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Abstract. Natural convection through a vertical porous stratum is investigated
both analytically and numerically. Analytical solutions are obtained using a
perturbation method valid for small values of buoyancy parameter N and the
numerical solutions are obtained using Runge-Kutta-Gill method. It is shown
that analytical solutions are valid for N< 1 and several features of the cffect of
large valucs of N are reported. The combined effects of increase in the values of
temperature difference between the plates and the permeability parameter on velo-
city, temperature, mass flow rate and the rate of heat transfer arc reporicd. It
is shown that higher temperature difference is required to achieve the mass flow
rate in a porous medium equivalent to that of viscous flow.

Keywords. Oberbeck convection; vertical porous stratum ; Runge-Kutta-Gill
method ; buoyancy parameter.

1. Introduaction

Density differcncesin fluid saturated vertical porous medium, interacting with the
gravitational field, produces an immense diversity of buoyancy forces and flow
configurations in nature and in process of technology; particularly in petrolcum
and ch>mical industries. It is also of interest in geohydrology where the flow
pattern in heated ground water possesses features of a vertical convection column
into wkich cold ground water is being entrained (see Wooding [7]).

Tte study of motion of ground water is usually based on the Darcy law [2]in
which the macroscopic length scale of a system is so large that the diffusion effects
are neglected. However, in zones of mixing between fluids at different tempera-
tures the diffusion effects are significant since the gradients of fluid properties are
large. In thase zones, the nature of fluid motion is such that boundary layer
approximations are valid and the usual potential nature of Darcy cquation iS not
valid. An exact mathematical model to account for the boundary layer aspect
in a porous medium is not yet available to our knowledge. To a first approxi-
mation, however, we can use the Brinkman model (Rudraiah and Nagaraj [5]).
Plows obeying Brinkman model might be found in geothermal areas or might arise
from the heat generated by deep explosions in saturated ground.
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Therefore, recently Rudraiah and Nagaraj [5] have investigated natural convee-
tion in a vertical porous stratum using the Brinkman [1] model and maintaining
the boundarics at the same temperature. However, in many practical problems
cited above one usually encounters the Oberbeck type of convection (maintaining
the temperature gradientin a direction normal to gravity) for which the boundarics
have to be maintained at different temperatures; viz., one is maintained at o higher
temperaturc than the other. This. Oberbeck problem, in the usual viscous case
(that is absence of a porous medium), has been extensively studied (see Gebhart
[3]) but much attention has not been given in the casc of a porous medium.
Recently, Rudraiah and Nagaraj [5] have obtained analytical solutions in a vertical
porous layer using a regular perturbation technique which are true only for small
values of buoyancy parameter &, Ttis ofinterest to know up to what vilucs of
N the analytical solutions are valid. These aspeets are investigated in this paper
using the following plan of work.

The Brinkman cquations and the corresponding boundary conditions are givin
in §2. Analytical solutions for small values of the buoyancy parameter /N are
obtained in §3. To know up to what values of & the analytical solutions are valid,
the basic cquations arc numerically inlegrated in §4, using Runge -Kutta-Gill
method for wide range of valucs of M. The cllect of permeability and buoyancy
parameter Non the skin friction and rate of heat transter arc also cale uluted.
Th> results are discussed in §5. Ttis shown that the analytical solutions are valid
for values of N < 1.

2. Basic eqaations

The physical model, shown in figure 1, consists of vertical porous stratum bounded
by two rigid plates at y = + b with x-axXis in the axial direction and y-axis per-
pendicular to the plates. We assume that steady Boussinesq fluid percolating
through a homogeneous isotropic porous medium in the x-direction end physical
quantities vary with 1¢spect to p. Buoyancy forces, duc to density differunce,
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Figure 1. Physical configuration of flow.
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cause the fluid to flow upwards through the channel. For this flow, the basic
equations of motion, following Rudrajah and Nagaraj [5], are

cdPu _u gB( (T -Fo)

dy* k 0, @)
d*T L Aoy (du PoV "
e cl)) T =0 | 2)
p=pll = B(T - Ty, | 3)

where w is th: velocity component in the x-direction, T the temperature, 7T the
ambient temperature at p = p,, p the density of the fluid, v the kinematic
viscosity, K th: thermal conductivity, k the permeability of a porous medium
and # the coefficient of thermal expansion. These equations arc solved using
the boundary conditions

u=0aty= 5, 4
T=T,aty=—b. (6

The boundary condition on velocity reprecsents the noslip condition and that on
temperature points to the fact that ths plates are isothermally maintained at diffe-
renttemperatures 7; and T, (T3 > T3). Equations (1) and (2), usingthe dimension-
less quantities
' T - T, % :

-, ¥ = 7
=T, T ey ”
and for simplicity neglecting the asterisk (*), become

d*u

» 0=<

SRS

y* =

dy* —ofu+0=0, (8)
20 duNE '
c_[j’}”..!" 4 N <([y> 4+ Ne*u® =0, (9)

where
¢ = b/ Jk is the pcrmeability parameter and

pogP0t (T — Ty .

is the buoyancy parameter,
vK

N =

Since the flow is caused by the buoyancy force, the velocity is made dimensionless
using this force. The corresponding boundary conditions arc

u=0 at y= %1, (10)

0=1 at y=1, (L1)

G=1+8 at y= -1, 12)
where

g=L-T

T, — T," | (13)
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At first sight it appears reasonable to ignore the dissipative cffects in (9). How-
ever, the propagation of wavesin a porous medium has small free decay time and
hence considerable dissipative effects. Thus the accurate description of flow in a
porous medium mustinclude dissipative cftects, Therefore (8) and (9) are coupled
non-linear equations becausc of the dissipation term which must be solved simul-
taneously to yield the desired velocity and temperature profiles. Duc to the
non-linearity, analytical solutions of these equations arc difficult. However if N
is small such solutions, following Rudraiah and Nagaraj [5], can be obtained using
a regular perturbation technique. This is done in §3, with the motive of under-
standing the dissipative effects on the flow. To know the validity of these solu-
tions and to find the cffects of large N on the flow, (8) and (9) are solved

pumerically in § 4.

3. Analytical solutions

When the buoyancy parameter N is very small we look for colutions of (8) and (9)
in the form
u =ty + Nuy + Noug + ..o, (14)
0 =0, + Ny + N0y + .. ., (15

where zero subscript quantitics are the solutions for the case N = 0, which repre-
sents physically the solutions in the absence of viscous and Darey dissipations and
Uy, Uy. .., 0y, 0. .. represents the perturbation quantitics relating to 1 and t,.
Substituting (14) and (13) into (8)+(12) and equating the cocfficients of the like
powers of N to zero we get the following set of equations.

}
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Figure 2. Velocity profiles for various § (when dissipations are neglected).
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Figure 3. Velocity profiles for various o (when dissipations are neglected).
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Figure 4. Temperature profiles (when dissipations are meglect:d).

Zzroth order equations

du R
—d—vg‘?-a“uo+ 00=0,

First order equations

d2
713)%—‘ ~c*uy + 0, =0,

d*9, (filio s
g -+ dy) +a*ud =0,

(16)

an

(18)
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The corrasponding boundary conditions are
y=0 at y=+1,
00 = l Ilt 1’ = + ln

»

(20
()

f,=1+8 aty=—1, (2N

and w=0,=0aty=+1,7i=12,... ()

The solutions of (16) and (17) using the boundary conditions (M-(274 are

= 1 - coshoy 0 [sinha v _coshe oy el (1)
" T e, cosho 3o*| sinhe coshe |
0y =1 +g (L -1 {25}
In the limit o —» 0, (24) tends to
l 2 ﬁ ," ;2 + b ]
U, = 5[1. -] + 15 [ =30 =y 43 {20}

which is the velocity distribution in thechannel in the absenve of porous mate-
rial, called viscous flow solutions. When § — 0 that ts when the plates are mamn-
tained at the same temperature (24) and (25) reduce to those given by Rudnoeh
and Nagaraj [5]. The second term on the right hand side of (243 and (25) are
the contributions from maintaining the plates at  different temperatures,
Equatlons (24) and (25) are computed for different values of # and o which ure
shown in figures 2-4 and the results are discussed in §5.
The solutions of (18) and (L9), using the boundary conditions (23), are

u = fi(o )coshav _[» sinhey _ coshlaoy ¥
T cosha > eoshe L2e%cosh®a T et
. - coshey . siphey
— [ao(o) + 62| fslo v 4 '
J2(0) [f"( eoshe T e
9 {coth 26  coshlep  y(lL — 3 2)fcoshay wmhm«'}
46*| 3¢®  sinh2e o simhe coshoa
+ 3_}" ':smhav __coshay sinh 2oy oyl
26% | sinhe ~ cosheo Iotsinh2e 13 1§
(6% + 2) 2y 1 n - sy
+ = 2 L 5= _ﬁ} V8| 7, m)umhrﬂ
g ¢ cosha
sinh o ] N : “iphav
~2f @)% y:l+ ..... {“‘»‘s“‘“‘:)s}l 20y ysinha)
sinh o L2 cosh? o o cosha
+ o sinhoy v . coshay L sinh2ev 3y cosheyr '
4  cosh 20 2 ginh 26 '
g cosha o sinhe  66% sinh2e | da? cosho
3 (y orch e
R + fa@L= SR
cosho
sinheoy
+ ' | 47
fi(a )l:smha' )] ’ N
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_ 2 _coshay _ 1 cosh2ey %
0 = oo Soshe” @ Goshie g T80
6% [ cosh2¢ sinh2ey | 2 sinhey
— (* ,) ) — v — —— b e
4 l:n“smh )¢ cosh 20 6* sinh 20 (l })sinhd
_2 (1 — P)_c?o,shm‘ 4 2 (coshay _sinhoyy  *
a? "7 coshe @ \ sinhe¢  cosho 12
— }" sinhgy (‘O,Sh a})
3 62\ sinh¢ coshe
_ sinh2oyp cosh 2ay y coshay 1 sinhay
2a%sinh2a @ do®cosh’o | o?cosho  odcosho
H .
A R AR (8)
where
] _ 3 _ tanhe cosh2o
f10) = g + % 3g%coshic’
3 cosh 2o 1
f2() T 6% 4 coshie 20t
__coth®?2¢  cothe  tanhe , 2 1 7
£o@ =g~ T S gt |
I [cothe | tanhe , 1 1
f“(a)_ﬂi[ i PR 60"3+§]’
cosh 2a tanh Q. 1
f5(0) = | T [2¢icoshic pe ]
2 [ cosh®2¢ | ,cothe 4 7
A -g[m‘%* e T T IE]
8 cosh 2o 2 1
T [m o T w]
‘ tanha‘ 3 .17
faley =222 [ ,,d“+ ¢)
and
I cosh2e 2 1
falo) = 4% coshic o' 20t

Equations (27) and (28) are evaluated for different values ofo'and 6 and the results

-are shown in figures 5 and 6.

Itis of practical interest to find the mass flow rate and friction factor. The
mass flow rate depicts quantitatively the effect of permeability on the flow and
the friction factor gives information as to under what Reynolds number the flow

is laminar,
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Figure 5. Velocity correction profiles for different § and ¢ = 2-0.
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Figure 6. Temperature correction profiles for different 8 and o = 2.0,

If M,, dznotes the mass flow rate pér unit channel width in the absence of
dissipation (i.e., N =0) then

+b
M, = fb Pothody,

- _el%w @+ 8) [1 ~ fanh a], (29)

g
where

G SBE-T)
14
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On the other hand if M}, denotes the mass flow rate per unit channel width
for viscous flow then
Gb?

M, = ._/.’9.3_“
Por thz conditions of equal pressure gradients and channel width the ratio of
equation (29) to (30) gives

M, _3. [ — tanho

M,;, — a* ¢

[

@2 + 6). 30)

€1y

which is indepzndent of § because of the neglection of dissipative effects, This
ratio of mass flow rates is computed for different values of o and is shown in
figure 7. From this it is clear that mass flow rate decreases with increase in o.

Now the friction factor C, is defined by

vGD

C; = _';'ﬁg's (32)

where D is the equivalent diameter (D = 44 for the channel considered in this
paper).

Since
+b
_ 1 r
Hh =57 f uy Ay,
—b
Gb® - tanhoT
= =5z 2+ 6)[1 piag (33)
we get
452
C = -6 . tanha™’ G4
Re (2 + ) [1 - —-J
G
where
Re = 151112 is the Reynolds number.
Thus

6402
= tanheg™)
7 —_

This shows that the product C;Re is constant (independent of a Reynolds number)
for a channel of fixed width and a given porous medium. This product, in the
case of usual viscous flow through a channel, is

CiRe = (35)

192
* — e
G Re* = 1200 | 36)
The ratio of (35) to (36) is
C;Re a’

C*Re* ~ 30 = tanha/a]’ @7
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which depands only on the parmeability of a porous medium and the width of the
chaunel. This ratio is numerically evaluated for different values of ¢ and is shown
in figure 8, Prom this itis clear that the ratio increases with increasein &. Thus
for large value of ¢ the flow is laminar.

Once the veloceity dmtnbuhon is known, the skin fncuon can be calculated from

U
=H , 38

/ (by y==£b ( )
which in the non-dimensional form can be written, by using (7), as

- ’

B T

T peb (T, —~ Ty’

du
dy ) 1

du, du
+ N4 39
<d dy >y=i1. ( )
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Figure 7. Ratio of mass flow rate with and without porous medium versus o.

4000

1000}

Re

*
f

100

Cs Re/C

10

] | L ]

0 20 40 60 80 100 .
o

Figure 8. Ratio of the product of fr1ct1on factor and Reynolds number with and
without porous medium versus o, Coe
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Figure 9. Skin friction versus ¢ for different values of § at hotter plate.
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Figure 10, Skin friction versus o for different values of § at cooler plate.

7 is plotted against ¢ in figures 9 and 10, for N = 0-01 and for different Values

of 7.
It is of practical interest'and importance to calculate the rate of heat transfer

between the fluid and the plates. This is given by

v = g 3] : , .
= K(ﬁDy-j:b ’ . (40)
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which in the non-dimensional form can be written using (7) as

1= KT~ Ty To)
db
= 4 41
\ @ )pa” 41)
dOO d01
+ N2 42
dy dy >ﬂ—:|:1 ( )

qis plotted against ¢ in figures 11 and 12 for N = 0:01 and for different values
of 8.
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Figure 11, Rate of heat transfer for various o at hotter plate.
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Figure 12. Rate of heat transfer for various o at cooler plate,
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4. Numerical solutions

The analytical solutions obtained in §3 are valid only for small values of the
buoyancy paramcter N. To know the validity of the analytical solutions and to
find the effect of large N on the flow we have solved (8) and (9) with the boundary
conditions (10)-(12) nume:rically, using Runge-Kutta-Gill method,

Thz numerical method involves solving a non-linear two point boundary value
problem using an iterative' scheme. We have used a slightly modified method and
the PORTRAN program developed by Sen and Venkataramudu [6]. The velo-
city and temperature distributions are obtained. for a wide range of values of N
and ars shown in figures 13 and 14. We find that the analytical solutions are in
very good agreement with the numerical soluticns when N is very small, For
the sake of comparison we have given the values of velocity and temperaturc at
y=0for § =1-0 and ¢ =2-0 in tables 1 and 2.

The mass flow rate and friction factor found in §3 are true only in the absence
of dissipations. Here we find the mass flow rate and friction factorin the presence
of dissipative effects.

Let M, denote the mass flow rate per unit channcl width in the presence of
dissipations, then

b
M, = J_b Po Udy,

3
= — p,Gb> f1 udy, (43)

Let M, denote the mass flow rate per unit channel width in the bPresence of
dissipation for viscous flow, then

+1
M, = —pGb3 [ uudy. (44)
~1
The ratio of (43) to (44) is
+1 /
u
Mn — {::1 @ 45
M., . ( )
o udy .
-1
The friction factor C,is defined as
vGD
Cp = — T (46)
where
_ 1 b
@ =5y J budy,
b2 41
- (47)
-~ -1
Equation (46) using (47) becomes
C, = __fi__ ' | (48)

Re | +1 udy
-1
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Figure 13. Velocity profiles.
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Table 1. Velocity at » — 0, § — 10, 0 =20, .
‘
N MNumerical Analytical }
(-0t 0- 2755403 IESRRX TR
008 RSB S4| f) j:’:,,\:f.,, ;
0-1 0217581 (b 2TTSG ?
02 (2T A (3 1TH5 %
03 0028234 RO R LA7
04 [T B EATHY e 2aiTan
T e T s YA
06 020011 35 th 2R TOsh ;
07 0 2925094 TERT TR :
03 (1 29037908 26
09 O 298810 U 294264
Table 2. Temperature at p =0, § =10, o =20,
N Numerical Agralvlied
ol 1- 501415 [ 50t2s
005 1-5071 33 brS031260
0- 1 I-514304 B ER (RS
02 1-52023) L8205
03 L 544593 1230756
0 1+ 560480 b SHous )
05 1876935 V851060
06 i 8030y Loagiagn
o7 16 xl 171s oatitng
08 To30132 ot
(-9 1039305 a6y
where
b,
Re = St the Reynolds number,
Thus
64
Cf Re = 41 . (49}
I udy
~1
This product in the case of viscous flow is
64
*Re* = . 97
Cf RC = ey (50)
I wdy

-l
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The ratio of (49) to (50) is

Lt d
Cf RC - J-—l l‘, J . (51)
G R, j'+1 udy

-1

Equations (45) and (51) are cvaluated numerically for different values of N and
are shown in figures 15 to 17.
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Figure 15, Mass flow rate vs. ¢ for different N.
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Figmwe 16. Ratio of mass flow rate vs. N for ¢ = 2-0.
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Figure 17. Ratio of the product of friction factor and Reynolds number vs. N,

Th2 skin friction and the rate of heat transfer defined by (38) and (40) are
numzrically evaluated for different values of N and ¢ and are shown in figures
18 to 21.

5. Discussion

The direct analytical solutions for the problem of natural convection through a
vertical porous stratum can be obtained in the absence of dissipative eflects. In
the presence of dissipative effects, however, apalytical solutions are obtained by
a regular perturbation method valid for small values of N and the results are
shown in figures 2 to 12. Figures 2 to 4 are concerned with velocity and tempe-
Yature distributions in the absence of dissipative effects. The effect of ipcrease
in the temperature difference between the plates, viz,, , is to increase the velocity
and temperature distributions (see figures 2 and 4) due to increase in convec-
tion. The perturbation in velocity and temperature due to dissipation is Small
which is evident from figures 5 and 6. The €ffect of increase in ¢ is tc decrease
the velocity and temperature distributions because of the dampening effect of
the Darcy resistance, A ,

P.(A)—3
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Figure 18. Skin friction vs. N at hotter plate.

‘The ratio of mass flow rate and friction factor with and without porous media,
in the absence of dissipative effects, are shown in figures 7 and 8. We see that as
¢ increases the mass flow rate decreases and friction factor increases. This de-
crease in mass flow rate with increase in o is very useful in studying the pore
size distribution in a porous medium. Theincrease in friction factor with increase
in ¢ ensures the laminar flow. The skin friction and rate of heat transfer are com-
puted in the absence of disspative effects for different values of ¢ and 6 and the
results are shown in figures 9 to 12. The skin friction increases with increase in
8 and decreases withinereasing a. The rate of heat transfer decreases numerically
near the hotter plate and increases near the cooler plate with an increase in ¢ which
is evident from the physical grounds explained earlier.
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Figure 19. Skin friction vs. N at cooler plate,

The above results obtained by the pert urbation method are true only for small
values of N(<1). To know up to what values of N the perturbation solutions
are valid and to find the effect of large N on the flow, we have solved (8) and
(%) numesrically using Run ge—Kutta-Gill method. The velocity and temperature
distributions are obtained for a wide range of values of ¥ and the results are com-
pared with the psrturbation solutions in figures 13 and 14. We find that the
analytical solutions are in good agreement with the numerical results upto N = 1
and they deviate considerably for N > 1. We also observe that the velocity and
tempsrature distribution, increase with increase in- N with higher values near
the hotter plate than those at the cooler one.
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Figure 20. Rate of heat transfer vs. N at hotter plate.

The mass flow rate and friction factor in the presence of dissipative effects are
computed using the numerical method and the results are shown in figures 15 to
17. From figure 15 itis clear that theincrease in N increases the mass flow rate.
Although M, and M, increase individually with N, their ratio M,/M; decreases
with Nas shown in figure 16. This means that the rate ofincrease in M, is much
higher than that of M,. The ratio of friction factor increases with increase
in N as shown in figure 17. The skin friction and rate of heat transfer are also
computed using the numsrical method and the results are shown in figures 18 to
22. We observe that for small values of ¢ the skin friction increases with N and
is indepzndent of N for largs values of . This is because for small values of &
there exists Taylor-porous boundary layer near thesurface in which the velocity
gradient is fairly large. For large values of o the boundary layer type of flow
governed by Brinkman model transforms to potential nature of Darcy flow (see
Rudraiah and Masuaka [4]) where the velocity gradients are negligibly small. The
rate of heat transfer, as shown in figures.20 and 21, increases numerically with N.
This is because as N increases the temparature difference also increases resulting
in largs convection which transfers more heat..
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Figure 21. Rate of heat transfer vs. N at cooler plate.

Acknowledgements

This work was supported by the UGC India under the DSA scheme. The work
of one of the authors (MSM) is supported by the UGC India under its faculty
improvemsnt programme. MSM is also grateful to HKE Society for deputing
him for higher studies.

References

[1] Brinkman H C 1947 Appl. Sci. Res. A1 27

[2]1 Darcy H 1956 Les Fontaines publiques de la Ville de Dijon (Paris : Victor Dalmint)
[3]1 Gebhart B 1979 ASME J. Fluid Eng. 101 5

[4] Rudraiah N and Masuoka T 1982 Int. J. Eng. Sci. 20 27

[5] Rudraiah N and.}Nagaraj S T 1977 Imt. J. Eng. Sci. 15 589

{6]

7l

Sen S K and Venkataramudu V 1976 Report No. CC/SKS-VV/R~-04-76 Indian Institute of
Science, Bangalore

Wooding R A 1960 J. Fluid Mech. 7 501




