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Abstract. Linear and non-linear magnetoconvection in a sparsely packed porous medium
withan imposed vertical magnetic field is studied. In the case of linear theory the conditions for
direct and oscillatory modes are obtained using the normal modes. Conditions for simple-and
Hopf-bifurcations are also given. Using the theory of self-adjoint operator the variation of
critical eigenvalue with physical parameters and boundary conditions is studied. In the case of
non-linear theory the subcritical instabilities for disturbances of finite amplitude is discussed in
detail using a truncated representation of the Fourier expansion. The formal eigeﬁfunction
expansion procedure in the Fourier expansion based on the eigenfunctions of the correspond-
ing linear stability problem is justified by provinga completeness theorem for a general class of
non-self-adjoint eigenvalue problems. It is found that heat transport increases with an increase
in Rayleigh number, ratio of thermal diffusivity to magnetic diffusivity and porous parameter
but decreases with an increase in Chandrasekhar number.

1. Introduction

The linear and non-linear magnetoconvection in an electrically conducting fluid has
been extensively studied by many authors ([1], [2], [17], [18], [21], [22]) but the
corresponding problem in a porous medium has not been given much attention, inspite
of its various engineering and geophysical applications. Rudraiah [12], Rudraiah and
Prabhamani [13], and Prabhamani and Rudraiah [9-11], have considered this
problem using a universal stability analysis (i.e., stability for arbitrary disturbances)
which gives, as in infinitesimal disturbances, only the criterion for the onset of
convection but is silent about the prediction of heat transfer. The study of heat transfer
is essential to understand the mechanism of heat transfer from the deep interior of the
earth to shallow depth in geothermal region. In other words, the problem considered in
this paper is similar to a situation that exists in the geothermal regions where the surface
liquid possesses a general upward convective drift due to the buoyancy induced by
Joule heat and interior temperature. Since the rising liquid is cooled as it approaches the
surfaces where heat is removed by evaporation, radiation and movement in surface
streams an unstable state may be induced and complicated convective motions appear
in the layers near the surface. Therefore convection through a porous medium in the
presence of a geothermal magnetic field is studied in this paper because the results of
such a study is useful in understanding the field behaviour in the extraction of energy in
the geothermal regions.

2. Mathematical formulation

The physical configuration considered in this paper is shown in ﬁgure 1 which con.sists
of a horizontal thin porous layer of permeability k, and of infinite extent filled with a
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Figure 1. Physical configuration.

conducting Boussinesq fluid heated from below and permeated by an externally applied
uniform vertical magnetic field H,. The layer has thickness d and is bounded by two free
surfaces. The upper surface is at a constant temperature 7, — AT/2 and the lower at T,
+AT/2. We write the total temperature as

Toow = To— AT (z/d — 1/2) +T(x, 3, 2, 1)

total
where T'(x, y,z,t) is the deviation of the temperature from the linear profile and we
assume that all the physical quantities are independent of y. In other words, we consider
here the two-dimensional horizontal rolls.
For a creeping electrically conducting Boussinesq fluid flowing through a porous
medium, the momentum equation is the modified Darcy’s law

A L TSP ALY Y 1 (1)
Po k, 0
where q is the Darcy velocity, p is the density, po is the density at the reference
temperature T = Ty, H is the magnetic field, P is the total pressure, v is the kinematic
viscosity, i, is the magnetic permeability and g is the acceleration due to gravity. This
equation neglects non-linear inertia effects. At high Reynolds number this equation
should be generalized to include inertia effects. The effect of inertia must appear as a
drag proportional to the square of the velocity and is of the form :

aq 1 P v Cp Hm
7 T @Ve= e VP+pog PR Iqlq+p0 (H-V)H, (2)
where ¢, is a non-dimensional constant and has a more or less universal value for a
particular family of materials. This neglects shear effects. In a sparsely distributed
porous medium made of spherical particles of uniform size, the porosity is very high
and we have to include the usual shear effects produced by the distortion of velocity. In
that case, considered in this paper, the basic momentum equation is the modified
Brinkman equation

oq _ _ 1 p v, Cp
at+(q V)q— pOVP+p0g kpq_k;/z ‘qlq
+57 (H-V)H 4, V2q. 3)

Po

In this paper since we deal with pure rhagnetoconvection problem, we neglect the drag
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proportional to the square of the velocity and consider the basic equations:

0q 1 p

—+@qV)gq=—-—VP+—g——q+vW2q+— (H-V)H, 4

E» (q-V)q e o8 kpq vWiq p( ) 4
. . V.q=0, ~ (5)

oH R

_a_t_.+(q-\7)H= (H.V)q+v, V?H, (6)
’ p = po[1—B(T—Tp)], @)

oT

=+ (q-V)T + (AT /d)w = K,V?T, (8)

where f is the volumetric expansion coefficient, v,, is the magnetlc viscosity and K is
the thermal diffusivity.
These equations, using

. 0 3¢
il 6x’Hx~5;’Hz- ox
and making the resulting equations dimensionless, take the form
0 Pr oT
, T =I5 (8,0~ PrRa L
P
V00 /o)~ g+ PeVn, ©
0
Lo Ly, ‘ (10
or 0 ‘
=)~y 1y

where the equations are made dimensionless using d, d*/K,, K,/d, AT and H, the
scales for length, time, velocity, temperature and magnetic field respectively, Ra
= (BgATd>)/K, is the Rayleigh number, Pr = v/K, is the Prandt] number, P, = k,/d*
is the porous parameter, Q = p,, H3d?/povv,, is the Chandrasekhar number, S = K, /v,
=V, £ =V3¢ and J(,.) is the Jacobian.
The boundary conditions for the problem, when the boundaries z =0 and z = 1
taken as flat, are the magnetic and velocity stress free,

azw J¢

=0,T =0,
0z

¥ =0,— =0 at z=0,1. (12)

3. Linear stability analysis

In this section, following the analysis of Rudraiah and coworkers [15, 18], we discuss
the linear stability analysis considering both the marginal and overstable states. The
solutions of this analysis are of great importance in the finite amplitude study, usmg the
local non-linear stability analysis.

MSs -~ 5§
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The required stability equation for this case, after neglecting the Jacobian terms in (9)
and (10) and eliminating ¢ and 7, is

0 M0 1 ,\/1 @ 1 2 2
e — = — - \Y%
(az v )(6I+SV )(Pr at+ P, v 4

=(a Vz)_Q_anzll'_*.(_a__.l_VZ)Raf}. (13)

o ' )S 82 a S
We look for the solution of the form
¥ = exp (pot)sin max sin nz, (14)

where po (= po, +ipo;) 18 the frequency. Substituting (14) into (13) and after some
simplification, we obtain the dispersion relation

2/02
1
p3+[Pr<%+n2(a2+1)>+"—9—f—l
1

3 + 2 (a? + 1)} p3

n*(a? + 1)

1
+[Pr<ﬁ+n2(a2+l)>n2(a2+1)+ 5

PrQr®> Raa’Pr Pr(1 ., |
— —_ 1 2.2
+ S a2+1+S<P1+n(a+)n(a +1) {po

Pri1 2(.2 40,2 , Pr,
+{S(Pl+n(cx +1)>n(a +1) S1r(cx +1)

R 2 .
X (oc;fl — an):| =0. (15)

3.1 Marginal state

Linear theory predicts the condition for the onset of convection-at the critical Rayleigh
number (see [2]). The unstable thermal stratification tends to produce steady
convection at Ra = Ra[", the critical Rayleigh number, given by

Ral= R™+R7, (16)
m T2+ 1)? A
where RL = ——W (17)
is the Lapwood [6] Rayleigh number and
2/.2
1.
Ry =" (e 174 03 (19

is the Rayleigh number for magnetoconvection given by Chandrasekhar [2] and the

superscript m denotes the marginal state. The critical wave number for the direct mode
is obtained from the cubic equation

1 1 ©+Q 1
3 3 24 - 2_ - xEa =
x +21r2( n +P,)x { o +P,1r2} 0, (19)

with x = o®. Equation (16) reveals that the effects of permeability and magnetic field are
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to suppress steady convection. Similarly (19) shows that the wave number x is
influenced by the permeability parameter P, and the Chandrasekhar number Q.
Therefore, both permeability and magnetic field influence the cell pattern.

3.2 Overstability

The striking similarity that exists on several occasions between the results pertaining to
a fluid in the presence of a magnetic fluid and a porous medium makes one to anticipate
overstable motions in the present study. Therefore, in this section, we discuss
infinitesimal overstable motions.

The condition for overstable motion is that the product of the coefficient of p3 and p,
in (15) must be equal to the coefficient of p? (i.e., constant term) and is given by

7202+ 1)(1 + S)[(PrS/P,m2 (o2 + 1))+ 1]
a?PrS?

PrQ Pin? (o + 1)
[ R P +1)+Pr)(1+S)} - (20)

Also, for overstable motions the coefficient of p, in (15) should be real and positive, and
hence it leads to the condition

m? (02 + 1)2(1 + (Pr/P,n* (o + 1))
Pr(S—-1)

for overstability which is valid only when S > 1 i.e., Pm > Pr. The minimum values of
Ra? and the corresponding values of a? for given values of Q, P, S and Pr =1 are
obtained by varying the values of «? in (20) and satisfying the condition (21).

We note that this analysis reduces to the Darcy case if n?(a®+1) < (1/P) i.e.,
neglecting n%(x?+ 1) compare to (1/P) in ((1/P)+n%(a*+1)) of equation (15).
Similarly it reduces to magnetoconvection in the absence of a porous medium if
1/P, < n?(«? + 1) i.e., neglecting 1/P, compare to n?(a®>+1) in ( 1/P,)+n2(oc +1) of
(15). This is the same as the limiting case of P, — oc in (15). j

Ra? =

0> 21)

3.3 Bifurcations from the static solution

The dispersion relation (12) may be used to examine the bifurcations from the static
solution. Since this dispersion relation is a cubic polynomial in p, with either zero or
two sign changes. Hence, by Descarte’s rule of signs, either there are no bifurcation
points or there are two. In the latter case there will be two types of bifurcation; simple—
(or direct) and Hopf bifurcation.

We first seek the condition for a simple-bifurcation for which p, = 0. Traditionally,
this is known as an exchange of stabilities. To obtain the condition we rewrite (12)in the

form
34<Pr(14+— ! +1+ 62p3 +| <Pr 1+-1- 1+1 —1- 54
Po P, 5 Po S 7 )7s

—RaPr_- =T +QPSm ]po+%£[<l+%)56+Q52n2—n2a2Ra]=0
1
22)

where 6% = n?(«® + 1), P| = P,6.




122 N Rudraiah

From (22) p, = 0 when Ra = Ra"®, where
Ra® = [6%(1 4+ 1/P;) + n?8* Q1/n%a? (23)

When Q = 0, Ra® = Ra,, where

8° -
Rap = ——5 (1+1/P). | (24)

The first term on the right side is the boundary layer correction arising due to the use of
modified Brinkman equation. It will prove convenient, especially when we come to
consider non-linear solutions to introduce a more compact notation by defining a
normalised Rayleigh number

2.2
r= Ra——ﬂ:azc ;
®=py/8% n' =1+1/P;
q=Qn?/6*

So that (22) simplifies to
1 v
w® + {Prr]’ +1 +§}a)2 + [Pr(n’ —r +%> +§(Prn’ + 1)}0

P
+ (1 +q-1) =0, @)

The condition for simple bifurcation is now r = r®, where
r9=n"44q (26)

Of the three roots of (25), one is always real and negative. The other pair may be real, or
complex conjugates. In the latter case there is a Hopf bifurcation from the static
solution (when Re(w) = 0, @ = +iw,) at r = r®, where

(Pr+1) 1\  (Pry’'+1/S)qg
O =g 4 il PR il B VA
T e+ D\ T S ) Sy 1) @7
provided that '
2 _ Pr (H9 — @) = (Pr+1) (S—1)Prq 28)

= ST+ Py +1/5)

is positive. ‘

Hence, if a Hopf bifurcation is possible it always occurs at a lowest value of ¥ than the
simple bifurcation. In traditional terms, overstability sets in at r = r® < r©. It is clear
from (28) that a necessary condition for the existence of a Hopf bifurcation is

(Pr+1)
S> 1,q>qo Em.

However, for § < 1 or g < gy, the only bifurcation from the static solution occurs at r
= r{® and the static solution is unstable for all r > r®©. If, on the other hand, (29) is
satisfied, so that w3 > 0, the static solution is unstable for all » > r®. The behaviour of

(Prn’+ 1)S2 ' S2(Pry + 1)

(29)
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Figure 2. Behaviour of the eigen values when convection sets in via a Hopf bifurcation at R
= R, The arrows indicate the evolution of the eigenvalues w with increasing R in the complex
plane.

the eigenvalues in the complex plane isillustrated in figure 2; asr passes through r(®, the
real part of the complex conjugate pair changes sign. As r further increases, Re(w)
increases while |Im (w)| decreases. At r = r® say Im (w) = 0, if the two roots coalesce.
Thereafter both eigenvalues remain on the real axis; one increases with increasing r, but
the other decreases and passes through zero at r = r@ In linear theory, therefore, the
transition from oscillatory to direct instability occurs at r = r®_ The condition for (25)
to have two equal roots is

A, AX\® (1 1%
(3 9)4—.6(,41,42 345) =5z A3 =0

where A, =Py’ +1 +§

- L A TR
Az-Pr(n r+S)+S(Prn +1)

Pr
Ay =o' +q-7).
Values of r®, if needed, must in general be found numerically.

3.4 Parametric perturbation methods

The analysis of the previous sections pertain only to the case when the boundaries are
isothermal (i.e. boundary condition on temperature is of first kind). In many practical
problems discussed in §1, the realistic boundary condition on temperature is of the
radiation type (i.e. boundary condition on temperature is of the third kind). Therefore
the effect of radiation boundary condition on the eigenvalues is studied in this section
without going into the detailed numerical computation. Using the concept of self
adjoint operator we try to find the effect of Biot number, Chandrasekhar number and
porous parameter on the monotonicity of Rayleigh number. Our main object here s to
show that under what conditions the critical Rayleigh number for marginal convection
is an upper bound for finite Biot number and to find an analytical relation for the
variation of Rayleigh number with respect to Chandrasekhar number. As an extra

)
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result we also obtain expressions for obtaining first order effects on the eigen-functions. ,
We employ a method which has been used by Narayanan et al [7] in a more general ;
context. The first order effects can be calculated using a modified Greens matrix as the
kernel of a matrix differential operator.

For this purpose we define an operator L as follows:

(D* ~n?a?){(D*~n’a®)— P!} Rm(D*— n?a®)D —Ra‘no
Rm 4

L= | —Rm(D*-n%a?)D -5 (- a2 0
—Ra’na ' 0 Ra®(D? - n24?)
where D= 5‘3; and Rm = QJs. (30)

We define a vector v such that :

vi=[¢,¢,T],

where the three vectors represent the dependent variables. Then from (4) to (8) after
neglecting the Jacobians, we have

Lv=0. ‘ (31)

To visualize the variation of Ra® with respect to Q, we differentiate (31) with respect
to Q and obtain

Ly=h, (32)
where

ht= [——é (D? —n?a®)D¢ + RanaT, 0, O:] (33)

and A’ represents the derivative with respect to Q.
Define a suitable inner product between two vectors & and b as (a, b) such that

(a,b> =fa""-de, (34)

where V is the domain of the integral operator in which a and b are defined and the
asterisks represent complex conjugates. We can easily see that L is selfadjoint and the
boundary conditions are also selfadjoint. Thus applying a Fredholm alternative b
condition to (32) we get

naQ{RaO—BQio}fw*Tdv = — lezwlzdv

v

—(2n2a2+P,_1)f!D¢|2dV-nzaz(n2a2+P,*1)jlwlzdv, (3

We use the energy and continuity equation to arrive at the conclusion that Ra® > 0 if !
Ra® is positive. From this it is clear that an increase in strength of the magnetic field
causes an increase in Ra® if we have the most unstable case.

We can consider the dependence of Ra® on the porous parameter by taking the
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derivatives of (31) with respect to P, and obtain

Lv=h, (36)
where _ -
b = [(D? —n?a®)Y + Ra° naT, 0,0] (37)

and overbars (—) represent differentiation with respect to P. On applying the
solvability condition we get

noaRa® j Yy*Tdv = J|D¢|2du+n2a2 dev. (38)

v v v

This yields the condition that Ra?® increases if P, decreases.

Finally, we consider the effect of boundary parameter, the Biot number Bi, on Ra® we
shall see that the obtained Rayleigh numbers are upper bounds for finite Biot number.
We note that the effect of surface tension gradient is not considered here.

We may differentiate (31) and the corresponding boundary conditions with respect
to Bi and obtain

LV = [Ra® naT, 0, 07" (39)

where tilde ( ~ ) overbars represent the differentiation with respect to Bi and at the
boundary we have

DT+BiT+T=0. (40)

Thus on applying the solvability condition to (39) in the light of (40), we get after much
algebraic manipulation :

Ra®

RS th/1* Tdv = J(— |T|?)dv. 41)

v v

On using the energy equation, we get from (41)

dlnRa®
~ 0Bi

Thus if Ra® < 0 (such as the case of heated from above) then Ra® will decrease with an
increase in Bi. In the present problem we are concerned with the case of heated from
below and so the case of Bi tending to infinity provides an upper bound on Ra®.
Equation (39) is a vehicle for calculating the first-order effects and a modified Green
matrix is needed for this calculation. Such approximations are of a practical value.

> 0.

3.5 A completeness theorem

The non-linear magnetoconvection in a porous medium studied in the next section is
based on expanding the Fourier components of a spatially periodic disturbance in the
eigen-functions of the corresponding linear stability problem. This is, usually, known as
Stuart’s shape assumption. For a general discussion of this procedure and an
application to the problem of the stability of plane parallel flow and of viscous flow
between rotating concentric cylinders see Diprima and Habetler [4]; for an application
to the stratified viscous shear flows problem see Herron [5]. Their completeness
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theorem is the generalization of Naimark’s theorem [8] In this section following
Diprima and Habetler [4] we will justify the formal eigenfunction expansion procedure
used in the next section by proving a completeness theorem for a general class of non-
selfadjoint eigenvalue problems which includes the matrix differential operators.

It is not difficult to show that the system (4) to (8), neglecting the Jacobian terms and
using the solution of the form

f(z) exp {io(x —c1)},

may be written as

LO=iM®, (42)
where
L= |1,-2p2pi_y,y _©Ra (D —a?)
S S
i ~(D*-o?) ,

L, aRa Y
M= 0o 1 | ®= [T]

[- azcz 1 2 2 1 2 2 2 2.
Lo-—:* Pr ““S“(D —a”) E‘“(D —a®) ¢ |(D* —a?)
Li=| 3~ 02—ty - L 07— at) | (b2 2t

' Ry PrS ’

D=d/dz and A=iaC.

This is the type of non-standard non-selfadjoint eigenvalue problem studied by
Diprima and Habetler [4] and Herron [5]. The theorem that we try to establish
concerns eigenvalue problems of the form (42), in a Hilbert space H where L and M are
matrix differential operators with dmn L < dmn M »and M is positive definite. Another
Hilbert space H,, is embedded in H where LS. 9] = <f, Mg) (for f,gedmn M ) is the
corresponding inner product and [£,f]*/2 = || f||,,. We have the following theorem

Theorem: Let L = L+ L, (43)
where
1
Ls= §(D2 a2)3 0
(44)
0 — (D*—a?)
[ @c 1 2,2 2 2 ap, i0Ra
L= —w—ﬁ——g—ﬁ;(D —o?) ——§(D —a*)D* — S (D*—a?)
L o 0 (45)

are linear operators with dmn L, = dmn L » < dmn M dense in a Hilbert space H such
that _
(1) M and L are positive bounded below with rmgM =rng L,
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(i) M~'L, is bounded in H,, and dmn L, is dense in H,,.
(i) G™*is compactand rng G™! < dmn M where G~ ! is the inverse of the selfadjoint
extension of M~ L, in H,,.

(iv) For some y, rng (Ly+ Ly+yM) =rng M and (G+ M 'L+ yI) has an inverse.

(v) There exists a sequence of concentric circles {C,} with radii {r;} such that

(@) lim r, = o0.

k— 0

(b) dlcy, 00(Ls, M)] >0 for all k.

() lim d[c¢, 60(Ls, M)] = ©
k= o0
Then (i), the eigenvalues of ¢42) lie within the circles of radii | M ~! L || about those of
L, = AM ®,and (ii) the generalised eigenfunctions of (42) span H ,, such that for®e H

¢ = i i ai; ijs

i=1 j=1

where ¢, , ¢y, - - . , ¢y, areeigenfunctions corresponding to eigenvaluesinr,_; <|y|
<r.fork>1landly|<r,fork=1. ,

Following Diprima and Habetler [4] with L, given by (44) it is straight forward to
show that the hypothesis (i), (iii) and (v) are satisfied. If |M ™' L,| is bounded
hypothesis (ii) holds and (iv) follows. In (45) L, is different from the one given by
Diprima and Habetler [4] and also of Herron [5]. However following [5] it is easy to
show that M ™! L, is bounded. Hence all the hypotheses of Diprima and Habetler [4] is
satisfied and its conclusions justify the use of spatial expansion in the non-linear
problem based on the eigenfunctions of the linear stability problem.

4. Finite amplitude analysis with a limited representation

In this section we discuss, following Rudraiah and Vortmeyer [14] the finite amplitude
analysis by considering a truncated representation of Fourier series for velocity,
magnetic and temperature fields and try to understand the physics of the problem with
minimum mathematics. We note that the results obtained from such a simple analysis
can be used as a starting value in solving a general non-linear convection problem.

The first effect of non-linearity is to distort the temperature field through the
interaction of { and 7 and the zonal current field through the interaction of ¥ and ¢.
The distortion of temperature field will correspond to a change in the horizontal mean,
i.e.,a component of the form sin 2rz will be generated. Similarly, zonal current field will
be distorted by a component of the form sin 2rax. Thus, a minimal system which
describes finite amplitude convection is given by

Y = A(t)sin nox sin 7z, ‘ (46)
T = B(t)cos max sin ez + C(t) sin 2nz, 47
¢ = D(t) sin max cos nz + E (¢) sin 2max, : (48)

where the amplitudes A4, B, C, D and E are generally functions of time and are to be
determined by the dynamics of the system. Substituting (46) to (47) into (4) to (8) and
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equating like terms, we get

2_
A =WDE—Pr(%+nZ(a2+1)>A'
I

a?+1
oPrRaB
—nQD —n—(m, (49)
B=—n%(2+1)B—rnud— n?aAC, (50)
. 7r2
¢ =2 adB—4rC, (51)
- 7[2
D =n?0AE + 74— 5 («* +1)D, (52)
) 2 47202
E‘=—%aAD- L) (53)

where the dot corresponds to a time derivative.

This set of non-linear ordinary differential equations is not amenable to analytical
treatment for the general time-dependent variables and we have to solve it using a
numerical method. However, in the case of steady motions, these equations can be
solved analytically. Such solutions are very useful because they show that a finite
amplitude steady solution to the system is possible for subcritical values of the Rayleigh
number and that the minimum values of Ra for which steady solution is possible lies
below the critical values for instability to either a steady infinitesimal disturbance or an
overstable infinitesimal disturbance. ’

Thus, if the system is steady, (49) to (53) take the form

(o + 1) ((1/P) + 7% (a® + 1)) 4 + naRaB + (n*/Pr)Q(a* + 1)D
_ Q30 - 1) DE =

Pr =0, (54)
n’aAC +nad +n*(«® +1)B = 0, (55)
nz o
5 ®AB—4n*C =0, (56)
7[2
n*aAE+ 1A -3 (> +1)D =0, (57
2 2
T 2
> @ AD +4n 3 E=0. (58)
Equations (55) to (58) can be rewritten in the form
naA
B= — 5
m?(@® + 1+ (1/8)a? 4%)’ (59)
C = (1/8)aAB, (60)
D= 254 (61)

- e+ 1+ (1/8)5%42)°
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= —(SAD/8x). (62)

Substituting (59) to (62) into (54) and after some simplification, we get

n2 82 (2 + 1)((1/P) + 7* (a® + 1))(4%/8)°

+ [(7*S? («* + 1)*(1 + 202/S2))) (1/P) + n*(a® + 1))

—a?S?Ra +4n°a* Q] (4%/8)* + [(n*(«® + 1)* 2 + (¢?/52) x

x (1/P) + 72 (o® + 1)) — 2a2Ra (e + 1) + Qn?o? (e + 1) x

X (4+ ((o* +1)/8%)1(4?/8) + (o3 (@* + 1)*/5%)(Ra]" — Ra). (63)
We have to look for real and positive roots of this cubic equationin A2/8, otherwise, the

amplitude of the stream function becomes imaginary. So we solve this equation
numerically to find the real and positive roots.

4.1 Finite amplitude analysis with small induced magnetic field and small induced
current

Rudraiah and Vortmeyer [ 14] have studied the finite amplitude analysis using a Darcy
model by setting a constant term in (63) to zero. We note that setting the constant term
in (63) equal to zero, is equivalent to restricting the value of Ra near to Ral". However,
this can be avoided by assuming that the terms involving induced magnetic field and
induced current are small compared to the applied magnetic field; which is usually the
case in many practical problems. In this case (12) takes the form

ar’ l'l'mHO 550 aT Vv 2
bl . = 20 g 4

where n=V3 and &=V2¢,

and all other equations remain the same. Now, substituting (46) to (48) into these
equations and assuming, as before, the steady case we get

n2(a® + 1)((1/P) + n?(e® + 1)) A + naRaB + (=*Q/S)(e* + 1)D = 0 (65)
and the other equations are the same as (55) to (58). As before, substituting (59) to (61)
into (65) we get

A[(m*S?a? (o + 1)((1/P) + 7% (&* + 1)) (4% /8)?

+ (2282 (a2 + 1)2((1/P) + n2 (¢* + 1)) + o* Ral — «>S*Ra)(A4?/8)

+a?(a?+1)(Ra"—Ra)] =0. (66)

The solution A = O corresponds to the pure conduction and the other solutions are
given by

A28 = [1/((1/P)+n* (o + 1))272a28% (x + 1)]
« [«2S%(Ra — Ral") — a*Ral + n25%(o2 + 1)Q
+ ((@?S*(Ra — Ra" — Ra™) — a*Ra™ + 7252(a? + 1)0)?
+48%0* (@?Ra" — (o« + 1)Q))! /2] (67)

To ensure the amplitude of the stream function to be real, we have to take the positive
sign in front of the radical in (67).
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Consider the case where finite solutions exist for Ra < Ra_;". We know that (Verqnis
[197) the minimum value of Ra for which solutions exist is that value of Ra which

makes the discriminant zero provided that
2 2
e+ ) {2+ )1, ., o 12
Ra, = % " I_’;+n (@*+1) +0 , (68)
where Ra ; denotes the Rayleigh number for finite amplitude m(?tion..With this value of
Ra ; the amplitudes are real provided that the first term on the right side of (68) be non-
negative, or equivalently

e+ /1, )
] 1) ). (69)
0> ) (Pz + 7 (a* +1)
Conditions (68) and (69) are meaningful only when
5>a. (70)

We note that the conditions (69) and (70) are readily accessible in a laboratory
experiment with fibre material for porous media and with mercury flowing through it.

We note that the analysis of Brinkman model given above reduces to the Darcy case
(Rudraiah and Vortmeyer [14]) if n%(a? + 1) < 1/P, i.e., neglecting n? («? + 1) compare
to 1/P; in (1/P;)+n*(a® +1). Further it reduces to the magnetoconvection in the
absence of a porous medium if 1/P; < n? («* + 1) i.e.,, neglecting 1/P, compare to n?
(@*+1) in ((1/P;) 4 n*(«* + 1)). This is the same as the limiting case P, — co.

This shows that the Brinkman model generalises the problem in the sense that with a
suitable limit on P, we can obtain the results for Darcy flow and pure viscous flow.

5. Heat transport

In the study of convection problems the determination of heat transport across the
layer plays a very important role. This is becuase the onset of convection as the Rayleigh
number is increased is more readily detected by its effect on the heat transfer. In the
quiescent state, the heat transfer is usually due to conduction (radiative heat transfer is
usually neglected). Hence if H, is the rate of heat transfer per unit area,

5,
H:=—Kd<a-z'Ttotal>z=O (71)

where the angular brackets (---» correspond to a horizontal average with the definition
Of Ty defined earlier. Equation (71) can be written in the form

AT AT X

L ™
with the restriction N = 2. The second term on the right side of (72) represents that the
heat which enters at the bottom by conduction is carried on to the top by both
conduction and convection and hence the heat transfer increases above that given by
conduction alone. This process can be explained physically by the relationship between
the driving temperature difference AT and the heat transport. In dimensionless
variables, this is the Rayleigh-Nusselt-number curve. Thus from (72), the Nusselt
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"

number is

Hd y
K.AT 1—- 3 nmb =1-2nC (73)

n=1

Nu=

with N = 2, where C is given by (60). For Rayleigh numbers below the critical value, the
heat transport is purely by conduction for A = Oand B, C, D and E are all zero, where B,
C, D and E are given by (59) to (62). In that case (73) shows Nu to be unity.

6. Numerical experiments

The minimum values of Ra7, Ra?, Ra ; and their corresponding values of «? for given
values of Q, P, S are calculated by small variation of a?. Ra? is calculated with
the condition (24) on Q. The results of these calculations are tabulated in table 1
for P,=10"%and S = 4 and 8. The typical behaviour is observed for other values of
P,.

To evaluate heat transport we have to solve the cubic equation (63) for (4%/8). Here
we solve the cubic equation (63) by using a system subroutine poLrT of DEC 1090 system
and we calculate Nusselt number from (73). The results of heat transport are tabulated
in table 2 and the results are discussed in §6.

7. Discussion
Magnetoconvection thfough a sparsely packed porous medium has been investigated
in detail using linear stability analysis and finite amplitude analysis with limited

representation. The following conclusions are drawn from the present investigation:

Table 1. Values of Ra”, Ral, Ra; and their corresponding values of «® for P,=10"3

s Q Ra” (x 10%) a? Ra? (x 10%) o? Ra, (x10%) o?

4 1073 0402540200 0980 — : — 037615010 .1‘140
10-2 0402542000 0980 — _ — 037645490 1-140
101 0-402559990 0980 — ‘ — 0-37741950 1-140
10° 0402739400 0980 —_ S — 0-38047490 1-130
101 0-404530400 0985 — — 039019010 1-115
102 0422233500 1-030 — — 0-42145590 1-065
10> 0-584842300 1-380 0-55369300 1-070 0-52573740 0-935
10+ 0-186197800 x 10° 3175 0-70869840 1-415 067628390 . 0705

8 1073 0402540200 0-980 —_ — 039634190 1-015
1072 0-402542000 0-980 — —_ 0-39649360 1-010
107*  0-402560000 0-980 —_ —— 039697310 1-010
10°  0-402739400 0980 - — 0-39849160 1-010
100 0:404530400 0-985 _— — . 0-40330850 1005
102 0-422233500 1-030 — —_ . 0-41868180 0985
10> 0-584842300 1-380 0-47814680 1030 0-46870360 0930

10 0186197800 x 106~ 3175 0-67628385 1415 0-6406941 0-800




132 N Rudraiah
Table 2. The values of Nu and Ra for different values of Qand S for P, = 1073,
S Q=102 Q=10 Q=10 Q = 10*
Nu Ra Nu Ra Nu Ra Nu Ra

4 1012145 4050x10* 1002325 405x10* 1000261 5-850 x 10* 1-001866  1-870 x 10°
1385823 5000 x 10* 1-383947 500x10* 1047116 6-000 x 10* 1-041712 2010 x 10°
1651178 6000 x 10* 1-754479  650x 10* 1295633 6025 x 10* 2:193092  2:020 x 10°
1841486  7-000 x 10* 2187899 100 x 10° 1626226 6-500 x 10% 2:474843 2150 x 103

1984704 8000 x 10* 2:673922 2:50x 10° 1794893 7-000 x 10*  2-588647 2300 x 107
12672601 2:500 x 10°  2-863926 6:00x 10°  2-158849 9-000 x 10* 2:738430 2750 % 10°
2882796 7000 x 10° 2:897917 800x 10° 2.546314 1-500 x 10° 2:958995  1-000 x 108
2917925 1000 x 10° 2918320 1-00x 10° 2939187 1-005 x 10° 2993943 6000 x 106

8 1126121 4300 x 10* 1002379 405x 10* 1-308728 5200 x 10* 1-980130  1-138 x 103
11474303 5300 x 10* 1-384743 500 x 10* 1499350 5-500 x 10* 2:101557 1151 x 10%
2020217  8300x 10* 2-187705 100 x 10°  2:022799 7-500 x 10% 2690284  1-800 x 10°
2208917 1030 x 10° 2-836736 500x10°  2:629199 1-750 x 10° 2:809022  2:500 x 10°

2767834 3-530x 10° 2-883341 7:00x 10° 2:864103 4-550 x 10° 2933862 6000 x 10°
2909110 9030 x 10° - 2-909247 900 x 10°  2:924147 8050 x 10° 2:962097  1-000 x 108
2919762 1023 x 10° 2-918317 100 x 10° 2:939438 1-005 x 10° 2:994878  7-000 x 108

From the linear analysis we find that oscillatory (overstable) motions occur for
restricted range of S (> 1 which is the ratio of thermal diffusivity to magnetic
diffusivity) and Q for given value of the porous parameter P, because they can reduce
the stabilizing effect of Lorentz force. For given P, the effect of strong magnetic field is
to suppress convection—direct (steady) or oscillatory (overstable) depending on the
values of Sand Q. From table 1, it is clear that convection sets in asadirect (or marginal)
mode at the critical Rayleigh number Ral when S < 1 and it may first appear as an
oscillatory mode at Ra = Ra? when § > 1 in the absence of porous media (see [2, 3]
and [20]). In the presence of a porous medium, the same phenomena is also true. Also,
the porous medium stabilizes the system to the maximum extent when the usual viscous
dissipation is also present in addition to Darcy’s resistance. The physical reasons for
this is that, the energy released by buoyancy force acting on the fluid must balance the
energy released by Darcy’s resistance, Joule heating, and the usual viscous dissipation.
This can be achieved only at higher temperature gradients.

In general we conclude that for smaller values of 'Q the motion should be steady,
infinitesimal or finite, rather than overstable motion. This should be comparable to that
which occurs for hydrodynamic convection through a porous medium (Lapwood [6]).
We find that the generation of zonal current by the magnetic field is responsible for
oscillatory motions which exist at Rayleigh number smaller than that of infinitesimal
steady motions. This zonal current is also responsible for the existence of finite
amplitude motions. :

Therefore, finite amplitude steady convection is investigated using Veronis’s [19]
truncated representation. We find that for large values of Q finite amplitude steady
convections are not possible because they occur only in a subcritical range of Ra as long
as they can reduce the constraint of the magnetic field. This is because, greater
amplitudes require more release of potential energy which in turn requires a larger
value of Ra. It is also found that, no finite amplitude motions are possible when the

—mw
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Figure 3. Curves of Ra™, Ra? and Ra, as function of @ for P, = 10-*, 10~2 and 1073
(Brinkman model).

parameter S > o, the preferred scale of finite amplitude motions is larger than the
corresponding scale for infinitesimal oscillatory motions.

The existence of finite amplitude steady convection for subcritical values of Ra for
different values of Q, S and P, are shown in figures 3a—.

From these figures, we conclude that, the finite amplitude steady convection exists for
subcritical values of Ra for all Q > 7 for P, < 10~ *. However for P, = 1073 the finite
amplitude steady convection exists for subcritical values of Ra for all Q and these values
of Ra for finite amplitude steady convection are small in the case of § = 4 compared to
that of § = 8.

The heat transport given by (73) is numerically evaluated for different values of Ra, Q,
S and o2 and the results are tabulated in table 2 and depicted in figures 4 to 6 and we
found that:

(a) Fora fixed value of Q, Nu increases with S (for S = 4and 8) which means that a fluid
having less magnetic diffusivity transports more heat for a fixed value of Q.

(b) As the value of P, is decreased, instability sets in at a higher value of Rayleigh
number as in the rotating single and two component systems (Rudraiah and Srimani
[15]; Srimani [16]). We find that chances of subcritical instabilities occurring are less
for smaller values of P, (< 107~ 3). This is because no fluid exhibits subcritical instability
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Figure 4. Curves of heat transport Nusselt number (Nu) against Rayleigh number (Ra) for
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for P, = 107> (see figure 4) in the range 10~3 < @ < 10~ . Whereas for P, = 10" *and

10~ 3, fluids having S = 8 exhibits subcritical instability but not for S = 4 (figures 4—6)
This means that as P, increases the system becomes more and more stable to finite
amplitude perturbations as the magnetic diffusivity is decreased.

In this context we can note that some fluids (2 < S < 8) do exhibit subcritical
instabilities for P, = 10~ and 102 (figures 5a, b). Whereas, for P, = 103 instabilities
exist only for S = 8 (figure 5¢) which is similar to the values of P, > 1073,

In the viscous case (P, — oo)all the fluids considered exhibit subcritical instabilities as
expected (Weiss [21, 22]). Further, for Q < 1072 we note that subcritical instabilities
do not exist and there is no difference in the values of Nu for § = 4 and 8 (figures 4 to 6).
We also note that Nu increases with P, and the values of the heat transport in the case of
a porous medium are less compared to the pure viscous case (P, — o0) (see figure 6).

For values of P, = 10~ and 10~2, heat transport decreases with i increasing Q for the
fluid § = 4, whereas it increases w1th increasing Q for S = 8. But for the case P, = 1073,
heat transport decreases with increasing Q for S = 4, while it increases with i 1ncreasmg
0 for S = 8 (figure 5).
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