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Abstract. In view of the interesting possibilities of controlling surface tension-driven
convection, anticipated in space experiments involving fluid interfaces, the problem
of the stability of a thin norizontal fluid layer subjected to rotation about a vertical
axis, when the thermal (or concentration) gradient is mnot uniform is examined
by linear stability analysis.  Aftention is focussed on the situation where the
critical Marangoni number is greatet than that for the case of uniform thermal
gradient and the convection is mot, in general, maintained. The case of adiabatic
boundary condition is exantined. becouse it brings out the offect of surface fension
at the free surfaces and allows a simple application of the Galerkin technique, which
gives useful results. Numerical results are obtained for special cases and some
general conclusions about the destabilizing effects of various basic temperaturc pro-
files and the stabilizing effect of coriolis foree arc presented. The results indicate
{hat the most destabilizing temperature gradient is one for which the temperature
gradient is a step function of the depth. Increase in Taylor number and the inverted
parabolic basic temperatuce profile suppress the onset of convection.
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1. Iutreduction

The determination of the criterion for the onsct of convection under micro gravity
condition, i.., gravity reduced by several orders of megnitude ranging from 103%g
to 10-% g, has considerable interest in material science processing in space. It is
usually believed (see Ostrach 1979 ; Polezhaev 1979) that natural convection can-
pot occur in 2 microgravity environment and heat and mass transfer will be exer-
cised by molecular conductivity and diffusion. This is not always true (Ostrach
1979). Convection driven by surface tension gradients is inevitable in material
science experimental configurations in space missions, because such configurations
often invoive fluid interfacss. Experiments on the Apollo 14 and 17 flights
(Grodzka and Bannister 1972 ; Bannister et al 1973) have shown that convection
can still be induced by surface tension effects, even if buoyancy forces are absent.
Neglecting such 2 convection may cause considerable errots in setting up experi-
ments in space and interpreting their tesults. Hence, for material science pro-
cessing in space, it is important to evaluate the critical Marangoni number below
which convection cannot 0cCuT and to suggest the mechanisms to. suppress

convection.
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In small scale fluid mechanics, the fact that interfacial regions between fluid
phases play an jmportant part in driving as well as impeding convection, was
observed for the first time by Block (1956). Pearson (1958) gave detailed n’lathe-
matical analysis for the onset of convection driven by surface tension gradients
Later, Sternling and Scriven (1959) and Seriven and Sternling (1960, 1964) exa-
mined the onset of steady cellular convection driven by surface tension gradients
as an extension of Peatson’s (1958) stability analysis. Nield (1975) examined the
onset of transient convective instability driven by surface tension using the Galer-
Kin methad. But the effect of coriolis force on the surface tension driven convec-
tion has not been given much attention. Recently, Sarma (1979) has investigated
the problem of thermocapillary stability of a thin liquid layer Leated vniformly
from below subjected to Totation about the transverse axis. He has illustrated
the vital Tole of the different boundary conditions and the destabilising character
of the long-wave disturbances at the fluid-fluid interface using a neutral stability
cutve based on analytical solutions of the pertinent eigenvalue problem. These
tesults pertain to basic uniform temperature gradient. In a weightlessness environ-
ment, however, it is difficult to maintain a basic uniform temperature gradient.
There is usually sudden heating or cooling giving rise to a non-uniform basic
temperature gradient. The effect of non-uniform temperature gradient on surface
tension driven convection with rotation about the vertical axis has not been given
much attention. This is investigated in this paper using the single term Galerkin
expansion and considering adiabatic temperature conditions at the boundaries.

Before investigating this problers, let us explain briefly the different mechanisms
of generating convection. For practical applications, convective processes are
cuitably divided inta two categories: (2) buoyancy-induced processes—which

»
depend directly on the gravity g and (b) non-gravitational processes—which
depend on surface tension gradients and which are relevant to microgravity condi-

tions.
The basic principles underlying these processes are outlined below.

1.1, Convection induced by buoyancy

Usually there arc two types of canvection, viz., forced convections and natural of
free convection. Here, we consider only free convection induced by the density
gradient. The density gradient may be either parallel to the gravity but opposing
it of normal to it. The former is usually called Rayleigh-Benard convection and
the latter is called conventional convection ot Ober-Beck convection (Joseph 1976)
where the motion is spontaneous. We explain here only the physical mechanism
of Rayleigh-Benard convection.

Consider a fluid layer occupying the space between two parallel planes,
infipite in horizontal extent separated by a distance d apart, heated uniformly
from below and cooled from above (T, > T;). This means that the density of
the top layer is higher than that of the bottom layer and we expeot that the
motion starts immediately as in conventional convection and converts the internal
energy to. kinetic energy. This is not so because, initially the temperature differ-
ence is not sufficient to overcome the viscous and thermal dissipations. But with
increasing temperature difference, & marginal condition is reached at some point
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in the layer at which it overcomes the viscous and thermal dissipations and the
motion starts. The physical mechanism is that the cold fluid above moves down-
wards and the hot fluid below moves upwards resu lting in the release of potential
energy which can provide kinetic encrgy for the motion. Thus, there is & possi-
bility that the equilibrium isunstable. Flow thus arises not because of the absence
of equilibrium but because the equilibrium is unstable. A fluid heated from
below is less dense at the bottom and therefore unstable. However, the viscosity,
thermal conductivity and boundaries act to stabilise the fluid and create & threshold

- thermal gradient above which convection occurs and below which th: fluid is in
a quiescent state. The point at which the quicscent state breaks down and
the motion starts is called the critical point and the corrssponding temperature
gradient is called the critical temperature gradient. Below this critical temperature
gradient the fluid remains at rest and above it comes into mction. The fluid
establishss hot rising Tegions and cold falling regions with horizontal motion at
the top and bottom tc maintain continuity. If there is no external constraint on
the system to cffset the Jestabilising nature of potential energy, the pattern of con-
vection is uniform, i.e., the cell patterns will not be distorted and we say that the
principle of exchange of stability is valid. This means that the velocity and
temperature fields are in phase so that the rising fluid loses its heat by thermal
conduction when it gets near to the cold top wall and can thus move downwards
again. Similarly, the cold down-going fluid is warmed near the hot bottom wall
and can rise agxin. So, when the flow is established as 2 steady pattern the
continuous Telease of potential energy 18 balanced by viscous dissipation of mecha-
nical energy. The potential energy is provided by the heating from below and
cooling from above. This is usually called the marginel state. If there is an
additional constraint like rotation, magnetic field or salinity on the system, the
velocity and temperature fields will be out of phase and a part of the potential
energy is now balanced by the constraint on the system and hence in the marginal
state, the effect of additional constraint is to inhibit the onset of convection. How-
ever, in the time-dependent motion, a part of the constraint is now balanced by
the local acceleration and less constrained effect is available to balance the poten-
tial energy and oscillatory or overstable convection sets in at 2 lower Rayleigh
aumber than that of the marginal state. Overstable motion will alsc be responsible
for finite amplitude motion. Therefore, in the study of onset of convection, one
has to consider (i) the marginal state, (ii) the overstable state, (iif) finite and
large amplitude steady or overstable motions.

The systematic study of these involves the following three aspects:

(i) The determination of the condition for the onset of convection, which
depends on the magnitude of the temperature difference. This is expressed in
dimensionless form as the critical vatue of the Rayleigh number. The problem
here is to find the critical Rayleigh number at which the quiescent state breaks
down. This is usually the fealm of linear theory based on an infinitesimal pertur-
hation and is expleined in detail by Chandrasekhar (1961) for the case of 2 uni-
form, temperature gradient. The critical Rayleigh number in the case of non-
linear theory based on arbitrary perturbations, usually called universal stability,
is determined using the Liapunov direct method (Joseph 1976; Ru drajah 1972;
Rudraiah and Prabhamani 1973, 1974a,1).
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(i) The nature of cell patiern

The physically feasible cell pattern is the one which transfers maximum heat. I
the quiescent state the transfer of heat is purely by conduction in the absence
of radiation. If H is the rate of heat transfer per unit arca, then H = kA T)d,
where K is the thermal conductivity, AT is the temperature difference and d is
the distance between the plates. When the quiescent state breaks down, the heat
transfer is both by conduction and convection and is expresscd by the dimension-
less parameter

Nu = H/H

called the Nusselt number and H, is the sum of the heat transfer by conduction
and convection. The variation of Nu with the Rayleigh number, Ra, is called
the heat transport curve. Nu remains equal to unity upto the critical Rayleigh
number but increases above unity with the onset of convection, In practice Nu
is determined for two and three-dimensional plan-forms. Of these, the one which
gives the highest value of Nu is called the physically feasible cell pattern. The
detailed structure of the plan-form is mathematically complicated because of the
non-linear nature of the problem. A discussion of the question of the preferred
cell shape, however, has been given by Palm (1960) taking into account the effects
of non-linearity and the variation of viscosity. This is further develored by Segel
and Stuart (1962) and Stuart (1964). The value of Nu is determined by calculat-
ing the amplitude of motion. The linear theory cannot predict the amplitude
and we have to resort to the nonlinear theory. The theory of stability of non-
linear motion based on arbitrary perturbaticns is called vniversal stability (Joseph
1976). This universal stability predicts only the critical Rayleigh number and not
the amplitude. Therefore, to determine the amplitude of motion, one has to
resort to the local nonlinear stability analysis which is pivoted on the linear theory,
This local nonlinear stability is usually investigated using the Galerkin technique
(Pinalyson 1972; Rudraiah and Vortmeyer 1978), Fourier’s truncated Tepresen-
tation (Veronis 1966) and the power integral technique (Stuart 19§8). The pbwcf
integral technique was first proposed by Stuart (1958) and later it wag applied
to convection problems by many authors (Malkus and Veronis 1958: Rudraiah
and Srimani 1980).

(iii) Relative stability criterion

We know that convection sets in at the critical Rayleigh number; below which
there exists a unique basic solution, but above it, in addition to this, many possible
solutions are possible depending on various possible wave numbers and cell shapes.
The question is, of the many solutions above the critical value, which is the stable
one ? To answer this question, a relative stability criterion, has to be investigated
(Malkus and Veronis 1958; Rudraiah and Srimani 1980). This is based on the
result that when all the solutions are orthogonal to each other the fluid chooses
that solution which has the maximum value of heat transport as the stable one,
Although a detailed understanding of the individual solutions and their interactions
is not necessary, some integral properties of these solutions are essential to single
out the stable one. For this purpose, one has to obtain from the momentum and
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energy equations, the power integrals which are nothing but the entropy and
energy balance equations. From this, it is easy to obtain the most general stabi-
lity criterion for convection which in turn determines the stable solution based
on the following physical phenomena :

(i) The stable solution produces more entropy per unit time from the mean
temperature field of any other solution than the one produced by its own
mean field (Malkus and Veronis 1958; Rohini 1979).

(i) The steble solution has a greater mean-square gradient than any other
solutions (Rudraiah and Srimani 1980), The degeneracy will be removed
if there is only one solution.

. (iii) For a stable solution, the rate of dissipation of Kinetic energy minus a
quantity proportional to the rate of increase of entropy by thermal diffusion
is maximum (Rudraizh and Srimani 1980; Rohini 1979).

(b) Convection driven by surface tension variations

A body force is absolutely necessary for the buoyancy-driven convection discussed
above. There is, however, another type of convection which does not depend
on the presence of a body force (see Scriven and Sternling 1960 for a review).
This is interfacial or surface tension-driven motion which obviously demands the
presence of a liquid-liquid or liquid-ges interface in addition to a temperature-
sensitive interfacial tension. In recent years it was believed that many of the
cellular phenomena observed by Benard were probably due not to buoyancy
force but to variation of surface tension with temperature. This was pointed out by
Pearson (1958) and Block (1956), who has developed a linearsied theory, that surface
tension forces suffice to cause convectionin a liquid layer witha free surface, provi-
ded there is a temperature or concentration gradientof the proper sense and sufficient
magnitude. Pearson’s theory agrees in many essentials with experimental
findings. Pearson (1958) have illuminated a neglected type of surface tension-
driven convection. Later Scriven and Sternling (1964) have extended Pearson’s
small-disturbance analysis to a still idealised, yet more realistic model of the fluid
interface, establishing the effects of finite mean surface tension and surface visco-
sity. Their analysis is based on a Newtonian fluid interface in which the local
departure from equilibrium interfacial stress is directly proportional to the local
rate of interfacial strain. By accounting for the possibilities of shape deformations
of the free surface, Scriven and Sternling (1964) found that there is no ecritical
Marangoni number for the onset of stationary instability and that the limiting case
of zero-wave number is always unstable. They have shown that the effect of
surface viscosity of the Newtonian interface is to inhibit stationary instability.
Tt is of inferest to note that in a layer of fluid heated yniformly from below
and bounded on both sides by rigid boundaries, convection sets in only due to
buoyancy forces. However, if 2 layer of liquid is bounded in one side by a free
surface and on the other by a rigid boundary, convective motion may be induced
by a surface tension force due to finite curvature or by the variation of surface
tension from point to point. {
When 2 layer of liquid, bounded below by 2 rigid wall and above by a free
surface, is heated uniformly from below, the hot liquid rises to the free surface
and cools as it moves along the surface, Thus, the temperature can vary along
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the upper surface. Since the surface tension depends on the temperature (for a
liquid it decreases with increasing temperature), there is also a surface tension
gradient along ths free surface. This induces a surface traction which either tends
to pull the fluid along leading to Instability of restrain the flyid motion leading to
stability. Tn shallow layers of the fluid, the surface tension irstability can be pro-
duced at tempetature gradients which are much smaller than those required for
buoyancy driven convection. In fact, Koschmieder (1974) studied a shallow layer
of silicone-oil on a plane circular copper plate uniformly heated from below and
experimentally found that surface-tension forces can produce an array of hexagonal
cells of much greater regularity than that observed in buoyancy-driven convec~
tion. The fluid moves towards the surface at the centre of each of the hexagons
and away from it around thejr peripheries. Benard’s original observations of
ordered hexagonal cells are inconsistent with the buoynacy mechanism because
of very low temperature 8radients, but are consistent with the surface tension
mechanism, In the surface tension-driven mechanism, the setting up of convec-
tion is expressed by a dimensionless number, M = o ATdjpv, called the Maran-
goni number where ¢, is the surface tension (force/length) and all other quanti-
ties are as defined earlier. The conveclion sets in at the criticz] Marangoni
number.

In small scale fluid mechanic s, for example, petioleum engineering, chemical
engineering, biology and so on, zn understanding of the rolls produced by the com-
bined buoyancy and surfacs tension forces is essential. The combined effect of
these rival theorics has been recently investigated by Nield (1964) using linear per-
turbation technique and he has concluded that, for the case of linear density
variation, the coupling between the buoyancy and syrfice tonsion effects causing
instability reinforce one another and a1e tightly coupled. Later Wy and Cheng
(1976) extended Nisld’s linear stability analysis for a horizontal liquid layer
considering surface tension and hy oyancy effects for the case of water with maxi-
mum density effect for the temperature range 0-30°C, Nield’s result shows
that the form of the relation between the Marangoni number and the Rayleigh
number is rather a weak function of the Biot number (9od/xc, gy is the rate of
change with temperature of the time rate of heat loss per unit area from the free
upper surface). But this is not so in the case of Wu and Cheng’s investigation.

We note that the linear theory discussed by Nield (1964) and Wu angd Cheng
(1976) is inadequate to predict the amplitude of such a steady-state solution,
because it assumes explicitly that amplitudes are vanishingly small, and hence a
nonlinear theory predicting steady amplitedes as a function of Rayleigh and wave-
numbers should be considered. A general discussion of nonlinear theory with
surface tension has not been given much attention and is still an open question,

() Convection with internal heat generation

So. far, we have discussed convection due to buoyancy or surface tension or com-
bined buoyancy and surface tension forces in which the flujd temperature decreases
linearly with height. In other words, the heat transport in the quiescent state is
purely by conduction. However, in many practical situations like the extraction
and utilisation of geothermal energy, nuclear reactors, subterranian porgus layers
and in the applications of material sciences in space, it is of interest to determine

‘
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in what way the instability would be aflected if the quiescent state was characte-
rised by a nonlinear temperature profile. Such a nonlinear profile could arise
(Spartow ef al 1964; Tritton and Zarraga 1967; Roberts 1967 3 Nield 1975;
Rudraiah et al 1979, 1980) if there is internal heat generation within the fluid due
to heat sources or due to rapid heating, or cooling, at the boundaries. In such
situations, instead of heating just from below, we have to consider heat genera-
tion throughout the body of the fluid and that the heat leaves the fluid layer
through the upper surface, so that the stratification is again unstable. Tritton and
Zarraga (1967) investigated experimentally the effect of internal heat generation
on convection where the motion is due to instability rather than due to the
absence of an equilibrium configuration. Two striking results emerged from their
experiments. First, the cell structure was, for moderate Rayleigh number, pre-
dominantly hexagonal with motion downwards at the centre of each cell. Secondly,
the horizontal scale of the convection pattern grew larger as the Rayleigh number
was increased above its critical value. Roberts (1967) answered these experimental
challenges using the nonlinear theory and has thrown more light on the advantages
and limitations of his approximate theory of finite-amplitude convection.

A nonlinear temperature distribution also arises due to rapid heating or cool~
ing at a boundary. Theoretical studies of instability with such a nonlinear basic
temperature profile were made by Sutton (1950), Morton (1957), Goldstein (1959),
Lick (1965), Currie (1967) and Nield (1975). The effect of nonlinear basio tempe
rature distribution on surface tension driven convection was analysed by Vida
and Acrivos (1968) and by Nield (1975).

Little work has been done on the combined effect of Coriolis force and non-
linear basic temperature distribution on surface tension driven convection. This
is analysed in the present paper. Since the €oriolis force and the non-uniform
basic temperature gradient arising from sudden heating or cooling are inherent
in all spacecraft environments, the results obtained in this paper will be useful
for material science processing in space. '

2, Formulation of the problem

In this section, we consider the basic equations and the corresponding boundary
conditions. For this, we consider an infinite homogeneous liquid layer of uni-
form thickness d extending to infinity in the x-direction and Totating with a

constant angular velocity 5 about the z-axis which is transverse to. the layer. The
lower surface z =0 is in contact with a fixed rigid plane and the upper surface
z = dis free. The only physical quantities that are assumed to, vary within the
fluid are the temperature, the surface tension, which are regarded as functions of
temperature only, and the rate of heat loss from the surface, which is also a func<
tion of temperature only. The basic temperature profile is nonlinear due to
sudden heating (or cooling) at a boundary.

2.1. Basic equations

The basic equations of motion are:

3; -> > 1 -> -> >
5+(q-v)q=—/;Vp+vv2q- Qxgq, (V)
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V.q=0, (2.
gf’ +@. V) T=xyeF 3

9
whete ¢ =(u,v,w) is the velocity field,
P =the total pressure

~

= the temperature,
p =the density of the flnid,
v =ujp the Kinematic viscosity of the fluidg,
# =the viscosity of the fluid,
= klp the thermal diffusivity,
k =the thermal conductivity,

=

-
@ =(0,0,0) is the uniform angular speed of the system,
v

_d:. 04 8.
=5t t gk
_r e g
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(z': j:IE) =unit vectors in the direction of the space variables (x, y, z).
2.2, Boundary conditions

The boundary conditions on velocity are obtained from mass balance, the ng-
slip condition and the stress principle of Cauchy, depending on whether the
fluid layer is bounded by cither rigid or free surfaces,

2.2a. Rigid surfaces. If the layer is bounded above and below by rigid
surfaces, the no-slip condition is valid and we have

U=v=w=0at z=0 and 4 (5
where d is the thickness of the layer,

In the study of the onset of Convection, it ig customary
in the form

(v, w) = f(z,1) expi(lx + my),

to assume the solution

(6)
In that case the ¢quation of continuity (2) using (5) and (6), gives
?T—Oztz—Oandd )

Thus in the case of rigid boundaries, the boundary conditions on velocity are

W= =0, ®

B T ——
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2.2b.  Free surfaces. If the layer is bounded by free surfaces, the boundary condi-
tions on velocity can be obtained, by equalising the change of surface-tension due
to the temperature variation across the surface to the shear stress experienced
by the liquid at the free surface (Pearson 1958). By balancing the surface-tension
gradient with shear stress at the surface, we have
_ 0o, du da, dv
Tuz =0 —#5} and 7, -(7_))— “/l'a—z
where 4, is the surface-tension, 7., and 7, are the shear stresses,
By proper differentiation and using (2), we get
oo, , e, _ 3w
i T Q)
Pollowing Pearson (1958), we can assume that ¢, can be expanded as the first ’
order in powers of the temperature variations at the surface, in the form
0, =6y — Gy T, (10)
where is @, the unperturbed value of a, and i
~or = (1)
T aT T='Ts.
For most liquias a7 is positive, for as the temperature rises, the difference
between the liquid and its vapour phase decreases. Hence, the suitable boundary
condition at the free surface in the presence of surface tension is
_ a*w _ [(3*T T
w=0 and ey —ﬁ(w +~a}"§> (11 ,;
which in the non-dimensional casc takes the form %3
_ 3w *T T ng
w=0 and —3;')‘ = Mﬂ (W -+ —a}-c,: (12) ! j
Td '
where M, = IrATa ‘
K

is the Marangoni number,

In the absence of variation of surface-tension with temperature the boundary
conditions on velocity at the free-surface are

2

w=%z—§”=0 ot Z=0 and d. 13)

2.2c Thermal boundary conditions, In the study of convection, the thermal
conditions applied at the upper and lower surfaces of the fluid are based on the
supposition that these surfaces are in contact with the materials of infinite thermal
conductivity and heat capacity, For, the temperature at the surface is not per-
turbed when the quiescent state breaks down. A more general thermal boundary
condition is ’

arT

T=la;,

(14)
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where 1 is a constant depending on the thermal properties of the boundary and
the liquid. The extreme cases A =0 and A2 =0 are limiting approximations
for temperature perturbations to a very good and bad conductor respectively,
In practice, these are referred to as the isothermal and adiabatic cases, In the
case of free surfaces, however, the actuyal physical sity ation, viz,, the heat exchange
between the surface and environment, suggests that the standard therma] boundary
condition of fixed temperature (i.e., isothermal) may be tog restrictive, In that
case, adiabatic boundary conditions

gg=o at z=0 and d (15)

are more realistic,

2.3. Dimensionless parameters

Considerable insight into the quelitative nature of the problem can be obtained
from dimensional analysis. The dimensionless parameters determined from the
basic equations and boundary conditiong help to understang very complex pheng-
menon. The following non-dimensional parameters gre used in the study of
-convection problems.

(i} The Rayleigh number
Ra = ygfdyvic

where B is the adverse temperature gradient maintained between the upper and
lower boundaries, y is the Volumetric expansion coefficient, d is the depth of
the layer, « is the thermal diffusivity and ths other quantities are as defined
before. Physically, the Rayleigh number represents the balance of energy released
by buoyancy force to the energy dissipation by viscous friction and therma] dissipa-
tion. The Rayleigh number appears in the energy cquation, so that the heat
transfer is related to it :

(ii) The Marangoni number

3, = TATd
UK

where 0p = 35/0T is the tate of decrease of surface tension  with increasing

temperature, and other quantities are ag defined earlier. This Maran goni number

is independent of gravity and physically it Tepresents the ratio of syrface tension

force to dissipative forces.

(iii) The Prandtl number

¢ = 200
K

which is a measure of diffusion of vorticity to heat, In convection problems
although the mechanism of the release of thermal energy driving convection is
basically simple, a rich variety of phenomena is exhibited by nonlinear convective
motions. This variety stems particularly from the dependence of the motion on

e —
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the Prandtl number. At high Prandtl numbers, the nonlinear terms in the equa-
tions of motion are of minor importance and the properties of convection are domi-
nated by thermal boundaries. At Prandtl numbers of the order of unity and lower,
the momentum terms cause a transition from stcady convective rolls to time-
dependent oscillatory convection.

(iv) The Grashof number
G — ygﬁd4 Rd

v g
measures the ratio of buoyancy force to viscous force. Since the Grashof
number appears in the basic equation of motion, the fluid velocities are directly

related to it. For large Grashof numbers (G, > 1), the fluid velocities » can be
estimated from

v = /G, - ;1} = \/1gATd
whereas for small Grashof numbers (G, < 1)
v =G, 5, = zg_A;Tilz .
(v) The Taylor number
S? =4Q% dYv,

which represents the ratio of coriolis force to viscous force,

(vi) The Nusselt number
Nu = H/xfn,

where His the vertical heat flux, B, is the vertical average of the adverse tempe-
ratere gradient and x is the thermal diffusivity.

(vii) The Bond number

The relative impotiance of buoyancy or surface tension in setting up of convec-
tive motion can be estimated by the dimensionless number

B, = pgd*(ax,

called the Bond number, which is the measure of the ratio of gravitational to
surface tension forces.

2.4. Simplification of nonlinear forces

The equations of motion (1) to (4) are highly nonlincar and hence the determina-
tion of solution either analytically or numerically is very complicated. To under-
stand the physical insight with reasonable mathematics, usually some assump-
tions are made. One of the assumptions is that the maximum temperature fluctu«
ations from the mean must be small. In terms of the dimensionless parameters
this amounts to saying that the deviation of the critical Marangoni number M,

=5
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from the Marangoni aumber is small (ie., M, — M, <1). This assumption

> -> -
implies that the nonlineer terms (g +V)gq and (¢- V)T in equations (1) and
(3) can be divided into terms which are finite when averaged over a horizontal
plane and into terms of zero average. To achieve this, we let

T* = T(2) + T(x,7,21) (16)
If the bar over a quantity denotes the average over a horizontal plane
1 1 "
(=Z7Tb‘n f Jf ()dxdy),
-1 -

then we have

T* = T(2), T(x,y,21) =0, 17
substituting (16) inta (3) and dividing by (pc); we get
3 >
?7; -xV:T—x ¢ ;:2(-2) =pv -V T, (18)
2 ppe 0T
where w=gq.k fi= P

is the negative vertical gradient of mean temperature. Taking the horizontal
plane average of (18), we get

L z5a)} (19

which on integration yields
kf + WT = H, ' (20)
where H is the vertical heat flux in the fluid.

Thus, taking the vertical average

(-4 f we)

of (20) we get .
Kfim + (W)m = H, (21)

where the suffix = denotes the vertical average. From (20)and (21), we get

. bm o
Equation (18) using (19) and (22) becomes

./%t;_xw_ﬂmw((wﬂm;(ﬁ))w_M,, ()

£_14 ! [(ﬁ)m—(ﬁ)]. (22)
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where
b= V)T -2
—(q V) - az(w )
is the zero-average heat convection term.

Eliminating pressure p in (1), we get

[/ g
a~t(v~w)+29-é§2=vv4w+L, (29

where L-—g[i (->~v) +~a¥—’. vz".
=l @ Vuty (e V)| =Vig v,

ot | 9?

s _ 9 L9

vl ax: + 3_}’2 ’
dv  du
is the vertical component of vorticity. From the first two cquations of (1), we
can get an equation relating w and { in the form

a¢ 2 ow
-(,)-t—vv C-—ZQ;,E-—Z, (25)

1 9 > 9 -
where Z_ax(q.v)v—(—?}(q.v)u,

is a zero-average nonlinear terni.

The local nonlinear stability is usually investigated using the solutions of the
form

wo=ewg+ Wt ewpt o,

v = v+ v+ Ev
u o= e+ uy + tugt o
T =ely+ &L+ T+ 0,
My=My+ cMa+ & Mpt+ s (26)

where ¢ is a constant paramcter satisfying the suitable houndary conditicns. The
first term in each (26) corresponds to the linear stability analysis which is studied
in the next section.

3. Condition for the onset of surface tension driven convection

The condition for the onset of convection can be determined using the linear
stability analysis. This is connected with the solutions of the first-order equations
in (26) where the amplitude varies exponentially with time. In other words, for
first order solutions to be complete, it is necessary that the parameter ¢ in (26)
must be proportional to the amplitude of the disturbance and this amplitude must
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be infinitesimal. Neglecting the non-linear terms in (23) to (25) and making the
equations dimensionless using d as the length scale, d*« ag the time scale, k/d as
the velocity scale and ukjopdas the temperature scale, we get

(Glot = VH T~ M af(2)w=0, , 27
F ‘
(oo -V3 L =S5 =0, (28)
Ew

(N djat = V) Viw + S 0. (29}

a2

The dimensional temperature gradient f (z) must satisfy

[fd=1.

The scales for w and T have been chosen such that M, appears symmetrically
in (27) and in the boundary conditions (see below) rather thap in just the cnergy
equation or the boundary condition. This choice enables us to establish a varia-
tional principle for the present set of equations and as Finlayson (1972) shows,
this leads to the conclusion that the eigenvalve M, is stationary in the Galerkin
method which we shall apply below.

We now apply the Gelerkin method as described by Nield (1975). It is shown
that the consideration of even a single term in the expansions of w and T would
give an accurate estimate for the critical value of M, in certain cascs. In other
wotds, we set w = AW, and T = BT, where W, and T; are suitably chosen trial
functions and 4 and B are arbitrary constants. The presence of rotation, as
explained in § 1, sets up overstable motions only for small values of the Prandtl
number o (see Veronis 1966; Rudraiah and Rohini 1975). For other values of
Prandt]l numbers, however, overstable motion is not possible and the principle
of exchange of stability is valid, i.e., marginal stability is valid. The present ana-
lysis deals with the marginal stability, The marginal stability solution is the one
for which the time derivatives in the differential equations (27) to (29) are zero.

Assuming the solutions for w and T'in the form

F(z) exp (i(Ix + my))
equations (27) and (29) take the form

(D* - a%ow + 52 DWW =0, (30
(D*=a) T+ aM* f(z)w=0 (3H
d 402
where D = 77 a*=1% + mrand §* = 4—%;% is the Taylor number.

The boundary conditions for a rigid bottom and & free upper surface with
temperature-dependent surface tension, cach subject to a constant heat flux, are

W=DW=DT=0at z=0 T (32)
W=DW+MP2eT=DT=0atz=1. (33)
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Multiplication of (30) by W and (31) by T and integration of the resulting
equation by patts with respect to 2 (frem O to 1) yields, after making use of the
boundary conditions, the following:

3a% M2 DW(1) T(1) = — (D*W)? + 3a*(D* W)* +(3a" + 5% (DW)?
+ (% W), (34)
MM2 g (f(2) WT) = {(DT)* + a* T, (35)

where the angle bracket { ) denotes the integration with respectto z in the limit
0 to 1.
Substituting W = AW, and T = BT, into (34) and (35), eliminating dand B
and dropping the suffixes, we get
( DSW)2+3a2 (D2 W)2-H(3at %) (DW)2+{ & W?) { (DT)*+a* T*)

M, = =————""3pw(Iy (1) (& WD)

(36)

We select the trial functions as W = (1 —z)zZand T =1 so that they satisfy
all the boundary conditions except the one given by D* W + M2aT=0at z=1
and a residual from this equation is included in a residual from the differential
equation. The term on ths left-hand side of (34) tepresents this residual.

Substituting these trial functions into (36) we get

_xd 4 4228 4 1260 + 1452 + 3780

M, IROICET )

whete % = >

(37

For any given f(2), M, attains its mipimum when g, = %2, where x, satisfies
the equation

x84 20x? — (782 + 1890) =0. (38)
3.1. Onset of convection for various temperature profiles

Case 1 : Uniform temperature gradient

For uniform temperature gradient, that is for the linear basic temperature profile
f(z) =1 and (37) takes the form

12
5%

M, = [x3 + 42x2 + 1260 x + 1452 + 3780]. (39)

The critical wavenumber and the corresponding Marangoni numter denoted
by (Mac), vary with the Taylor number as shown in table 1 of §4.

Case 2 : Piece-wise basic temperature profile for heating from below

When the layer of liquid is heated from below &t a constent rate, we know (Nield,
1975) that the non-uniform basic temperature gradient f(z) is not only non-negative
but also decreases monotonically. Thus, we are interested in knowing which
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temperature profile gives the least Mo subject to f(2) > 0. Recently, Nield (1973)
has demonstrated that the picce-wise linear profile with f(z) given by

lJe for 0gz< ¢
f(“‘)*{o fore < zg1

is the appropriate one, in the absence of Coriolis force. Even in the presence of
Coriolis force, we cap demonstrate that this piece-wise lincar profile given by
(40), with ¢ suitably chesen, is the appropriate one, at least for disturbances of
small wavenumbers,

Thus, for the bottom heatin 8 piece-wise lincar profile, substituting (40) into (37,
we get

(40)

= 120x% + 4292 + 1260 x + 1452 1 378)
M= MSx(d4et 33— - (41)

Then the critica] Marangoni number is given by

A
Mau = max (462 — 363) (42)

whete A = (M,), for linear profile discussed above, But,
max (42 —3¢3) = 1-0534977,

Thus, as e increases from 0 to 1, M,, decreases from + 0 to & minimum value of

__A
(Me: = Tog33577 (43)

at € =0-8889, and then increases to A at € = 1,

Case 3 : Piecewise bagic lemperature profile for cooling from above

When the layer of liquid is cooled from above at & Constant rate, the temperature
gradient is not only non-negative but also monotonically decreasing, In this case,
the piece-wise linear profile is

0 0<z<1-¢
f(z)={e“1 Il -e<zg1 (44

Substituting this in (37), we get

= 12(6% + 42%% + 1260x + 1452 4 3780)
M, = 3?53:(3 €8 — 82 & 6¢) (43)

and the corresponding critical Marangoni number is
s 8 46
Mo, Max (3¢3 - 8% & 6¢) (46)
As e increases from 0 to 1, M,, decreascs from + oo to 2 minimum value of

(My)s = F?Aaf) at € =0-5375 (47)

———— S
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and then increases to A at e =1, Comparing (47) with (43), we find that
cooling from above is mare effective, as expected, in redvcing eigenvalue, thap
heating from below.

Case 4 1 Parabolic basic temperature profile

In the ahsence of rotation Debler and Wolf (1970) have considered the problem
with a parabalic distribution in which the basic temperature gradient is zero at
the lower boundary, for which f (2) =2z. Even in the presence of Coriolis force,
the parabolic basic temperature distribution leads to f(2) = 2z. In this case (37)
takes the form

M. = 10 (%3 + 42x2 + 1260x + 145? + 3780)
¢ 315x ’

Then the critical Marangoni number is

(48)

M)i=55. (49)
Comparing (39), (43), (47) and (49) we find that
(Maa)a < (Mnc)4 < (le)Z < (Mao)l-

Case 51 Inverted pardbolic temperature profile

For inverted parabolic profile f(2) =2(1 - 2) (see Nield, 1975, pp. 448), (37)
takes the form

15 A 1 |
M, = ?ES—x(xs + 42x% + 1260x + 14 S* 4 3780),

and the corresponding critical Marangoni number is
| (Mu)s = 1-25A. (50)

Comparing this with the earlier results we find that as expected on physical
grounds, inverted parabolic basic temperature profile is more stabilising. Thus,
this profile is suitable for suppressing the onset of convection driven by surface
tension. This result is of immense utility in material science experimental
configurations in space.

Case 6 2 Step-function basic temperature profile

We consider the step-function profile in which the basic temperature drops sud-
denly by an amount AT at z = ¢, but is otherwise uniform, and is of the form

f(2) =8(z = o), (51

whete « is the value of z at which wT has a maximum and § denotes the Dirac
delta function. In this case (37) takes the form

% 428 4 1260 % + 3780 + 1457
= 5% (< = &9 :

M, (52)

MS.-5
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Then the critical Marangoni number is

A
M = 12 Max (€% —~ ¢9) (53)
which has 2 minimum value
(M) = I%TS attained at ¢ = 0-6667. | (549)

Thus, the most unstable basic temperature profile, for which f(z) > 0 everywhere,
is the step-function profile for which the step occurs at the level at which w is
maximum, since T'is constant in our approximation.

4. Conclusions

The single-term Galerkin method provides a quick means for obtaining the above
results in the presence of Corialis force with different basic temperature profiles.
The results (39), (43), (47), (49), (50) and (54) give the critical wavenumbers and
the corresponding Marangoni numbers which vary with the Teylor number,
These are numerically evalvated for different values of S? and the results are
tabulated in table 1.

When the basic temperature gradient is uniform, the condition for the onset of
conveotion driven by surface tension in the presence of Coriolis force was investj-
gated by Sarma (1979). He obtained exact analytical solutions which are mathe-
matically cumbersome and the critical Marangoni numbgr for different values
of Sare obtained from them. The results of table 1, for (M,,), are compared with
those of Sarma (1979, figure 4) and a good agreement is found. Thus, even 2
single term Galerkin expansion employed here gives accurate results, This table
also reveals that

(Man)s < (My)a < (Mi)s < (M), < (M),

Table 1, Values of the Crttical Marangoni and wavenumbers for various valyes
of Taylor number.

P . o

§* 8, (M) Mk (M), L) (M) (M)

0 0:0000 48-00 45-56 34.79 40-00 60-00 27-00
107 28399 81-24 7712 58-89 67-70 101-55 4570
10° 2-8420 81-30 7117 58-93 67-75 101-63 4573
10 2-3625 81-89 77-13 5936 68-24 102-37 46-0¢
102 3-0418 87-39 82-95 63-35 72-83 109-24 49-16
10° 3-9482 125-65 119-27 91-08 104-71 157-06 70-63
10¢ 5:9691 307-10 - 291 -.’;()" - 222-597. 255-91 383-87 17274
108 13-5853 453145  4301-34 3284-58, 377621 . 5664-31  2548.94
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Thus, the most unstable basic temperature profile is the one for which the
temperature gradient is a Direct delta function and the mest stable basic tempe-
ratute profile is the one for which the temperature profile is an inverted parzbola,
In the absence of Coriolis force, however, Nield (1975) has calculated the critical
Marangoni number for the inverted parzbolic profile and found that (M,)s = 60
at the oritical wavenumber @, = 0. Comparing this value with the values of (M,0)s
in table 1, we conclude that inciease of the Taylor number Suppresses convcction,
This conclusion is also true for other temperature gradicnts. These findings sub-
stantiate our objective that rotation and a particular cheice of basic temperature
gradient suppress the cnset of convection driven by surface tension.

Experimental work to. confirm the present results is needed. We suggest that
using a solution, such as sugar solution, whose concentration zcts as the diffusing
quantity, rather than heat, would be convenient to carry out the analysis, since
the condition of constant mass flux could then be satisfied without eny effort.
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