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Double-diffusive magnetoconvection

N RUDRAIAH

uGce-psa Centre in Fluid Mechanics, Department of Mathematics, Central College, Bangalore
University, Bangalore 560 001

- Abstract. This review deals principally with the interaction between double-diffusive
convection and an externally imposed vertical magnetic field in a Boussinesq fluid. Both linear
and nonlinear (two and three-dimensional) theories have been discussed. Double-diffusive
magnetoconvection is shown to exhibit a rich variety of dynamical behaviour unimaginable in
a single component system and serves asa guide to the behaviour of all triple-diffusive systems.
Finally, the effects of cross-diffusion, rotation and chemical reaction on double-diffusive
magnetoconvection and pattern selection have been briefly touched upon.
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1. Introduction

1.1 Scope

Solar surface phenomena and the cosmical magnetic fields are generally associated with
turbulent motion, which may be driven by multicomponent convection. Late-type stars
like the sun have deep outer convective zones, where, in addition to the thermal and
compositional gradients, there exist gradients in magnetic field and/or rotation.
Multidiffusion effects may be expected as a result. The phenomena of overstability,
subcritical over-turning instability and fingering all have their counterparts in the
presence of gradients in angular momentum and magnetic field strength. The mixing
effect of these instabilities on the chemical composition of the star has important
consequences in our understanding of stellar convection.

The instabilities can occur either in the form of salt-finger or diffusive interfaces
(Turner 1979; Griffiths and Ruddick 1980, Huppert and Turner 1981, Rudraiah and
Shivakumara 1984, 1986a, b) depending on the values of the physical parameters. The
key parameters appearing in the equations are

T, = K /K, the ratio of mass diffusivity x, to the thermal diffusivity «, the ratio of
Ty = Vp/K, magnetic diffusivity v,, to x,
o = V/K, the ratio of kinematic viscosity v to x, which is the Prandtl number,
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_ a,gATd?

R;=———— the Rayleigh number which represents the balance of energy released
VK by buoyancy force and the energy dissipation by viscous and thermal
effects,
3
R, = %_gé_S_c_l__’ the solute analog of Ry,
VK
pH%d?

=20 s the Chandrasekhar number which represents the measure of
PmVVm  Lorentz force to viscous force,

where d is the depth of the fluid layer, AT and AS are respectively the temperature and
concentration differences between the boundaries and p,, is the density at the ambient
temperature.

In astrophysical context 7, is less than unity (see table 1) of order 0-6 (owing to the
radiative heat transport) and in the laboratory experiments or in the earth’s core it is
greater than unity and 7, isalwaysless than unity. The most significant double-diffusive
magnetoconvection phenomena 0CCUL, in general, under conditions that are barely
achievable in laboratory systems, notably when 7, and the magnetic Reynolds number
R,, (which equals o, gATd?/vvy, where we have used the characteristic velocity U
— a,gATd? v because the motion is mainly induced by buoyancy force) is so high that
the field is substantially distorted by the motion and the magnetic flux is swept into the
regions of converging flow in a convecting layer. However, when 1, is small (advection
competes with diffusion of magnetic flux) a whole range of new novel phenomena
(explained in §1.2) arise. It is with the basic processes that underlie these novel
phenomena that the study of the present review is largely concerned.

1.2 The basic principles and unusual phenomena of double-diffusive magnetoconvection

Copious literature concerning magnetoconvection in a single component system isnow
available (see Chandrasekhar 1961 for linear theory; Busse 1975; Peckover and Weiss
1978; Rudraiah 1981; Weiss 1981; Proctor and Weiss 1982 and Rudraiah et al 1985a, b
for nonlinear theory). The study of convection in a two and multicomponent fluid layer
where two scalar fields (such as heat and salinity concentration) affect the density
distribution, is comparatively new and has recently drawn the attention of astrophysic-
ists, geophysicists, oceanographers, engineers and a host of others (see Baines and Gill
1969; Turner 1974, 1979, 1981, Griffiths 1979a, b, c; Huppert and Turner 1981; Chen
and Johnson 1984). Their study, both theoretical and experimental, has stimulated

Table 1. Some typical values of the quantities
appearing in the dimensionless parameters.

Earth Sun
H, (Henry) 10* 10°
o (kgm™?) BT 10°
u(Hm™) 10-¢ 1076
d (m) 106 108
v (m? sec™ 1) 4x107° 103
Kk (m?sec™!) 1073 01 x 10*

v, (m*sec™ ") 033 % 10* 0-59 x 102

S——
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widespread interest to extend this concept to other fields. Therefore, much work has
also been done on double-diffusive convection in a porous medium because of its
natural occurrence and its applications in geophysics particularly in understanding the
groundwater pollution and heat lost to the ground below unlined solar ponds (see
Nield 1968; Wankat and Schowalter 1970; Taunton et al 1972; Tyvand 1980; Griffiths
1981; Rudraiah et al 1982a, b). _ ,

Most practical problems; be it astrophysical or geophysical, relate in some way or the
other to problems concerning the external constraints like rotation and/or magnetic
field operative on double-diffusive systems. In spite of its natural importance, much
work has not been done in this direction. Pearlstein (1982) was the first to study, in
detail, the effect of the Coriolis force on the double-diffusive convection and has shown
that the effect of rotation and bottom-heavy solute gradient renders the system
unstable under certain conditions. He has given the physical explanation based on the
frequency of oscillations for this unusual phenomena. Recently, Rudraiah et al (1986a)
have also shown the same unusual effect of the Coriolis force on the double-diffusive
convection in a sparsely-packed porous medium and a different physical explanation
than that of Pearlstein (1981) was given based on the phase-shift of dependent
variables. ,

The external constraint of magnetic field on double-diffusive convection has not
been given much attention. Lortz (1965) was the first to study the effect of magnetic field
on double-diffusive convection. His object was to clarify some of the mathematical
aspects of the so-called relative stability criterion of Malkus and Veronis (1958) but his
analysis is silent about the detailed study of stability analysis. In view of this, recently
Rudraiah and Shivakumara (1984, 1986a, b) and Shivakumara (1985) have investigated
both linear and nonlinear theory of this problem in detail. They have shown that the
magnetic field, under certain conditions makes the system unstable. They have also
investigated the effect of magnetic field on the physically preferred cell pattern.

In this review we shall be concerned with the more restricted problem of double-
diffusive convection in a Boussinesq electrically conducting fluid in the presence of an
imposed vertical magnetic field, called double-diffusive magnetoconvection. The
following are the main requirements for the occurrence of double-diffusive
magnetoconvection:

(i) the fluid should be electrically conducting and must have atleast two com-
ponents with different molecular diffusivities,
(ii) these components must make opposing contributions to the vertical density
gradient,
(iii) magnetic diffusivity must act as a third diffusing component.

When the density gradient of more than one diffusing property is important a whole
range of new phenomena can arise, and intuition that we have gained from the study of
free convection of a single component fluid can be misleading, for example:

(i) In a single component fluid we know that when density decreases with height,
the system is stable, whereas in a two-component system this is not always true. Even
the decrease in density with height makes the system unstable.

(i) Diffusion is generally a stabilizing factor in a single-component fluid. But in the
case of two-component system it can act to release the potential energy in the
component that is heaviest at the top and make the system unstable.
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The physical reason for the occurrence of the above two interesting phenomena is
clearly explained in the experiments of Stommel et al (1956) (see also the book by
Turner 1979 for details).

(ili). In a single component fluid the effect of external constraint of rotation or
magnetic field is to suppress convection. In a two-component system, it may augment or
suppress convection under certain conditions. It is interesting to know how the
otherwise stabilizing factors destabilize the system in two-component systems.

In addition to these three, recently Rudraiah and Shivakumara (1984) and
Shivakumara et al (1985) have observed the following unusual phenomena in the
presence of a magnetic field: o

(iv) When a third property with a different diffusivity (say magnetic diffusivity) is
added to the fluid, interesting things unimaginable in a two-component system, arise
about the nature of interface. For example, the addition of a more slowly diffusing
property to the bottom layer of a system that would otherwise have produced a ‘finger’
interface could cause a ‘diffusive’ interface. Similarly, addition of the same property to
the top layer of another system may change the resulting interface from a ‘diffusive’ to a
‘finger’ kind.

In this review we shall be concerned with providing a theoretical model to explain
these unusual phenomena. We deal with a more general system in the sense that the two'
components may be sucrose and sugar or may be a temperature and any solute in
addition to magnetic diffusion. The problem of double-diffusive magnetoconvection is
called thermohaline magnetoconvection when the two diffusive mechanisms are ther-
mal and solute. Our review is mainly concerned with the thermohaline magnetocon-
vection. We shall discuss at some length the development of both linear and nonlinear
thermohaline magnetoconvection with particular emphasis on the transition from
time-dependent to steady finite amplitude thermobhaline magnetoconvection.

Since the thermohaline convectioninan ordinary fluid has been extensively discussed
by many authors (see Turner 1974; Huppert and Turner 1981), this review is slanted
towards the more recent development of thermohaline magnetoconvection in bifur-
cation theory and in the application of power integral and truncated representation
techniques (which are asymptotic techniques). These techniques have made it possible
to describe the development of finite amplitude behaviour in the neighbourhood of
bifurcations from the static conducting state. Though we have a complete understand-
ing of the nonlinear magnetoconvection in a single-component system due to the
availability of larger and faster computers, the study of double-diffusive magnetocon-
vection is still in its infant stage. The available analytical and numerical techniques may
be used to elucidate the complex nonlinear behaviour of double-diffusive magnetocon-
vection, which is among the best examples of triple-diffusive convection where the
magnetic field acts as a third diffusing component. In this review we shall attempt to
provide a description of double-diffusive magnetoconvection in two and three-
dimensional geometries using analytical techniques.

The plan of the review is as follows. In §2, we derive the equations that govern |

Boussinesq double-diffusive magnetoconvection and discuss the boundary conditions
and the equations for two-dimensional motion. Section 3 is devoted to the study of
linear stability problem in detail. The two-dimensional finite amplitude double-
diffusive magnetoconvection is discussed in §4 using truncated model system,
considering both steady and unsteady cases. In §§5 to 7 we have studied the finite
amplitude steady double-diffusive magnetoconvection in two- and three-dimensional
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geometries using perturbation method. In the last section we briefly review the
extension of the analytical methods to include cross-diffusion, chemical reaction and
rotational effects.

2. Boussinesq double-diffusive magnetoconvection

2.1 The governing equations

Consider a horizontally stratified conducting Boussinesq binary fluid of depth d
subjected to uniform heating from below and cooling from above on which the
buoyancy force due to gravity, and the magnetic field act in the vertical direction. The
temperature and solute are given by I'=7T,, § =S, at z=0 and (T, —AT) and
(S,,—AS) at z=d. We break up the temperature and solute into two parts such that
T=T,—ATz/d+T(x,y,zt) and S =8, —ASz/d+S(x, y, z, t) where the first two
terms represent the conduction state and the last term is the convective state. We
introduce a Cartesian co-ordinate system with the z-axis pointing vertically upwards.
For convection in a Boussinesq fluid the velocity q, the magnetic field H, the
temperature T, the concentration S, the pressure P and the density p satisfy the
following dimensionless equations: :

é{%‘}-}-(q-V)q} = —VP+Qr,(H V)H+ (T Sk +V?q, (1)
G;— V2>T+ (@-V)T = Rrq-k, | (2)
<%—11V2>S+ (@'V)S = Rk, (3)
0

<51_'— Tzvz)H =V x (‘l X H): (4)

with V-q=V-H=0and p = pu{l —a,(T— T,,) + o, (S — S,)} where we have scaled
length with d, time with d?/k, velocity with x/d, magnetic field with H,, temperature
with vk/a,gd® and concentration with vk/a,gd> and the other symbols have their usual
meanings.

2.2 The boundary conditions

The boundary conditions are chosen to simplify the analysis and to fix our attention on
the effect of magnetic field and concentration on convection. We assume that the plane
surfaces between which the fluid is confined are stress-free and perfect conductors for
both heat and salt and they are maintained at constant temperature and concentration
so that temperature and concentration perturbations vanish at the boundaries. Also,
whenever a magnetic field is present one would match H to an external vacuum
(potential) field tending to H, as |z| — co (Chandrasekhar 1961). However, this
boundary condition is non-local and almost all work has followed Chandrasekhar in
using the boundary condition on magnetic field. So the boundary conditions are:

W=VW=0 atz=0,1, | (5
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T:S:O atz=0,1, (6)
Hxk=0 atz=0, 1, (7

where £ is the unit vector in the z-direction. This choice of boundary conditions has the
appealing consequence that the eigenfunctions of the linear stability problem remain
proportional to exp (inmz) with n an integer (Rayleigh 1916). Even in the nonlinear
regime the idealized free boundary conditions lead to solutions that are periodic in z
and seem appropriate in modelling stellar convection.

23 Two-dimensional‘conﬁguration

Equations (1)-(4) can be greatly simplified for highly symmetrical configurations. In
two-dimensional convection h -j = q-J = 0 and all physical quantities are assumed to
be independent of y ina Cartesian coordinate system (x, y, z). Then the solenoidal fields
q and h may be expressed in terms of a stream function ¥(x, z) and a flux function (y

- component of the vector potential) ¢(x, z) such that

N A
q“('az’o’ax)’ h‘( o O ax) ®)
Substituting (8) in (1)~(4) we may recast the equations in the following form
190 2\ 2/ = 0 2 ?__T: | os
(Eﬁt_v )V V=0ug (Vié)=Rrg o+ Reg,
+ (1/0)J (¥, V2Y) — Q2T (b, V29), 9)
d 2\, oy | |
(Ez—rzv )qs ===+ I ) | (10)
0 5 oY
- = -2 JW, T), 11
(at v)r LIRSy 1y
0 5 oy
(é—t——rlv )S— —é—;-i-.](\l/,S), ‘ (12)
where J (..,...)stands for the Jacobian. The idealized boundary conditions on q and
H may be written in terms of ¥, ¢, T and S as
>y ¢
w—é?—-T—S——i;—Oatz-O,l, (13)

while $(0, z) = ¢(1/a, z) = 0.

3. Linear stability analysis

3.1 The eigenvalue problem

The criterion for the onset of convection is obtained from the linear stability problem
by setting the Jacobian terms in (9)-(12) to zero. To examine the stability of (9)-(12)and
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keeping in view of the idealized free boundary conditions we look for the solutions of
the form

Y ~ exp (pt) sinmax sinznz; T, S ~ exp (pt) cos max sin nz;
¢ ~ exp (pt)sin max cosnz, (14)

where p is the growth rate, ma is the horizontal wavenumber and = is the vertical
wavenumber. Substituting (14) into (9)-(12) and considering R is a free parameter we
see that the eigenvalues (p = iw) satisfy the following equation

(1, k* + w?) k? [k"' w? LR, (12k* + %) k* + w?)

R,
* (%k‘* )

. RT (r2k4 ) ol

]+ iwk?N, (15)

with

=RS(TI—1) k2 [a+1+ 2R (1,—1) :l (16)

2k* + w?  na? ™ (13k* + 0?)

where k* = n?(a®> + 1). Since R, is a physical quantity it must be real, so that (16)
implies that either @ = 0 or N = 0. These conditions help us to study the bifurcation
phenomena.

3.2 Bifurcations from the static solutions

We first seek the condition for a simple bifurcation: & = 0. This is traditionally known
as an exchange of stabilities. From (15) @ = 0 when R, = RY, where

4 3 2(.,2
(2 +1° Qi +1) |
RY = Tl+ = - (17)

This shows that R is minimum for o = ., where «, satisfies the equation
208 + 30t = 1 +Q/r%. (18)

We see that (18) is the same as the one for single component fluid and is independent of
R, and 7, but «, increases with Q. As Q — oo, a2 = (Q/27*)*/3, and

R = (R(s) ) on?.
31

Thus for large Q the Lorentz force favour vertically-elongated cells with motion
predominantly along the field lines. Owing to the large value of «, lateral diffusion
becomes extremely effective.

For oscillatory (Hopf-bifurcation, w # 0) neutral solut1ons (15) requires N = 0,
which prov1des a dlspersmn relation of the form

where

2
A, = ’f_(E;_” (20)
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1 :
A, = n*a?Ry(t, — 1) +k® g—;—-) (12 +73)+ n2k*R,(t2 — 1), 1)
A, = w2 Ry(ty — 1)eik* +(£—:-—1—)1%T§k‘° +m?R, 3 (t, — KO 22)

One can observe that oscillatory solutions are possible even when these external
constraints are acting separately. Though (19) can give rise to more than one positive
root,in order to have two positiveroots, from Descarte’s rule of signs it is necessary that
A, <0and A; >0, from which it follows that ‘

0< E’%ﬂlﬁ < n’R,k? gﬁ;’@(H —1) (1 — 1),
2

which is equivalent to requiring that one of the conditions
T, <1, <1 or 7, > T3 > 1 (23a, b)

be satisfied. The important observation from this condition is that oscillatory motions
are possible even for 7, and 7, greater than unity unlike in the single-component
systems. The other important observations obtained for different combinations of
values of 7, and t, are given below.

Case (i) T, <1y >1

Important information about neutral curves are obtained in the Ry—a? plane by
locating the bifurcation points at which the steady and oscillatory neutral curves join
and are shown in figures la, b. Also the critical Rayleigh number, R, following
Rudraiah and Shivakumara (1986a), are obtained for ¢ = 7,7, = 001, 7, = 3 and are
shown in figure 2 and table 2. The Jowest locus in figure 2 is the case for @ = 0. We see
that R is a piecewise linear function of R,. At

. 277t e+ U

RE =3 ol-r) " L

the slope of the R7— R, plot changes, as does the preferred mode of instability. From
this figure it is also clear that the magnetic field inhibits the steady and oscillatory
motions to very nearly the same extent (see also table 2). By analogy of the Taylor-
Proudman theorem for conducting fluids the effect of magnetic field is to inhibit the
onset of stationary convection. But the oscillatory motion is even more strongly
inhibited is at first surprising.‘ This is because when R, = 0, oscillatory instability is
not possible if 15 > 1. Thus it seems logical thatina doubly-diffusive fluid with 7, > 1,
oscillatory doubly-diffusive instability will be prohibited at Chandrasekhar numbers
sufficiently large to dominate the flow. ' :

Case (i) 1, <1, <1

It is shown that bottom-heavy solute gradient destabilizes the system and this
destabilization manifests itself as a minimum in the R;— R, plot, as shown in figure 3.
From this figure it is clear that the destabilization is associated with an increase in
w,/k*, and as w7, /k* goes on increasing, bottom-heavy solute gradient again stabilizes
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Figure 1. Curves of neutral stability in the Rp-o® plane. (A) Q = 1000, 1, =032,
R, = —2000, 1, > 1. (B) Q = 1000, 1, = 032, 1, = 12, ¢ = 3-0; R, = 4000.

the fluid layer. This is because the diffusion of solute, for small values of 7, is so slow
that substantial changes in the bobbing frequency can be produced by changes in R,
that have little stabilizing effect via solute diffusion. Thus, the frequency can be ‘tuned’
by adjusting R,. If the frequency is too small, a bobbing parcel will always remain in
approximate thermal equilibrium with its environment. If the frequency is too high, no
significant heat transfer will occur into or out of the parcel in the first place. In either
extreme, the basic overstability mechanism is operating at less than optimal efficiency.
At some intermediate frequency, however, the maximum efficiency is achieved, and
overstable oscillations set in at a lower value of R, than is possible for larger or smaller
frequencies, i.e. there exists a cut-off frequency below which the system will be stable
and above which the system will be unstable. This is consistent with the result shown in
figure 3.

Case (iii) Ty > 1, <1

In this part of the parameters range it is observed that the effect of magnetic field is to
destabilize the system. This has been shown in figure 4. The existence of such a
minimum suggests that this destabilization by magnetic field may have a physical basis
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Figure 2. Variation of the critical Rayleigh number Ry with R,. The portion of each stabiliiy
boundary lying to the left of the discontinuity in slope corresponds to steady type (w = 0) while
to the right, the onset is oscillatory type (w? > 0).

similar to that of destabilizing effect of a ‘stable’ density gradient in certain convection
problems including the present problem when 1, < 7, < 1.
3.3 Stability boundaries

In this section we discuss the effect of magnetic field on double-diffusive instabilities
diagrammatically in the Rayleigh numbers plane. For this purpose we substitute (14)
into (9)-(12) and put p = iw. Subsequently, by separating the real and imaginary parts
and eliminating w? between them we get the following general second degree equation
in terms of Rayleigh numbers (see Rudraiah and Shivakumara 1984)

8172 + ayrl + azrl + agrrg+asrr, + agroty, + aqr
+‘a8rs +agr, +ay =0, | | (24)
where
a; = fi(t1, 13, 0), R,=0Q1,,(i=0t09)
(r, r) = (R, R)n*oa?/k® and r, = R,n?/k*,

are the normalized Rayleigh and Chandrasekhar numbers. Equation (24) represents

-
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Figure 3. Variation of Ryand wr,/k* with R,.
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Figure 4. Variation of Ry and wr,/k* with Q.
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different surfaces depending on the values of t, and 7,. For example, for t; > 0 and
1, < 1 it represents an hyperboloid denoted by 5. The plane surface of marginal
stability will be denoted by Z. The stability boundaries are drawn considering the
following two cases for different values of 0, 7, and 7, and are shown in figures 5 and 6.

Case (i) t, and 1, < 1

In astrophysical and in laboratory models the diffusivity ratios are not far from unity.
For example in KCl and NaCl, liquid sodium solutions in the laboratory have
diffusivity ratios not far from unity. Here we define the one more plane & given by

F="rg+Ty.

In these figures only the ‘relevant portions’ of the intersections of 2, # and & are
drawn. The relevant portions mean those which describe a change in the mode of
instability for the most unstable mode. Here #° is very closely approximated by its
planar asymptotes. The horizontally hatched regions give oscillatory modes and the
oblique hatching shows condition unstable to salt-fingers. From figure 5 it is clear that
the region of stability increases as @ increases and thus establishing the effect of
magnetic field is to inhibit the onset of convection.

24
7,=0-81, T=0.50

—Qq=10°
-—-Q=10

Unstable
direct mode

Figure 5. Stability boundaries for different values of Q, 7; and 7. Horizontally hatched
regions give overstable modes. Oblique hatched regions show conditions unstable to salt-
fingers.
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Case (i) 1, and 1, <1 (1,, 7, —0)
In this limit # approaches its asymptotes and the asymptotes themselves degeneréte
into a pair of planes given by '

@ L@+ 1) RCas 1)3
Rr=1— 1)(R,+rm7r S )t (25)
2 +1 3 2+1 3
R (RO ) E 29
and they satisfy the equations
2a6+3a4=1+——q—R [m? 2a6+3a4=1+(‘c1+12)“1£"—'. | 27
c+1 ™7 -

To depict the three-dimensional geometry more clearly the intersections of the surface
@ and & as functions of Q and 1, are defined and shown as dotted lines in figure 6. It

6
3
gD‘RTx 10

L

UCIPUIG TH SR W SR BN S

'

o}
P PP

ot e e e e far e

Figure 6. Stability boundaries for the most unstable mode when 7, = 001,06 =7,Q = 10“,4
1, = 00025 and Q = 10%,7, = 0-005 shown (dashed). Hatching and heavy lines have the same
meaning as in figure 5; lines are explained in the text.
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can be seen that J# is very closely approximated by (25) and (26). The point of
intersections of the asymptotes always lies to the right of 2. Then the lower asymptote
of # and plane # converges slowly to intersect at P. The almost vertical lines in the
third quadrant are the loci of P as Q and 1, are varied. We see that the effect of magnetic
field with a minimum 7, causes a large extension of the range of values of Ryand R, at
which overstable modes occur.

3.4 Effect of varying the .horizo'ntal wavenumber on stability

In the previous section we have discussed the stability boundaries considering the
situation that o varies with physical parameters. However, to gain more physical insight
it is advantageous to vary o by fixing the values of physical parameters and the same is
shown in figure 7. In this figure another plane surface % has been defined, which is the
locus of the intersections of # and 2 as a is allowed to vary, to the left of which no
wavelengths are overstable and only monotonic instability is possible. To explore the
effect of magnetic field further we consider a system which lies in the third quadrant of
- figure 7 and which always has dp/dz < 0. Then, the combined effect of temperature and
magnetic field is opposite to that of salinity. When the negative R; is sufficiently small
the system is stable. However, if negative R; is increased until the (R, —R;, R,)
coordinates cross J# then some wavelengths become overstable beginning at
a? = 4218, the mode which represents a balance between more efficient thermal

2.0
“PQ L/
= Wi
- /
o
1.0
D /
L j\ /[
J y—
/

Ll L [ R E—
\%W\SZW’O 2 . 4

NSNS Y7,
/

~ Stable

Figure 7. Stability bounds of double-diffusive magnetoconvection for Q = 104, 1,
= 00025, ¢ = 7 and 1; = 0-01. Both oscillatory and salt-finger modes are unstable in the
double hatched region.
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diffusive, viscous and ohmic damping. Although the oscillatory modes transport
components with greater diffusivity more rapidly, here they can transport more
concentration by molecular diffusion than the combined heat and magnetic field. If R

is more destabilizing and the magnetic field is stabilizing but weak so that the

conditions are just to the left of 2, the mode with wavenumber a? = 4218 grows
monotonically while other modes remain unstable. Now the constraining effects of
salinity gradient and magnetic field are large enough to overcome the potential energy
released by buoyancy force as well as viscous friction and at larger values all unstable
modes to the left of & are direct. In other words, overstable modes are not possible
when a sufficiently large combined salinity gradient and the magnetic field tends to
cause the net upward diffusive density flux through oscillatory disturbances.

3.5 Parametric differentiation method

In this section we have employed ideas on self-adjoint operators to study the problem
of steady, linear double-diffusive magnetoconvection. In particular use of such
operators helps in obtaining the behaviour of the critical Rayleigh number with respect
to R,, @ and boundary parameters without doing any numerical evaluation. The key
tool that helps in this analysis is the ability to forma self-adjoint operator with respect
to certain inner product. We employ a method which has been used by Narayanan
(1983, 1984), Shivakumara et al (1985), Rudraiah et al (1986a) and Rudraiah and
Shivakumara (1986a). The first order effects can be calculated using a modified Greens
matrix as the kernel of a matrix differential operator (see Friedman 1956).
For this purpose we write (9)-(12) in the following operator form

LV =0, (28)
where ‘ '
9* R,2D  —maR% TR,
L=\ R,2D — R,1,9* 0 0
= | —naR, 0 RS 0
naR 0 0 —-Ru%

Vi = [y, T,S] with D=0/0z and
@? = D* — ol

To visualize the variation of R% with R, we differentiate (27) with respect to R, and
obtain

LV =h, (29)
where

bt = [~ naS + R§noT, 0, 0, 0],

and~ represents the derivative with respect to R Defining an inner product in the
form

(a,b) = {,a* bd,

e R .
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we can easily show that L and the boundary conditions are self-adjoint. Here v is the
domain of the integral operator and asterisk represents complex conjugate. Thus
applying a Fredholm alternative condition to (29) we get

RS (4T do = (S do.

This yields the condition that Rf increases if R, increases. Equation (29) can be used
to solve for V and we thus obtain the first order effect of an increase in R; about some
known value (say). Similarly we can find out the effect of Q on R%. Finally we consider
the effect of boundary parameters on R$ because our earlier analysis is for the special
case of Biot and Sherwood numbers going to infinity. Proceeding as before one will get
after much algebraic manipulation

nocggj Y*Tdo = j —|T)* dv. (30)
RT v v

On using the energy equation we get from (30)
d
—(InR%) >0,
3Bi (In R7)

where Bi is a Biot number. Thus if R < 0 (such as heated from above) then RS will
decrease with an increase in Bi. In most cases we are concerned with the case of heating
from below and so the case of Bi — oo provides an upper bound on R$. Similar results
~ are true in the case of Sherwood number.

4. Two-dimensional double-diffusive magnetoconvection in a truncated model

In recent years (see Da Costa et al 1981; Knobloch and Weiss 1983 and references
therein) considerable interest has been evinced in nonlinear fluid dynamical problems
that exhibit a transition from periodic oscillations to behaviour that is apparently
chaotic. In particular much attention has been focussed on systems in which a sequence
of periodic-doubling bifurcations is followed by aperiodic oscillations. Knobloch and
Weiss (1983) examined the behaviour of one such system, considering a model of
magnetoconvection in a single-component fluid. Recently, Rudraiah and Shivakumara
(1986a) explored the behaviour of one such system, derived as a model of double-
diffusive magnetoconvection in the presence of an imposed vertical magnetic field: With
the available computer facilities in Bangalore, it was not possible for them to solve the
full nonlinear partial differential equations (1) to (4) with sufficient accuracy to
determine whether such a sequence of bifurcations actually occurs for thermohaline
magnetoconvection. Therefore, instead of dealing with the full problem, Rudraiah and
Shivakumara (1986a) studied the two-dimensional problem using a truncated model
approach put forward by Veronis (1966). They solved this model problem, consisting of
seven coupled nonlinear ordinary differential equations, by a combination of analytical
and numerical techniques. In this section we briefly review this problem.




250 N Rudraiah

4.1 Finite amplitude analysis with limited representation

A minimal system which describes finite amplitude convection is taken as

Y = A(t) sin mox sin 7z, a (31)
T = B(t) cos mox sin 2z + C(t) sin 27z, (32)
S = D() cos mox sin 7z + E(t) sin 27z, (33)
¢ = F(t)sin mox cos nz + G(f) sin 2max, (34)

where the amplitudes 4 to G are functions of time and are to be determined by the
dynamics of the system. Substituting (31)-(34) into (9)-(12) and equating the
coefficients of like terms we get the following generalized Lorenz model:

2
’f.d_d/ti — —k*A — R, («* + 1)F —maR B+ maR, D + n*R,a(30* — 1)FG,
)
(35)
dB/dt = — k*B — naA —n*aAC, ’ (36)
- 20AB
dC/dt = —4m2C += ‘2 , (37)
dD/dt = —1,k*D — noed — n*aAE, (38)
20AD |
dE/dt = —dn?t, B+ “2 : (39)
dF/dt = —1,k?F + 14 +1%0AG, (40)
2 AF .
dG/dt = —-4752a2'ch—n o; . (41)

This seventh order model of dduble-diffusive magnetoconvection provides, as in the
case of single component magnetoconvection (Knobloch and Weiss 1983) and double-
diffusive convection (Huppert and Moore 1976, Da Costa et al 1981), a good example
whose solutions are qualitatively similar to those of the partial differential equations
from which they are derived.

42 Steady finite amplitude convection

For steady case (8/0t = 0), the above set of equations reduce to algebraic equations.
After eliminating all amplitudes, except 4, yields

&) )= 5) =) (7)

kl 3 A2 k2 4
+('n—2";‘2‘) Cy (“8“>+T%T%d4 <;;f“x‘2‘) 63] = O, (42)

g sa

s

e

W
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where

¢ = fi(a, @, Ry, Ry, 14, 72, G), (i=0to 3).

By solving (42) we can find the amplitude. Once we know the amplitude the heat and
mass transport can be calculated by the relations

Nu = Hd/kAT = 1-2=nC, (43)
and

Nu, = 1-2nE. | (44)
The results obtained for certaivn physical parameters are shown in figure 8. It is clear
that the effect of magnetic field is to reduce the heat and mass transport.
4.3 Oscillatory finite amplitude convection by numerical experiments

In this section, the behaviour of nonlinear periodic solutions is investigated more
generally by integrating (35)-(41) numerically using Runge-Kutta-Gill method satisfy-
ing the following initial conditions: '

A=01,B=1,C=0,D=1,E=0,F=1and G =0, (45)

We observe that the system possesses-an important symmetry, for it is invariant under
the transformation

(A., B, Ca D’ E’ F’ G)—'(—A’ _B’ Cs _Da Ea _F: G)

Also, the equations describe a contraction mapping in the seven-dimension space
because -

0A 0B oC oD OE OF oG

EZ a_B+6_C— 55+5—E-+6—F'+'6—G- <‘0,

=032, Q=5x103 (a)
3.0

1-0

Ry x 1G°

Figure 8. . Nuand Nu,vs Rder R, = 10* at two values of 1,. (a) 1, = 0-5and (b) 7, = 0-25.
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(b)

0 | | | |

0-08 016
(1) ‘

Figure 9. Variation of Nusselt number with time () for a Q= 102, R, =104,
—Ry/RG=2,1,=032, 1= 05and ¢ =02, b R,=10%1,=032,1;= 05,6 =02
and Ry = 4R§.

where the dots denote derivatives w.r.t. time t. From the above argument it implies that
the trajectories may be attracted to fixed points, to limit cycles or possibly, to a strange
attractor.

The results obtained from this numerical study are depicted in figures 9aand 9b.Itis
found that the steady state reaches via a transient state and an increase in the Rayleigh
number is to make the system more unsteady. Also our numerical study compares well
with the corresponding steady state analytical results of the previous section. From
figure 9b, it is clear that the effect of magnetic field is to dampen the oscillations and to
reduce the heat transport.

5. Finite amplitude steady convection by perturbation theory

The analysis studied in the previous section is only two-dimensional and no attempt
was made to determine the quantitative results for general representation with different
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cell pattern. Therefore, in this section we determine the finite amplitude solutions and in
turn the preferred cell pattern considering both two- and three-dimensional motions
using the perturbation technique of Malkus (see Malkus and Veronis 1958; Rudraiah
1981; Rudraiah and Shivakumara 1986b).

5.1 Perturbation equations

It is known that in the neighbourhood of the simple bifurcation at R there exists non-
trivial steady solutions corresponding to finite-amplitude convection. The linear theory
presented earlier does not, however, tell us whether these solutions will be stable. We
therefore introduce a small parameter ¢ such that any dependent variable can be
expressed as perturbation series of the form say

f=efo+efi+3H+ ...,
and Rr=RY +eRp+&*Rp,+ .. ., (46)

where Ry, are integral functions of W, T}, S; and h; (Malkus and Veronis 1958; Veronis
1959). At each stage in the expansion we may define a column vector

A, =[W,T,S,, h,n, &l %))

where n = (0v/dx) — (0u/dy) and ¢ = (0h,/0x)—(Oh,/0y) are the z-component of
vorticity and current density. If we substitute (46) into (1)-(4) then at leading order in ¢
the equations are linear and can be written in the compact form

LA, =0, : (48)
where
- -
L 0 0 0 0 0
—RY -V 0 0 0 0
—R, /1, 0 -V? 0 0 0
1
g=|-L2 -V 0 o |,
1,0z
0 0 0 0 L, 0
0 0 0 0 . E —V?
0z
with

L, = 1112V4{V6 —(RY —R/t,)V? —% V2 — 62/522},
. 2
2 _Rn O
T, 0z%°

L2=V
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To second order in ¢ we obtain

~ 11, R o -
Tltzv‘t(RT'V%VVO '—V2< - —R,, Voo)'- V%(Ioo "Hoo)'———vz—— Vi
a Ty 0z
RTx‘/VO '"Ioo
— 1 yo/7,
|
LA = "—{Vloo}
R 6 X ,
2
1
—{VI o —1X 0} |
L Ty ) _

Similarly, the higher order equations may be obtained where I-IX represent
nonlinear terms and A, (n = 0, 1, 2) differs for different planforms.

6. Analysis for two-dimensional motion with free surfaces

In this case we assume that all the dependent variables are independent of the y-
coordinate. Though the two-dimensional motion is an approximation, it represents a
simple type of motion with minimum mathematics.

6.1 Finite amplitude solution for rolls

The solution to the stability problem (48) is given by

A, =2 [cosmax sinnz, R, cosmax sinnz, T, Ry cosmox sinnz,

(1) (e + 1)) cos max cos nz, — (1/a)sin wax cos nz, O,

(1) ymoe(2? + 1) sin wox sin 7z, 0]". (49)
where (Ry, R¥) = (R, Ry/t?)/n*(«* + 1) and the values of R{ and «, corresponding to
a given value of Q are given by (17) and (18) respectively. The equations for higher order
approximations are non-homogeneous and the solutions of these equations pose a
problem because of the presence of resonance and secular terms. So R,are evaluated in
such a way that they eliminate the resonant inhomogeneous terms. Also the expansion

procedure that we have used here show that w;(i > 0) must be orthogonal to w, but need
not be mutually orthogonal. This procedure leads to

- CoS2mox !
A, =10,00 5,000, Ry =0.
1 [ 2ol (a? + 1) 0 O] and Ry, =0

Proceeding like this we get the first finite amplitude result as

1 R, 2(«*—1R R (12 —1)
Ry, = —=| 722 + 1)+ ~=+ m At~ 50
T2 22 I:n (@ +1) +<'L’2 riaz(a2+l)>:l+2r§n2(a2+l) (50)

This equation for a single component fluid (R, = 0) agrees with Weiss (1981a) except for

Y
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Table 3. Valuesof Q7 with Ry = 10*,

7, R, (x 10%) or
— 0 604-26
0-32 1 378-03
032 2 167-29
0-81 1 513-57
0-81 2 424-53

a change in the multiplication factor due to the different normalization employed in the
two cases. This expression also shows that Ry, may be either positive or negative
depending on the values of ,, a?, R,, Q and 7, and hence subcritical motions are
possible for certain values of parameters and for other values supercritical motions are
possible.

It is of interest to study the effect of increase in Q while Ryand R_ are held fixed. We
see that for fixed values of Ry and R, convection sets in when

RT—Rs 2 2
e (51)

provided o = a, satisfies the equation

o = {E_RL—_R_S/EL)}”S__L (52)

2nt

Table 3 gives the value of QT for two values of R, and 7,.

For a single-component system the value of Qr, coincides with the value of Weiss
(1981b).

7. Analysis for three-dimensional motion with free surfaces

The iterative method used in the previous section to study the local nonlinear stability
of this problem is now extended to three-dimensional motion, with the object of
determining the preferred cell pattern. This is investigated in this section by considering
general rectangle (i.e. square cells and limiting rectangles) and hexagonal planforms.

7.1 Finite amplitude solution for general rectangular cells

The solution to the stability problem (48) is given by

A= 2\/ 2 [cosnix cos mmy sin 1z, R, cos wlx cos mmy sin 7z,
T,R} cosnlx coswmy sinnz, {1/t m(a® + 1)} x
cos tlx cos mmy cos nz, — (l/a?) sin nlx cos wmy cos nz,
— (m/«*) cos nlx sin wmy cos nz, I/{t,ma?(o?
+ 1) sin ntlx cos Tmy sin nz, m/{t,na* (o

+ 1)} cos nlx cos mmy cos nz]’, (53)
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* where 2+ m?+«? and 2\/ 2 is the normalization constant. Proceedmg as before we

obtain Rz, = 0 and Ry, can be obtained in the form
n
Ry, = 3(Ro —R¥/vy) ”‘ﬂf{mz(lh —c)+ (b, —cy)}

n? {Rm/zg (@2 + 1)2}
n

2 4(m 2a, +1%a,) -

R, (*+1) (m?a, [a, 502 —1
2t20* {12 +1 m?+1 + nty(e? +1)% §° G4
where
27,2 1 R 2 i 1
8ﬂ312m2a-2[RO__R8:+41—2(12+1){75 (fx0+ )+ m(“ T':‘ ) }:]
ay(l,m) = - ;

6478 (1> +1)* + 16R,m* (I + 1)/, —4n*I>(RY — R J1,) !

R®a,(l,m)—2R m*a"*n

byl m) = 4n2(12 +1) ’

R, (I, m)/t, —2REmm?e 2

ci(hm) = 4P+ 1)

ay(l, m) = a;(m, 1), by(I, m) = by(m, 1) and c,(I, m) = c,(m, I). Since (54) is a function of
Q. 72, R, T, and I/m, we have infinite set of values. Here we restrict our attention to the
values of parameters which are the same as that of rolls. However, [/m cannot be chosen
arbitrarily. Rudraiah (1981) has shown how to select its proper value using the relative
stability criterion. We choose such values in computing R, and the heat and mass
transport.

7.2 Finite amplitude solution for hexagondl cells

In this section we study convection by hexagonal cell pattern which has one additional
degree of freedom compared to the general rectangular cell patterns discussed in the
previous section. The complete solution to the first order problem is given by

2
Ap=—= |:¢1 sinnz, Ry, sinnz, R§, sinnz, 1/{t,n(e® +1)} ¢, cosnz

NE

\/-/oz ) sin (ﬁL )cos (;2 y) cosnz —(1/a)¢, cosnz,

ﬁ/{tzmx(az + 1)} sin (ng )cos (32L ) sin nz,
ummw+m]

2n 2n 4n
= 208 il Bhiad
B (ﬁLx)cos(3Ly>+cos<3Ly>,

where

Sy

]
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2n . [2n 4n
= COS| ——— — in{ —
oG ) (5)
and L = 4/3a is the non-dimensional length of one side of the hexagon. As before we
found that Ry = 0 and Ry, is evaluated and is given by

~

3n
Ry, =} (Ro—RE/e,)+ 7 (D3 =D)) +7 (Ds = D))

> ' - 3D, 3nR,,
4na’c  4ri0*R,

(D, +Dy,), (55)

where
Di =./;(as Ty, Ty, Qs Rs) (1 =1to 5)

The convective heat and mass transport is calculated and discussed in the next section.

8. Convective heat and mass transport

To know explicitly the effects of magnetic field and salinity gradient on heat and mass
transfer, it is of interest to study the heat and mass transfer measured by the Nusselt
numbers for heat (Nu) and solute (Nu,) defined by

Nu = 1+ (1/R7) {Wr}m,

(56)
Nu, = 1+ (1/R,) {W,} m-
In this equation, the second term represents convective heat and mass transport. To the
g2-approximation

Nu=1+39 (1 _R®/Rp,
Ry,

(57)

R, (Ry
i No,= L s (1)
. R \RP )

We sce that the convective heat and mass transfer vary inversely as Ry, and the values
calculated for different planforms are tabulated in tables 4, 5 and 6 for some values and
for other values curves are drawn. From these tables we arrived at the following general
conclusions: -

(i) The value of the heat transport for limiting rectangles differs markedly from that
of rolls. This discrepancy may be due to the fact that the rectangles are normalized
differently from the rolls.

(i) A definite qualitative result can be made out from the heat transport of mercury
w where we see that finite amplitude instability cannot occur throughout the range of Q
considered for R, = 10* and 7, = 0-81.

(i) Another interesting result is that the convective heat transport for both the
square cells (I/m = 1) and limiting rectangles (I/m = c0) approach asymptotic values for
large Q and , > 0-8. The asymptotic value for square cells is equal to the value for rolls.
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Figure 10 clearly depicts the preferred cell pattern for different values of Q, R, (= 10%),
72 (= 025,0'5)for a fixed value of 7, = 0-81. From these figures we note that Nu, > Nu
always. The oscillatory nature of heat and mass transport may be due to the existence of
finite amplitude overstable motion. Figure 11 is a plot of convective heat and mass
transport against the values of I/m and it is found that there is a sudden increase in heat
and mass transport for values of I/m < 0-6 and remain uniform for values of I/m = 06.

Finally, we claim that it is possible to prevent convection altogether by a proper
choice of the parameters. One such case is considered and the results are shown in table
7 for rolls. From this table it is clear that for Q = 7317 x 10* convection can be
prevented altogether. The velocity and magnetic stream functions are drawn in figures
12a and 12b and we see that the effect of magnetic field is to contract the cells.

1.4
B (05,10%)
Ty=032
= —=-= T, =0.81
~ (0-25,10%
: (05, 105)
. 4
=== 4 (0-5,10%)
J (025.104) /(01,10 )
= A . S5 . a4y
! I | 1 | T - 23021.04000) )
0.2 06 10 0 0.4 08

L/m

Figure 11. Heat and mass transport for the general rectangle at several pairs of values of
(2, Q) for R, = 10%,

Table 7. Nusselt number for different
values of Q for R, = 1000, 7, = 0-32, ,
= 025 and Ry = 8-0E +05.

Q Nu
4-0E + 02 2-894
8-0E + 02 ' 1-748
1-0E +- 03 1-653
2:0E+03 1-518
4-0E + 03 1-475
80E +03 1-460
1-0E + 04 1-455
2:0E + 04 1-416
40E + 04 1-288

7317E +04 1-000
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Figure 12a. Velocity stream function for R, = 10%, 7, = 0-32.
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Figure 12b. Magnetic stream function for R = 10% and 7, = 0-32.

9. Further results

9.1 Double-diffusive magnetoconvection caused by coupled molecular diffusion

The systematic study of the effect of cross-diffusion on double-diffusive magneto-
convection constitutes a comparatively recent development (Rudraiah et al 1986b) in
theoretical fluid mechanics with applications in astrophysics and geophysics. In
ordinary viscous flow, the linear stability of double-diffusive convection with two cross-
diffusion flux terms has been investigated by McDougall (1983). He showed, with a
sufficiently large coupled diffusion effect, that either the ‘finger’ or diffusive ‘modes
of double diffusive convection may occur even when both components make the fluids’
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density gradient statically stable. Kerr (1984) studied the nonlinear double-diffusive
convection by including two cross-diffusion flux terms subject to a finite-amplitude
perturbation using minimal representation of modal analysis. He showed that finite
amplitude double-diffusive convection can occur in a fluid where both property
gradients are stabilizing for relatively small and negative values of the cross-diffusion
coefficients. Recently, Rudraiah et al (1986b) have extended the linear and nonlinear
stability analysis of double-diffusive magnetoconvection (Rudraiah and Shivakumara
1984, 1986a) by including two cross-diffusion flux terms. To discuss the stability
Rudraiah et al (1986b) used the usual stress-free boundary conditions. The stability
analysis for this problem is reminiscent of that described in the previous sections.

9.2 Double-diffusive magnetoconvection in liquid mixtures with “fast” chemical reaction

The problem of reactive liquid mixtures evolved around the same time as the cross-
diffusion problem mentioned in §9.1. The hydrodynamic convective instability of
double diffusive liquids with chemical reaction was studied by Gitterman and Steinberg
(1983). They introduced two essential approximations to isolate the influence of a
chemical reaction on the hydrodynamic stability and to obtain an analytical solution.
First, they neglect the effect of thermal diffusion (Soret effect) since its influence on the
stability is usually much smaller than that of a chemical reaction. Second, they assume
the approximation of “fast” chemical reaction. This means that the chemical reaction is
fast compared with the diffusion rate. They obtained, based on the above two
approximations, numerical estimates for both stationary and oscillatory instabilities.
However, their work is silent about the possibility of subcritical instability.

Rudraiah and his co-workers are presently engaged in studying the hydromagnetic
convective instability of double diffusive liquids with fast chemical reaction. The results
of this problem have potential applications in astrophysics and geophysics in addition
to technological applications, but the study of this problem lies beyond the scope of this
review.

9.3 Rotation

Rotation is known to have profound effects in fluid mechanics. Geophysical flows are
strongly influenced by the earth’s rotation (Q ~ 10~* sec™!). Similarly astrophysical
flows in the sun (Q ~ 107 °sec™ ), and in crab pulsar (Q ~ 10?sec™!) are also
influenced by the Coriolis force. The double-diffusive convective flows are stabilized or
destabilized by the introduction of rotation. These effects on double-diffusive
convection in the presence of magnetic field are described by Rudraiah et al (1986a).
Since turbulence is created by instability it is strongly affected by the combined system
of rotation and magnétic field. Recently, Rudraiah and Shivakumara (1986¢) have
studied the combined effects of rotation and magnetic field on double-diffusive
magnetoconvection. They have shown that the combined effect of rotation and
magnetic field with bottom-heavy solute gradient renders the system unstable under
certain conditions. The detailed linear and nonlinear study of this problem has been
made recently by Shivakumara (1985) and it is beyond the scope of this review.

9.4 Pattern selection

The double-diffusive magnetoconvection discussed in this review provides one of the
best studied examples of nonlinear pattern selection. Although the critical wavenumber
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depends purely on the magnetic field, both Q and R, influence the pattern selection. For
small temperature differences, measured by Ry, heat and mass are transported by
molecular conduction. As Ry is increased the conduction state loses stability and the
effect of Q and R, is to inhibit it. At Ry = R, the point of neutral stability, the linear
stability problem admits several different planforms like rolls, square and hexagons.
For supercritical values of Rythe amplitude of each planform grows exponentially until
the nonlinear effects become important and the effect of magnetic field is to suppress
the amplitude. The nonlinear terms are responsible for selecting one of the planforms
depending on symmetry of the problem.

In the case of a single component Boussinesq fluid in the absence of magnetic field if
the boundary conditions are the same at the top and bottom surfaces and the basic
temperature gradient is uniform Schliiter et al (1965) predicted that in a large aspect
ratio container rolls are the preferred cell pattern. However, in the case of double-
diffusive magnetoconvection Rudraiah and Shivakumara (1986b) (see §7.2) have
shown using perturbation technique that the hexagons are the preferred cell pattern for
certain ranges of the parameters involved. Although this perturbation method yielded
many interesting and valuable results it suffers from two disadvantages; First, it does
not take full advantage of various symmetries of the problem. Second, perturbation
expansions carried out to some order and the higher order terms are neglected without
adequate justification. The basic question here is, what order expansion must be taken
if the addition of higher order terms is not to change any qualitative aspects of the
dynamics. Results of this kind are called structural stability results. The proof of
structural stability is almost impossible. Recently, Golubitsky et al (1985) studied the
preferred cell pattern in the Rayleigh Bénard convection in the absence of magnetic
field by means of group theory. It is, therefore, advantageous to study the pattern
selection in a double-diffusive magnetoconvection by means of either singularity theory
or group theory. Work in this direction is in progress.
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