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Temperature distribution in Couette flow past a permeable bed
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Abstract. The temperature distribution in a steady plane Couette flow having one
permeable bounding wall is investigated in the presence of buoyancy force N, when
N, > 0, it is shown that heat is transported both by convection and diffusion. The
effect of convection is to increase the magnitude of the temperature distribution both
in the free and Darcy flows. In particular, it is shown that the wall shear has no signi-
ficant effect on the temperature distribution. The rate of heat transfer between the
{luid and the surface is also calculated and it is shown that, it increases with the porous
parameter ¢. Although the viscous dissipation has very little effect on the temperature
distribution yet its effect is significant on heat transfer.
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1. Introduction

Recently Rudraiah and Veerabhadraiah (1976) have investigated the problem of
Couette flow past a permeable bed in the presence of buoyancy force with the object
of developing a proper theory for the experimental work of Rajasekhara (1974).
They found an excellent agreement between their theoretical results and the experi-
mental results of Rajasekhara (1974). The work of Rudraiah and Veerabhadraiah
(1976) is silent about the prediction of the effect of slip on the temperature distribution.
The object of this paper is to find the effect of boundary layer thickness, at the nominal
surface, on the heat transfer coefficient with the following two motives:

Cooling problems assume a continuously growing importance in the development
of high speed vehicles (like space vehicles, aircrafts, missiles and so on) as the flight
velocity increases. It is well known that part of the power which is necessary to
overcome the drag of the vehicle is converted into heat by internal friction within the
boundary layer which surrounds the vehicle. This heat flows partially from the air
layer into the surface of the vehicle in an amount which increases rapidly with increase
of vehicle speed. As a consequence, cooling problems arise in almost every compo-
nent of the space vehicle. The basis of any engineering-design calculations whose
aim is to determine the cooling requirements is always a determination of the convec-
tive heat transfer from the heated boundary layer into the skin of the space vehicle.
Accordingly, an extensive literature has been devoted to the subject of determining
the convective heat transfer in boundary layer flow along surfaces of idealized shapes
by calculations or by experiments. Of the many solutions proposed (see Rudraiah
1966) transpiration cooling gives an effective method where the surfaces to be protect-
ed against the influence of a hot fluid stream are manufactured from a porous material
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and cold fluid is ejected through the wall to form a protective layer along the surface.
In this case the velocity distribution is obtained using the no-slip boundary condition.
If the surfaces to be protected against the influence of a hot fluid stream are lined
with porous material of large thickness, the cooling effect may be enhanced due to the
slip that exists (see Beavers and Joseph 1967) at the porous surface.

The results of this investigation may also be used in electric rotating induction
motors. More specifically, we know that in electric rotating motors, the heat transfer
coefficient on the housing is proportional to the reciprocal of the boundary layer
thickness at the housing. The smaller the boundary layer thickness, the larger the
heat transfer coefficient and hence smaller the temperature difference. The available
literature (see Rudraiah and Natarajan 1976) states that the calculation of boundary
layer thickness on the housing of an electric totally enclosed fan cooling induction
motor is based on the flat plate theory which is at least three times larger than the
predicted value. Recently, Rudraiah and Natarajan (1976) have modified this flat
plate theory concept and calculated the boundary layer thickness.on the housing
of an electric motor using the cross flow which shows a close agreement with the
experimental value. In this paper, we propose a model to line the housing of an
electric induction motor by a porous material called the nominal surface. There
exists a slip at this nominal surface due to the transfer of momentum (see Beavers
and Joseph 1967, Beavers et a/ 1970, Rajasekhara 1974) and the effect of this slip is
to increase the velocity and to decrease the boundary layer thickness just at the
nominal surface in the porous material. This velocity distribution, determined by
using the slip at the nominal surface, is used in this paper to determine the tempera-
ture distribution using the proper boundary condition. It is shown that the effect
of slip with a favourable temperature gradient is to increase the heat transfer
coefficient and hence to decrease the temperature distribution.

2. Mathematical formulation

A physical model, illustrating the problem under consideration, is shown in figure 1.
It consists of a parallel plate channel of height / where the lower bounding wall is
permeable while the upper is rigid, moving with a uniform velocity U,. To discuss

Couette Flow

Figure 1. Physical model
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the solutions, the flow regime is divided into two zones; in zone one, from the im-
permeable upper rigid plate to the permeable bed, the flow is laminar and is governed
by the Navier-Stokes equations and in zone two, the flow in the permeable bed below
the nominal surface is governed by the Darcy law. Hereafter, we call the former as
zone 1 and the latter zone 2. The axial and transverse coordinates are respectively x
and y, the latter being measured vertically upwards from the nominal surface (Beavers
and Joseph 1967).

To derive the basic equations, for this physical model, we make the following
approximations:

(1) The flow in zones 1 and 2, in the x-direction, is driven by a common pressure
gradient 9p/dx, the shear produced by the motion of the upper rigid plate and by the
buoyancy force §T/ox.

(i1) The fluid is viscous and satisfies the Boussinesq approximation which is valid
only when the speed of flow is very much less than that of sound and the accelerations
are slow compared with those associated with sound waves. This means that fluctua-
tions in density occur principally as a result of thermal, rather than pressure variations
which is valid in the case of liquid considered in this problem.

(iii) The flow is steady and fully developed so that all the physical quantities except
the pressure and temperature are functions of y only.

(iv) The porous medium is assumed to be homogeneous and isotropic so that its
permeability & is constant.

Under these approximations, the basic equations in zones 1 and 2 are:
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Here u is the velocity in the axial direction, p the pressure, p the density, T’ the
temperature; p the viscosity, C, the specific heat at constant pressure; K the thermal
conductivity of the fluid; p, the density at T'=T,; B is the thermal expansion
coefficient; T, is the ambient temperature; Q is the Darcy velocity and k is the
permeability of the porous material.

Note that eq. (7) is the modified Darcy equation derived by Tam (1969) and Lund-
gren (1972) which is needed to derive the expression for the boundary layer thickness
at the permeable surface. Eliminating the pressure p in eq. (1) using eq. (2), we get

0% _gBoT’ . o _ _Pg oT’ ®
oy: vy ox oy y Ox

where {=—(du/dy) is the vorticity component, y is the kinematic viscosity. Physically,
eq. (8) represents the balance between potential energy released by the horizontal
temperature gradient and the viscous dissipation of flow. Equation (8) describes
the fully developed flow only when the left hand side is independent of x. To satisfy
this condition, we assume that the temperature varies linearly in the direction of flow.
This means that the heat flux is constant in the direction of flow. Mathematically,
this can be expressed as

T'(x,y)=Ax+T(») )

where T'(y) is the entrance temperature and A is the axial temperature gradient.
Recently, Rudraiah and Veerabhadraiah (1976) have obtained the velocity distri-

bution in zones (1) and (2) using the Beavers and Joseph (1974) slip-boundary
condition

fl_l:_‘ — a(”B_Q)

_ 10
dy vk 10)

where «a is the slip-parameter and u, is the slip-velocity. The expressions for velocity
are:
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The object of this paper is to determine, using the above expressions for velocity,
the temperature distribution in zones 1 and 2. The crux of the problem is to specify
the proper boundary conditions on temperature. These may be one of several
types: Dirichlet, Neumann, Fourier or mixed. In practice, the impermeable material
is usually made with quasi-isothermal surface and hence we impose the Dirichlet type
boundary condition at the rigid moving upper plate. Since the problem considered
in this paper involves the entry temperature, care must be taken to specify the proper
Dirichlet condition. The condition that we impose is

T'=T, at y=h and x=0 (13)
and at all other values of x
T'=Ax+T; at y=h. _ (14)

It is important to note that we cannot specify constant temperature T; all along the
plate for all x, otherwise to be inconsistent with eq. (9), namely the temperature field
varies linearly with x, we have to allow A to vary with y or set A=0 neither of which
1s suitable to our problem. Therefore, we have to impose the boundaty conditions
of the type (13) together with (14). The other boundary condition on temperature
can be obtained from the physical consideration of heat balance for an element at the
nominal surface. The heat conducted away from the channel through the nominal
surface must be equal to the heat absorbed from the porous medium and hence

k%L —p, (1,~1))
oy

o7 _ g Tp—T0) o | (15)
ay . \/"; - : P .

where H=1#, vk k/K is the Biot number, 4, is the heat transfer coefficient from the
porous medium into the channel, T, is the ambient temperature and.Ty 1s the temper-
ature at the bed. Physically H represents the rate of heat loss through the channel
relative to the conductors in the porous media. If H is large, the interface must be a
nominal sutface in order to supply the. heat lost from the : porous media. If H is
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other words, H is the controlling parameter because of its relation to the overall
thermal balance. Since the boundary condition (10) postulated by Beavers and
Joseph (1967) is based on the nominal surface, H has to be large in our problem.

Since eqs (10) and (15) are analogous, H can also be defined as thermal slip-parameter,
The boundary conditions on temperature in zone 2 are:

T'=Tyaty=0 (16)
T'=Tyaty=—35 (17
where 3 is the boundary layer thickness just below the bed and we assume that this &
is the same for both velocity and temperature distributions.
3. Temperature distribution

The temperature distribution in the presence of viscous dissipation for zone I, by
solving (4) using the boundary conditions (13) to (15} is '

0 (& n)=aé+6(n) (18)
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We observe that, when we neglect viscous dissipation term in (4), the expression
for temperature distribution will be simplified.
In this case the expression for temperature is
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The temperature distribution for Poiseuille flow can easily be obtained from
eq. (18) by setting Py==0. The first term in eq. (20) represents the heat transport due
to diffusion and the remaining terms represents the transport of heat due to convec-
tion. When P,=0, i.e. in the absence of convection, eq. (20) becomes

l--e Hy
1+oH

B(n) =

This shows that as A - co (i.e. perfectly conducting permeable interface)

() =
However, when H=0 (i.e. insulating permeable interface)
O(n) =1

The temperature distribution in the presence of viscous dissipation for zone 2,
solving eq. (7) using the boundary conditions (16) and (17) is
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However, the expression for temperature distribution in the absence of viscous dis-
sipation is
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In the absence of convection (i.e. P,==0), eq. (22) becomes

1+aoy
B(n) = . .
D=1rr

Comparing the derivative of this, with the boundary condition (15), we find that
a=H. This means that when heat is transported only by diffusion, the values of «
will depend on the values of H. Since H depends only on the structure of the porous
media, we conclude that « depends only on the structure of the porous material and
not-on the geometrical configuration.

Equation (18), with (19) and (21), represents the temperature distribution with
viscous dissipation terms while eq. (18), with (20) and (22), represents the temper-
ature distribution in the absence of viscous dissipation. These are numerically
evaluated for different values of a, £, N, and P, for fixed o and o and are shown in
figure 2. For favourable temperature gradient (i.e. 97/dx=A4 <0), a>0 corresponds
to the heating of the plate (i.e. T;—T,<<0) for, heat flows from the bed towards the
plate and a<<0, corresponds to the cooling of the plate, because heat flows from the
plate towards the bed. But a=0 (i.e. 8T/9x=0) corresponds to the absence of
buoyancy force in which no heat is transported by convection and heat is transported
only by diffusion. From figure 2 it is clear that when a=0, there exists a thin
thermal boundary layer just beneath the nominal surface, with higher temperature
in the free flow compared to that in the Darcy flow. However, when a # 0 with
N, > 0, heat is transported both by convection and diffusion, and figure 2 shows
that the effect of convection is to increase the magnitude of the temperature both in
the free and Darcy flows. A similar behaviour is also observed in the case of Poiseuille
flow with an overall increase of temperature of about 5 %, compared to that of Couette
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Figure 2. Temperature distribution

flow. Similar conclusions are true for Ny<<0. Therefore, we conclude that the effect
of wall shear has no significant influence on the temperature distribution.

From the technological point of view, it is of interest to know the rate of heat
transfer g between the fluid and the nominal surface and we get

= (éﬁ’) = oHO, (23)
7

in the presence of viscous dissipation and

NyP, 27+Tac
360 1-tao

= oH
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in the absence of viscous dissipation. From eqs (23) and (24) it is clear that heat
transfer coefficient is proportional to surface temperature and increases with increasing
o. Theg¢’s are plotted against o and is shown in figure 3. We observe that g increases
with 0. We also observe that viscous dissipation has a significant effect on heat
‘transfer between the fluid and the nominal surface.
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