significant effect on the qualitative nature
of RT instability.

N ‘ ForD,=1, M =1, h* =1and Q < 1, n* is always positive having minimum value at
o* = (-5 and maxima at o* = 0-2 or 0:9 as seen in the figure 3 (curve 3). This oscillatory
nature of n* is due to the drag at the interface. The same behaviour is also true for
increasing values of h* and D »

~ Forh*>1,M=1,D,<1 and Q< 1, n* takes positive or negative values ie., the
interface is stable or unstable depending on the values of «* as is seen in figure 4
(curve 1). For an increase in both h* and M for D, < 1 and Q < 1, n*is positive for all a*
as shown in figure 3 (curve 4), indicating the instability.
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Figure 2. Plot of reduced growth n* vs. a*.
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Figure 3. Plot of reduced
factor.

growth rate vs. wave number, C is the convenient scaling
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Figure 4. Plot of reduced growth rate vs. wave number.

For h* =10, M =0-1, D, = 10 and Q < 1, the oscillatory behaviour of n* prevails for
some values of a* and is shown in figure 4 (curve 2). For a suitable thickness of the
porous layer the increase in the value of M make the system stable which was otherwise
unstable as seen in figure 4 (curve 3). \

From these numerical calculations we conclude that RT instability can be controlled
by controlling the thickness of the porous layer and the slip parameter (i.e. structure of
porous media). This can be effectively used in materials science processing.
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