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Abstract

The generation of the right amount of baryon asymmetry η of the Universe from

supersymmetric leptogenesis is studied within the type-I seesaw framework with three

heavy singlet Majorana neutrinos Ni (i = 1, 2, 3) and their superpartners. We assume

the occurrence of four zeroes in the neutrino Yukawa coupling matrix Yν , taken to be

µτ symmetric, in the weak basis where Ni (with real masses Mi > 0) and the charged

leptons lα (α = e, µ, τ) are mass diagonal. The quadrant of the single nontrivial phase,

allowed in the corresponding light neutrino mass matrix mν , gets fixed and additional

constraints ensue from the requirement of matching η with its observed value. Special

attention is paid to flavor effects in the washout of the lepton asymmetry. We also

comment on the role of small departures from high scale µτ symmetry due to RG

evolution.

1 Introduction

Baryogenesis through leptogenesis [1, 2, 3] is a simple and attractive mechanism to explain

the mysterious excess of matter over antimatter in the Universe. A lepton asymmetry is first

∗biswajit.adhikary @saha.ac.in
†ambar.ghosal@saha.ac.in
‡probir.roy@saha.ac.in

http://arxiv.org/abs/1009.2635v2


generated at a relatively high scale (> 109 GeV). This then gets converted into a nonzero

η, the difference between the baryonic and antibaryonic number densities normalized to the

photon number density (nB − nB̄)n
−1
γ , at electroweak temperatures [4] due to B + L violat-

ing but B − L conserving sphaleron interactions of the Standard Model. Since the origin of

the lepton asymmetry is from out of equilibrium decays of heavy unstable singlet Majorana

neutrinos [5], the type-I seesaw framework [6, 7, 8, 9, 10], proposed for the generation of light

neutrino masses, is ideal for this purpose. We study baryogenesis via supersymmetric lepto-

genesis [11] with a type-I seesaw driven by three heavy (> 109 GeV) right-chiral Majorana

neutrinos Ni (i = 1, 2, 3) with Yukawa couplings to the known left chiral neutrinos through

the relevant Higgs doublet. There have been some recent investigations [12, 13, 14, 15] study-

ing the interrelation between leptogenesis, heavy right-chiral neutrinos and neutrino flavor

mixing. However, our angle is a little bit different in that we link supersymmetric leptogen-

esis to zeroes in the neutrino Yukawa coupling matrix. In fact, we take a µτ symmetric [16]

neutrino Yukawa coupling matrix Yν with four zeroes [17] in the weak basis specified in the

abstract.

There are several reasons for our choice. First, a seesaw with three heavy right chiral

neutrinos is the simplest type-I scheme yielding a square Yukawa coupling matrix Yν on which

symmetries can be imposed in a straightforward way. Second, µτ symmetry [18] - [46] in the

neutrino sector provides a very natural way of understanding the observed maximal mixing

of atmospheric neutrinos. Though it also predicts a vanishing value for the neutrino mixing

angle θ13, the latter is known from reactor experiments to be rather small. A tiny nonzero

value of θ13 could arise at the 1-loop level via the charged lepton sector, where µτ symmetry

is obviously broken, though RG effects if the said symmetry is imposed at a high scale [16].

Third, four has been shown [17] to be the maximum number of zeroes phenomenologically

allowed in Yν within the type-I seesaw framework in the weak basis described earlier. Finally,

four zero neutrino Yukawa textures provide [47] a very constrained and predictive theoretical

scheme - particularly if µτ symmetry is imposed [16].

The beautiful thing about such four zero textures in Yν is that the high scale CP violation,

required for leptogenesis, gets completely specified here [17] in terms of CP violation that

is observable in the laboratory with neutrino and antineutrino beams. In our µτ symmetric

scheme [16], which admits two categories A and B, the latter is given in terms of just one

phase (for each category) which is already quite constrained by the extant neutrino oscillation

data. Indeed, the quadrant in which this phase lies - which was earlier unspecified by the

same data - gets fixed by the requirement of generating the right size and sign of the baryon
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asymmetry. Moreover, the magnitude of this phase is further constrained.

In computing the net lepton asymmetry generated at a high scale, one needs to consider not

only the decays of heavy right-chiral neutrinos Ni into Higgs and left-chiral lepton doublets

as well as their superpartner versions but also the washout caused by inverse decay processes

in the thermal bath. The role of flavor [48, 49, 50, 51] can be crucial in the latter. In the

Minimal Supersymmetric Standard Model (MSSM [52]), this has been studied [53] through

flavor dependent Boltzmann equations. The solutions to those equations demonstrate that

flavor effects show up differently in three distinct regimes depending on the mass of the

lightest of the three heavy neutrinos and an MSSM parameter tan β which is the ratio

vu/vd of the up-type and down-type Higgs VEVs. In each regime there are three Ni mass

hierarchical cases : (a) normal, (b) inverted and (c) quasidegenerate. All these, considered

in both categories A and B, make up eighteen different possibilities for each of which the

lepton asymmetry is calculated here. That then is converted into the baryon asymmetry by

standard sphaleronic conversion and compared with observation. These lead to the phase

constraints mentioned above as well as a stronger restriction on the parameter tan β in some

cases.

If µτ symmetry is posited at a high scale characterized by the masses of the heavy Majorana

neutrinos, renormalization group evolution down to a laboratory energy λ breaks it radia-

tively. Consequently, a small nonzero θλ13, crucially dependent on the magnitude of tanβ,

gets induced. The said new restrictions on tanβ coming from η in some cases therefore cause

strong constraints on the nonzero value of θλ13 which we enumerate.

One possible problem with high scale supersymmetric thermal leptogenesis is that of the

overabundance of gravitinos caused by the high reheating temperature. For a decaying

gravitino, this can lead to a conflict with Big Bang Nucleosynthesis constraints, while for a

stable gravitino (dark matter) this poses the danger of overclosing the Universe. The problem

can be evaded by appropriate mass and lifetime restrictions on the concerned sparticles, cf.

sec. 16.4 of ref [52]. Such is the case, for instance, with gauge mediated supersymmetry

breaking with a gravitino as light as O(KeV) in mass. In gravity mediated supersymmetry

breaking there are sparticle mass regions where the problem can be avoided – especially

within an inflationary scenario. An illustration is a model [54], with a gluino and a neutralino

that are close in mass, which satisfies the BBN constraints. Purely cosmological solutions

within the supersymmetric inflationary scenario have also been proposed, e.g. [55]. We feel

that, while the gravitino issue is one of concern, it can be resolved and therefore need not
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be addressed here any further.

The plan of the rest of the paper is as follows. In section 2 we recount the properties

of the allowed µτ symmetric four zero Yν textures. Section 3 contains an outline of the

basic steps in our calculation of η. In section 4, η is computed in our scheme for the three

different heavy neutrino mass hierarchical cases in the regimes of unflavoured, fully flavored

and τ -flavored leptogenesis for both categories A and B. Section 5 consists of our results on

constraints emerging from η on the allowed µτ symmetric four zero Yν textures. In section

6 we discuss the departures - due to RG evolution down to laboratory energies - from µτ

symmetry imposed at a high scale ∼ min (M1,M2,M3) ≡ Mlowest. Section 7 summarizes

our conclusions. Appendices A, B and C list the detailed expressions for η in each of the

eighteen different possibilities.

2 Allowed µτ symmetric four zero textures of Yν

The complex symmetric light neutrino Majorana mass matrix mν is given in our basis by

mν = −1

2
v2uYνdiag.(M

−1
1 ,M−1

2 ,M−1
3 )Y T

ν = Udiag.(m1, m2, m3)U
T . (2.1)

We work within the confines of the MSSM [52] so that vu = v sin β and the W-mass equals
1
2
gv, g being the SU(2)L semiweak gauge coupling strength. The unitary PMNS mixing

matrix U is parametrized as

U =









1 0 0

0 c23 −s23

0 s23 c23

















c13 0 −s13e
−iδD

0 1 0

s13e
iδD 0 c13

















c12 s12 0

−s12 c12 0

0 0 1

















eiαM 0 0

0 eiβM 0

0 0 1









,

(2.2)

where cij = cos θij , sij = sin θij and δD, αM , βM are the Dirac phase and two Majorana

phases respectively.

The statement of µτ symmetry is that all couplings and masses in the pure neutrino part of

the Lagrangian are invariant under the interchange of the flavor indices 2 and 3. Thus

(Yν)12 = (Yν)13, (2.3a)

(Yν)21 = (Yν)31, (2.3b)

(Yν)23 = (Yν)32, (2.3c)
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(Yν)22 = (Yν)33 (2.3d)

and

M2 = M3. (2.4)

Eqs. (2.3) and (2.4), in conjunction with eq.(2.1), lead to a custodial µτ symmetry in mν :

(mν)12 = (mν)21 = (mν)13 = (mν)31, (2.5a)

(mν)22 = (mν)33. (2.5b)

Eqs. (2.5) immediately imply that θ23 = π/4 and θ13 = 0. With this µτ symmetry, it was

shown in Ref. [16] that only four textures with four zeroes in Yν are allowed. These fall into

two categories A and B - each category containing a pair of textures yielding an identical

form of mν . These allowed textures may be written in the form of the Dirac mass matrix

mD = Yνvu/
√
2 in terms of complex parameters a1, a2, b1, b2.

Category A : m
(1)
DA =









a1 a2 a2

0 0 b1

0 b1 0









, m
(2)
DA =









a1 a2 a2

0 b1 0

0 0 b1









, (2.6a)

Category B : m
(1)
DB =









a1 0 0

b1 0 b2

b1 b2 0









, m
(2)
DB =









a1 0 0

b1 b2 0

b1 0 b2









, (2.6b)

The corresponding expressions for mν , obtained via eq.(2.1), are much simplified by a change

of variables. We introduce overall mass scales mA,B, real parameters k1, k2, l1, l2 and phases

ᾱ and β̄ defined by

Category A :

mA = −b21/M2, k1 =
∣

∣

∣

∣

a1
b1

∣

∣

∣

∣

√

M2

M1
, k2 =

∣

∣

∣

∣

a2
b1

∣

∣

∣

∣

, ᾱ = arg
a1
a2

. (2.7a)

Category B :

mB = −b22/M2, l1 =

∣

∣

∣

∣

a1
b2

∣

∣

∣

∣

√

M2

M1
, l2 =

∣

∣

∣

∣

∣

b1
b2

∣

∣

∣

∣

∣

√

M2

M1
, β̄ = arg

b1
b2
. (2.7b)

Then the light neutrino mass matrix for each category can be written as [53]

mνA = mA









k2
1e

2iᾱ + 2k2
2 k2 k2

k2 1 0

k2 0 1









, mνB = mB









l21 l1l2e
iβ̄ l1l2e

iβ̄

l1l2e
iβ̄ l22e

2iβ̄ + 1 l22e
2iβ̄

l1l2e
iβ̄ l22e

2iβ̄ l22e
2iβ̄ + 1









. (2.8)
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We shall also employ the matrix

h = m†
DmD (2.9)

which is identical for the two textures of Category A as well as for the two textures of

Category B. Indeed, it can be given separately for the two categories as

hA = |mA|M1









k2
1 x1/4k1k2e

−iᾱ x1/4k1k2e
−iᾱ

x1/4k1k2e
iᾱ

√
x(1 + k2

2)
√
xk2

2

x1/4k1k2e
iᾱ

√
xk2

2

√
x(1 + k2

2)









, (2.10a)

hB = |mB|M1









l21 + 2l22 x1/4l2e
−iβ̄ x1/4l2e

−iβ̄

x1/4l2e
iβ̄

√
x 0

x1/4l2e
iβ̄ 0

√
x









, (2.10b)

where

x =
M2

2=3

M2
1

. (2.11)

Restrictions on the parameters k1, k2, cos ᾱ and l1, l2, cos β̄ from neutrino oscillation data

were worked out in ref. [16]. The relevant measured quantities are the ratio of the solar to

atmospheric neutrino mass squared differences R = ∆m2
21/∆m2

32 and the tangent of twice

the solar mixing angle tan 2θ12. One can write

R = 2(X2
1 +X2

2 )
1/2

[X3 − (X2
1 +X2

2 )
1/2

]
−1
, (2.12a)

tan 2θ12 =
X1

X2

. (2.12b)

The quantities X1,2,3 are given for the two categories as follows :

Category A :

X1A = 2
√
2k2[(1 + 2k2

2)
2
+ k4

1 + 2k2
1(1 + 2k2

2) cos 2ᾱ]
1/2

, (2.13a)

X2A = 1− k4
1 − 4k4

2 − 4k2
1k

2
2 cos 2ᾱ, (2.13b)

X3A = 1− 4k4
2 − k4

1 − 4k2
1k

2
2 cos 2ᾱ− 4k2

2. (2.13c)

Category B :

X1B = 2
√
2l1l2[(l

2
1 + 2l22)

2
+ 1 + 2(l21 + 2l22) cos 2β̄]

1/2
, (2.13d)

X2B = 1 + 4l22 cos 2β̄ + 4l42 − l41, (2.13e)

X3B = 1− (l21 + 2l22)
2 − 4l22 cos 2β̄. (2.13f)
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We also choose to define

XA,B = (X2
1A,B +X2

2A,B)
1/2

. (2.14)

At the 3σ level, tan 2θ12 is presently known to be [56] between 1.83 and 4.90. For this range,

only the inverted mass ordering for the light neutrinos, i.e. ∆m2
32 < 0, is allowed for Category

A with the allowed interval for R being −4.13× 10−2 eV 2 to −2.53× 10−2 eV 2. In contrast,

the same range of tan 2θ12 allows only the normal light neutrino mass ordering ∆m2
32 > 0 for

Category B with R restricted to be between 2.46 × 10−2 eV 2 and 3.92 × 10−2 eV 2. A thin

sliver is allowed [16] in the k1− k2 plane for Category A, while a substantial region with two

branches is allowed [16] in the l1− l2 plane for Category B. Finally, cos ᾱ is restricted to the

interval bounded by 0 and 0.0175, while cos β̄ is restricted to the interval bounded by 0 and

0.0523. Thus, ᾱ, β̄ could be either in the first or in the fourth quadrant. The interesting new

point in the present work is that the baryogenesis constraint leads to restrictions on sin 2ᾱ

and sin 2β̄ to the extent of removing the quadrant ambiguity in ᾱ and β̄.

3 Basic calculation of baryon asymmetry

Armed with µτ symmetry as well as eqs. (2.8) and (2.10), we can tackle leptogenesis at a scale

∼ Mlowest. There are three possible mass hierarchical cases for Ni. Case (a) corresponds to a

normal hierarchy of the heavy Majorana neutrinos (NHN), i.e. Mlowest = M1 << M2 = M3.

In case (b) one has an inverted hierarchy for Ni (IHN) with Mlowest = M2 = M3 << M1.

Case (c) refers to the quasidegenerate (QDN) situation with M1 ∼ M2 ∼ M3 ∼ Mlowest.

Working within the MSSM [52] and completely neglecting possible scattering processes [53]

which violate lepton number, we can take the asymmtries generated by Ni decaying into a

doublet of leptons Lα and a Higgs doublet Hu as

ǫαi =
Γ(Ni → LC

αHu)− Γ(Ni → LαH
C
u )

Γ(Ni → LC
αHu) + Γ(Ni → LαHC

u )
≃ 1

4πv2uhii

∑

j 6=i

[

Iα
ijf(xij) + J α

ij

1

1− xij

]

, (3.1)

Iα
ij = Im [(m†

D)iα(mD)αjhij], (3.2)

J α
ij = Im [(m†

D)iα(mD)αjhji], (3.3)

where

xij = M2
j /M

2
i (3.4)
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and

f(xij) =
√
xij

[

2

1− xij
− ln

1 + xij

xij

]

. (3.5)

We note here that the J α
ij term does not contribute to ǫαi in our scheme since it vanishes [16]

on account of µτ symmetry. Further, contributions to ǫαi from Ni decaying into sleptons and

higgsinos and from sneutrinos Ñi decaying into sleptons and Higgs as well as into leptons and

higgsinos have been included by appropriately choosing the xij-dependence in the RHS of eq.

(3.5). Observe also that Iα
1j (and hence ǫα1 ) gets an overall minus sign from Im(e−iᾱ, e−iβ̄),

whereas Iα
2j , Iα

3j (and hence ǫα2,3) get an overall plus sign from Im(eiᾱ, eiβ̄). Except for being

positive in the region 0.4 ≤ xij < 1, the function f(xij) of eq.(3.5) is negative for all other

values of its argument. These signs are crucial in determining the sign of η and hence those

of ᾱ, β̄.

The decay asymmetries ǫαi get converted into a lepton asymmetry Y α = (nα
l −n̄α

l )s
−1, s being

the entropy density and nα
l (n̄α

l ) being the leptonic (antileptonic) number density (including

superpartners) for flavor α via the washout relation [53]

Y α =
∑

i

ǫαi Kα
i g

−1
⋆i . (3.6)

In eq. (3.6), g⋆i is the effective number of spin degrees of freedom of particles and antiparticles

at a temperature equal to Mi. Furthermore, when all the flavors are active, the quantity

Kα
i is given by the approximate relation [12, 51], neglecting contributions from off-diagonal

elements of A,

(Kα
i )

−1 ≃ 8.25

|Aαα|Kα
i

+

(

|Aαα|Kα
i

0.2

)1.16

. (3.7)

In eq. (3.7), Kα
i is the flavor washout factor given by

Kα
i =

Γ
(

N → LαH
C
u

)

H(Mi)
=

|mDαi|2
Mi

MP l

6.64π
√
g⋆iv2u

, (3.8)

MP l being the Planck mass. This follows since the Hubble expansion parameter H(Mi) at a

temperature Mi is given by 1.66
√
g⋆iM

2
i M

−1
P l . Moreover, to the lowest order, Γ(Ni → LαH

C
u )

equals |mDαi|2Mi(4πv
2
u)

−1
. An additional quantity, appearing in eq. (3.7), is Aαα, a diagonal

element of the matrix Aαβ defined by

Y α
L =

∑

β

AαβY β
∆ . (3.9)
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Here Y α
L = s−1(nα

L − n̄α
L), n

α
L being the number density of left-handed lepton and slepton

doublets of flavor α and Y α
∆ = 1

3
YB −Y α, YB being the baryonic number density (normalized

to the entropy density s) including all superpartners. The precise forms for Aαβ in different

regimes of leptogenesis will be specified later.

One can now utilize the relation between YB = (nB − nB̄)s
−1 and Yl =

∑

αY
α, namely [57]

YB = − 8nF + 4nH

22nF + 13nH
Yl, (3.10)

where nF (nH) is the number of matter fermion (Higgs) SU(2)L doublets present in the

theory at electroweak temperatures. For MSSM, nF = 3 and nH = 2 so that eq. (3.10)

becomes

YB = − 8

23
Yl. (3.11)

The baryon asymmetry η = (nB − nB̄)n
−1
γ can now be calculated, utilizing the result [58]

that sn−1
γ ≃ 7.04 at the present time, to be

η =
s

nγ
YB ≃ 7.04YB ≃ −2.45Yl. (3.12)

Leptogenesis occurs at a temperature of the order of Mlowest and the effective values of Aαα

and Kα
i depend on which flavors are active in the washout process. This is controlled [53]

by the quantity Mlowest(1 + tan2 β)
−1
. There are three different regimes which we discuss

separately.

(1) Mlowest(1+ tan2 β)
−1

> 1012 GeV.

In this case there is no flavor discrimination and unflavored leptogenesis takes place. Thus

Aαβ = −δαβ and all flavors α can just be summed in eqs. (3.1). Thus ǫi =
∑

ǫαi ,
∑

α J α
ij = 0,

Iij ≡ ∑

α Iα
ij = Im (hij)

2 and Y =
∑

i ǫig
−1
⋆i Ki with K−1

i = 8.25K−1
i + (Ki/0.2)

1.16 and

Ki =
∑

αK
α
i = hiiMP l(6.64π

√
g⋆iMiv

2
u)

−1
. For the normal hierarchical heavy neutrino

(NHN) case (a), M2=3 may be ignored and the index i can be restricted to just 1, taking

g⋆1 = 232.5. For the corresponding inverted hierarchical (IHN) case (b) M1 can be ignored

and i made to run over 2 and 3 with g⋆2=3 = 236.25, all quantities involving the index 2

being identical to the corresponding ones involving 3. Coming to the quasidegenerate (QDN)

heavy neutrino case (c), g⋆ = 240 and the contributions from i = 1 must be separately added

to identical contributions from i = 2, 3.

(2) Mlowest(1+ tan2 β)
−1

< 109 GeV.
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Here, all flavors are separately active and one has fully flavored leptogenesis. Now the A-

matrix needs to be taken as [53]

AMSSM =









−93/110 6/55 6/55

3/40 −19/30 1/30

3/40 1/30 −19/30









(3.13)

and eqs. (3.6) – (3.8) used for each flavor α. Once again, we consider the different cases

(a), (b) and (c) of heavy neutrino mass ordering. Ignoring M2=3 for case (a) and with

g⋆1 = 232.5, we have η ≃ −1.05 × 10−2∑

α ǫ
α
1Kα

1 . Similarly, ignoring M1 for case (b) and

with g⋆2=3 = 236.25, one gets η ≃ −1.04 × 10−2∑

α(ǫ
α
2Kα

2 + ǫα3Kα
3 ). For case (c), g⋆ = 240

and η ≃ −1.02× 10−2∑

α(ǫ
α
1Kα

1 + ǫα2Kα
2 + ǫα3Kα

3 ).

(3) 109 GeV < Mlowest(1+ tan2 β)
−1

< 1012 GeV.

In this regime the τ - flavor decouples first while the electron and muon flavors act indistin-

guishably. The latter, therefore, can be summed. Now effectively A becomes a 2× 2 matrix

Ã given by [53]

Ã =

(−541/761 152/761

46/761 −494/761

)

(3.14)

and acting in a space spanned by e + µ and τ . Indeed, we can define Ke+µ
i and K̃τ

i by

(Ke+µ
i )−1 =

8.25

|Ã11|(Ke
i +Kµ

i )
+

(

|Ã11|(Ke
i +Kµ

i )

0.2

)1.16

, (3.15a)

(K̃τ
i )

−1 =
8.25

|Ã22|Kτ
i

+

(

|Ã22|(Kτ
i )

0.2

)1.16

. (3.15b)

Now, for case (a) with g⋆1 = 232.5, η ≃ −1.05 × 10−2[(ǫe1 + ǫµ1 )Ke+µ
1 + ǫτ1K̃τ

1 ]. Case (b) has

g⋆2=3 = 236.25 and η ≃ −1.04 × 10−2∑

k=2,3[(ǫ
e
k + ǫµk)Ke+µ

k + ǫτkK̃τ
k]. Finally, case (c), with

g⋆ = 240, has η ≃ −1.02 × 10−2∑

i[(ǫ
e
i + ǫµi )Ke+µ

i + ǫτi K̃τ
i ].

4 Baryon asymmetry in the present scheme

(1) Regime of unflavored leptogenesis

As explained in Sec. 3, there is no flavor discrimination if Mlowest(1 + tan2 β)
−1

> 1012 GeV.

The lepton asymmetry parameters ǫi can now be given after summing over α. Additional
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simplifications can be made by taking vu = v sin β with v ≃ 246 GeV and substituting

|m| = (∆m2
21/X)

1/2
. (4.1)

The relevant expressions for the two categories then are the following

Category A :

ǫ1A ≃ −2.35× 10−8 M1

109 GeV

k2
2

√
xf(x) sin 2ᾱ

X
1/2
A sin2 β

, (4.2a)

ǫ2A = ǫ3A ≃ 1.18× 10−8 M2=3

109 GeV

k2
1k

2
2

1√
x
f( 1

x
) sin 2ᾱ

(1 + k2
2)X

1/2
A sin2 β

= 1.18× 10−8 M1

109 GeV

k2
1k

2
2f(

1
x
) sin 2ᾱ

(1 + k2
2)XA

1/2 sin2 β
. (4.2b)

Category B:

ǫ1B ≃ −2.35× 10−8 M1

109 GeV

l22
√
xf(x) sin 2β̄

(l21 + 2l22)X
1/2
B sin2 β

, (4.3a)

ǫ2B = ǫ3B ≃ 1.18× 10−8 M2=3

109 GeV

l22f(
1
x
) sin 2β̄

X
1/2
B sin2 β

= 1.18× 10−8 M1

109 GeV

l22
√
xf( 1

x
) sin 2β̄

X
1/2
B sin2 β

. (4.3b)

Note that x was defined in eq.(2.11). We are now in a position to discuss the three Ni

mass hierarchical cases. For case (a), with the much heavier M2 = M3 ignored and only M1

contributing, we can give the following expressions for the flavor-summed washout factors.

Category A :

K1A ≃ 86.36 k2
1√

g⋆X
1/2
A sin2 β

, (4.4a)

K2A = K3A ≃ 86.36 (1 + k2
2)√

g⋆X
1/2
A sin2 β

. (4.4b)

Category B :

K1B ≃ 86.36 (l21 + 2l22)√
g⋆X

1/2
B sin2 β

, (4.4c)

K2B = K3B ≃ 86.36
√
g⋆X

1/2
B sin2 β

. (4.4d)

11



Consequently,

ηNHN
A ≃ −1.05× 10−2 (ǫ1AK1A)g⋆=232.5

, (4.5a)

ηNHN
B ≃ −1.05× 10−2 (ǫ1BK1B)g⋆=232.5

, (4.5b)

with the dependence on the category (A or B) coming both through ǫ1 and K1 occuring in

K1. For case (b), one can ignore M1 and hence ǫ1 and K1. Thus we have

ηIHN
A ≃ −2.06 (ǫ2AK2A)g⋆=236.25

, (4.6a)

ηIHN
B ≃ −2.06 (ǫ2BK2B)g⋆=236.25

, (4.6b)

where once again the category dependence comes in through ǫ2 and K2 occuring in K2.

Finally, for case (c) with all three M ′s contributing,

ηQDN
A,B ≃ −1.02× 10−2 (ǫ1A,BK1A,B + 2ǫ2A,BK2A,B)g⋆=240

. (4.7)

The expressions for K1,2 in terms of K1,2, have already been given in Sec. 3. Detailed

expressions for the right hand sides of eqs. (4.5), (4.6) and (4.7) are given in appendix A.

(2) Regime of fully flavored leptogenesis

If Mlowest(1 + tan2 β)
−1

< 109 GeV, all leptonic flavors become active causing fully flavored

leptogenesis, cf. Sec. 3. We now need to resort to eqs. (3.1) – (3.8) to compute the lepton

(flavor) asymmetry Y α. However, J α
ij vanishes explicitly for all the four cases of four zero

textures of mD being considered by us. Thus we need be concerned only with the Iα
ij term in

eq. (3.1). Even some of the latter vanish on account of the zeroes in our textures. However,

let us first draw some general conclusions about the two categories of textures before taking

up the three Ni hierarchical cases separately.

Category A:

It is clear from eq. (2.6a) that the presence of two zeroes in rows 2 and 3 in both textures

m
(1)
DA and m

(2)
DA implies the vanishing of (mD)

†
iµ(mD)µj and (mD)

†
iτ (mD)τj for i 6= j. As a

result, Iµij = Iτij = 0 which imply that

ǫµiA = ǫτiA = 0. (4.8)

Thus Kµ
iA and Kτ

iA do not contribute to η. The expressions for the pertinent nonvanishing

quantities are given by

ǫe1A ≃ −2.35× 10−8 M1

109 GeV

k2
2

√
xf(x) sin 2ᾱ

X
1/2
A sin2 β

, (4.9a)
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ǫe2A = ǫe3A ≃ 1.18× 10−8 M1

109 GeV

k2
1k

2
2f(

1
x
) sin 2ᾱ

(1 + k2
2)X

1/2
A sin2 β

, (4.9b)

Ke
1A ≃ 86.36 k2

1√
g⋆X

1/2
A sin2 β

, (4.9c)

Ke
2A = Ke

3A ≃ 86.36 k2
2√

g⋆X
1/2
A sin2 β

. (4.9d)

Category B :

In this case, each allowed texture of mD in eq.(2.6b) has two zeroes in the first row in

consequence of which (mD)
†
ie(mD)ej vanishes for i 6= j. Therefor, Ieij = 0 because of which

ǫeiB = 0. (4.10)

in either case. Furthermore, with (hB)23 and (hB)32 being zero, Iµ,τ23 and Iµ,τ32 vanish here for

both textures m
(1)
DB andm

(2)
DB. An additional point is that, for the texture m

(1)
DB, I

µ
12 = 0 = Iτ13

but Iτ12 6= 0 6= Iµ13 while, for m
(2)
DB, I

µ
13 = 0 = Iτ12 but Iµ12 6= 0 6= Iτ13. Consequently, ǫµ1B is

the same for both allowed textures and so is ǫτ1B . Moreover, for m
(1)
DB, ǫ

µ
2B and ǫτ3B vanish

but ǫτ2B and ǫµ3B do not while, for m
(2)
DB, ǫ

τ
2B and ǫµ3B vanish but ǫµ2B and ǫτ3B do not. In fact,

explicitly one has

ǫ
(1)µ
2B = ǫ

(1)τ
3B = ǫ

(2)τ
2B = ǫ

(2)µ
3B = 0, (4.11a)

ǫ
(1)µ
1B = ǫ

(1)τ
1B = ǫ

(2)µ
1B = ǫ

(2)τ
1B ≃ −1.18× 10−8 M1

109 GeV

l22
√
xf(x) sin 2β̄

(l21 + 2l22)X
1/2
B sin2 β

, (4.11b)

ǫ
(1)τ
2B = ǫ

(1)µ
3B = ǫ

(2)µ
2B = ǫ

(2)τ
3B ≃ 1.18× 10−8 M2=3

109GeV

l22
1√
x
f(x) sin 2β̄

X
1/2
B sin2 β

. (4.11c)

In these equations and henceforth the superscripts (1),(2) refer to m
(1)
D , m

(2)
D respectively.

Coming to the washout factors, one sees a similar pattern. For m
(1)
DB, K

µ
2B and Kτ

3B vanish

while for m
(2)
DB, K

τ
2B and Kµ

3B are zero. Explicitly,

K
(1)µ
1B = K

(1)τ
1B = K

(2)µ
1B = K

(2)τ
1B ≃ 86.36 l22√

g⋆X
1/2
B sin2 β

. (4.12a)

K
(1)e
2B = K

(2)e
2B = K

(1)µ
2B = K

(1)τ
3B = K

(2)τ
2B = K

(2)µ
3B = K

(1)e
3B = K

(2)e
3B = 0, (4.12b)

K
(1)τ
2B = K

(1)µ
3B = K

(2)µ
2B = K

(2)τ
3B ≃ 86.36

√
g⋆X

1/2
B sin2 β

. (4.12c)
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Let us finally draw attention to an important consequence of eqs. (4.11) and (4.12). Since

Kα
i is just a known function of Aαα as well as Kα

i and since Aµµ equals Aττ , the combination

ǫµ2BKµ
2B + ǫµ3BKµ

3B + ǫτ2BKτ
2B + ǫτ3BKτ

3B (4.13)

is identical for m
(1)
DB and m

(2)
DB and is a characteristic of just Category B.

Now, for the normal Ni-hierarchical case (a), with M2,3 neglected, we have the following

expression for the baryon asymmetry.

Category A :

ηNHN
A ≃ −1.05× 10−2 ǫe1A(Ke

1A)g⋆=232.5
. (4.14a)

Category B:

ηNHN
B ≃ −1.05× 10−2 [(ǫµ1BKµ

1B + ǫτ1BKτ
1B)− 2.1× 10−2(ǫµ1BKµ

1B)]g⋆=232.5
, (4.14b)

where µτ symmetry has been used in the last step. For the inverted Ni- hierarchical case

(b), with M1 neglected, the results are given below.

Category A :

ηIHN
A ≃ −1.03× 10−2 (ǫe2AKe

2A + ǫe3AKe
3A)g⋆=236.25 ≃ −2.06× 10−2ǫe2A(Ke

2A)g⋆=236.25. (4.15a)

Category B :

ηIHN
B ≃ −1.03× 10−2 (ǫµ2BKµ

2B + ǫτ2BKτ
2B + ǫµ3BKµ

3B + ǫτ3BKτ
3B)g⋆=236.25

≃ −2.06× 10−2 (ǫµ2BKµ
2B + ǫµ3BKµ

3B)g⋆=236.25. (4.15b)

In eq. (4.15b), the first (second) term in the RHS bracket vanishes for m
(1)
DB (m

(2)
DB); the non-

vanishing terms have identical expressions for both textures. Lastly, for the quasidegenerate

case (c), the expressions for the baryon asymmetry are as follows.

Category A :

ηQDN
A ≃ −1.02× 10−2 (ǫe1AKe

1A + 2ǫe2AKe
2A)g⋆=240

. (4.16a)

Category B :
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ηQDN
B ≃ −1.02× 10−2 (ǫµ1BKµ

1B + ǫτ1BKτ
1B + ǫµ2BKµ

2B + ǫτ2BKτ
2B + ǫµ3BKµ

3B + ǫτ3BKτ
3B)g⋆=240

≃ −2.04× 10−2 (ǫµ1BKµ
1B + ǫµ2BKµ

2B + ǫµ3BKµ
3B)g⋆=240. (4.16b)

The second (third) term within the RHS bracket vanishes for m
(1)
DB (m

(2)
DB), while the remain-

ing terms are identical for both textures of Category B. Detailed expressions for the right

hand sides of eqs. (4.14), (4.15) and (4.16) appear in appendix B.

(3) Regime of τ-flavored leptogenesis

We have discussed in Sec. 3 that, with 109 GeV < Mlowest(1 + tan2 β)
−1

< 1012 GeV, there

is flavor active leptogenesis in the τ -sector but the electron and muon flavors can be summed.

Thus, use can be made here of the flavor dependent results of Regime (2), but there is a

proviso : both the generation and washout of YL take place in a flavor subspace spanned by

e + µ and τ , cf. eqs. (3.13) and (3.14). Using the notation of eq. (3.15), we can then write

the consequent baryon asymmetry as

η ≃ −2.45
∑

i

g−1
⋆i [(ǫ

e
i + ǫµi )Ke+µ

i + ǫτi K̃τ
i ]. (4.17)

In discussing the lepton asymmetries and washout factors in detail here, it will be useful

to consider the situation for each texture in either category by itself. We shall therefore

separately enumerate the Ni-hierarchical cases (a), (b) and (c) for each of the four textures

using the subscripts A,B for the category and subscripts (1), (2) for the textures.

Category A, m
(1)
DA.

Now ǫ
(1)µ
iA = 0 = ǫ

(1)τ
iA , cf. eq. (4.8). But, in addition, we have

0 = K
(1)µ
1A = K

(1)τ
1A = K

(1)µ
2A = K

(1)τ
3A . (4.18)

Here the nonvanishing ǫ
(1)e
1A , ǫ

(1)e
2A = ǫ

(1)e
3A , K

(1)e
1A and K

(1)e
2A = K

(1)e
3A are as given by eqs. (4.9a)

– (4.9d). Additionally,

K
(1)e
1A =

86.36√
g
⋆

k2
1

X
1/2
A sin2 β

, (4.19a)

K
(1)e
2A = K

(1)e
3A =

86.36√
g
⋆

k2
2

X
1/2
A sin2 β

, (4.19b)

K
(1)µ
3A = K

(1)τ
2A =

86.36√
g
⋆

1

X
1/2
A sin2 β

. (4.19c)
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Now for the NHN case (a), we have

η
(1)NHN
A ≃ −1.05× 10−2ǫe1A

[

(

Ke+µ
1A

)

Kµ
1A

=0

]

g⋆=232.5

(4.20)

with Ke+µ
1A calculated as per eq. (3.15a) but setting Kµ

1A = 0. For the IHN case (b), we can

write

η
(1)IHN
A ≃ −1.03× 10−2

[

ǫe2A
(

Ke+µ
2A

)

Kµ
2A

=0
+ ǫe3AKe+µ

3A

]

g⋆=236.5

. (4.21)

Here again Ke+µ
2A is calculated by putting Kµ

2A = 0.

For the QDN case (c), the expression is

η
(1)QDN
A ≃ −1.02× 10−2

[

ǫe1A
(

Ke+µ
1A

)

Kµ
1A

=0
+ ǫe2A

(

Ke+µ
2A

)

Kµ
2A

=0
+ ǫe3AKe+µ

3A

]

g⋆=240

. (4.22)

Once more, appropriate washout factors have to be set at zero as shown earlier in the

calculation of Ke+µ
iA .

Category A, m
(2)
DA.

Again, ǫ
(2)µ
iA = 0 = ǫ

(2)τ
iA , but the vanishing washout factors now are

0 = K
(2)µ
1A = K

(2)τ
1A = K

(2)µ
3A = K

(2)τ
2A . (4.23)

The pertinent nonzero quantities namely, ǫ
(2)e
1A , ǫ

(2)e
2A = ǫ

(2)e
3A , K

(2)e
1A , K

(2)e
2A and K

(2)e
3A are the

same as for m
(1)
DA. In addition,

K
(2)µ
2A = K

(2)τ
3A =

86.36√
g
⋆

1

X
1/2
A sin2 β

. (4.24)

Thus, for the NHN case (a),

η
(2)NHN
A ≃ −1.05× 10−2 ǫe1A

[

(

Ke+µ
1A

)

Kµ
1A

=0

]

g⋆=232.5

, (4.25)

i.e. the same as in eq. (4.20). Then, for the IHN case (b), we have

η
(2)IHN
A ≃ 1.03× 10−2

[

ǫe2AKe+µ
2A + ǫe3A

(

Ke+µ
3A

)

Kµ
3A

=0

]

g⋆=236.25

, (4.26)

i.e. Ke+µ
2A is calculated fully but Ke+µ

3A by setting Kµ
3A = 0. This expression turns out to be

the same as for m
(1)
DA.
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Finally, the QDN case (c) has the baryon asymmetry as

η
(2)QDN
A ≃ −1.02× 10−2

[

ǫe1A
(

Ke+µ
1A

)

Kµ
1A

=0
+ ǫe2AKe+µ

2A + ǫe3A
(

Ke+µ
3A

)

Kµ
3A

=0

]

g⋆=240

(4.27)

with appropriate washout factors set to zero in Ke+µ
iA , as shown. Again, this turns out to be

equal to that for m
(1)
DA. Detailed expressions for the right hand side of eqs. (4.20) and (4.25),

which are identical, appear in appendix C. We make the same statement for eqs. (4.21) and

(4.26) as well as for eqs. (4.22) and (4.27).

Category B, m
(1)
DB.

Here, ǫ
(1)e
iB = 0 = ǫ

(1)µ
2B = ǫ

(1)τ
3B and K

(1)e
2B cf. eqs. (4.10) and (4.11a), while the vanishing

washout factors are K
(1)µ
2B , K

(1)τ
3B , K

(1)e
3B . The pertinent nonzero quantities, as given in eqs.

(4.11b), (4.11c) and (4.12a), (4.12c), are ǫ
(1)µ
1B = ǫ

(1)τ
1B , ǫ

(1)τ
2B = ǫ

(1)µ
3B and K

(1)µ
1B = K

(1)τ
1B , K

(1)τ
2B

= K
(1)µ
3B . Additionally,

K
(1)e
1B =

86.36√
g
⋆

l21

X
1/2
B sin2 β

, (4.28a)

K
(1)µ
1B = K

(1)τ
1B =

86.36√
g
⋆

l22

X
1/2
B sin2 β

. (4.28b)

K
(1)τ
2B = K

(1)µ
3B =

86.36√
g
⋆

1

X
1/2
B sin2 β

. (4.28c)

Therefore, for the NHN case (a),

η
(1)NHN
B ≃ −1.05× 10−2

[

ǫµ1BKe+µ
1B + ǫτ1BK̃τ

1B

]

g⋆=232.5

. (4.29)

Coming to the IHN case (b), we have

η
(1)IHN
B ≃ −1.03× 10−2

[

ǫµ3B
(

Ke+µ
3B

)

Kµ
3B

=0
+ ǫτ2BK̃τ

2B

]

g⋆=236.25

, (4.30)

with the first term within the RHS bracket calculated by setting Kµ
3B = 0. For the final

QDN case (c), the expression is

η
(1)QDN
B ≃ −1.02× 10−2

[

ǫµ1BKe+µ
1B + ǫµ3B

(

Ke+µ
3B

)

Ke
3B

=0
+ ǫτ1BK̃τ

1B + ǫτ2BK̃τ
2B

]

g⋆=240

, (4.31)

where Ke+µ
3B is calculated with Ke

3B set to vanish.

Category B, m
(2)
DB.
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Here we have ǫ
(2)e
iB = 0 = ǫ

(2)τ
2B = ǫ

(2)µ
3B from eqs. (4.10) and (4.11a), while the washout factors

K
(2)τ
2B , K

(2)µ
3B , K

(2)e
2B , K

(2)e
3B vanish. The remaining nonzero quantities of relevance, as appear

in eqs. (4.11b), ( 4.11,c) and (4.12a) (4.12c), are ǫ
(2)µ
1B = ǫ

(2)τ
1B , ǫ

(2)µ
2B = ǫ

(2)τ
3B and K

(2)µ
1B = K

(2)τ
1B ,

K
(2)τ
3B = K

(2)µ
2B . In addition, K

(2)e
1B has the same expression as K

(1)e
1B i.e.

K
(2)e
1B =

86.36
√
g
⋆

l21

X
1/2
B sin2 β

. (4.32)

The NHN case (a) now yields

η
(2)NHN
B ≃ −1.05× 10−2

[

ǫµ1BKe+µ
1B + ǫτ1BK̃τ

1B

]

g⋆=232.5
, (4.33)

as with m
(1)
DB. For the IHN case (b), the baryon asymmetry reads

η
(2)IHN
B ≃ −1.03 × 10−2

[

ǫτ3B
(

K̃τ
3B

)

+ ǫµ2B
(

Ke+µ
2B

)

Ke
2B

=0

]

g⋆=236.25
(4.34)

which happens to have the same expression as for m
(1)
DB. Finally, for the QDN case (c), the

baryon asymmetry is

η
(2)QDN
B ≃ −1.02× 10−2

[

ǫµ1BKe+µ
1B + ǫµ2B

(

Ke+µ
2B

)

Ke
2B

=0
+ ǫτ1BK̃τ

1B + ǫτ3BK̃τ
3B

]

g⋆=240
(4.35)

which also turns out to be the same as for m
(1)
DB. Thus the baryon asymmetry in each of the

three Ni-hierarchical cases has the same expression for both m
(1)
D and m

(2)
D in Category A

and the same statement holds for Category B. Detailed expressions of η in Category B for

the NHN, IHN and QDN cases are given in appendix C.

5 Results and discussion

We had earlier deduced [16] from neutrino oscillation data with 3σ errors the constraints

0 ≤ cos ᾱ ≤ 0.0175 and 0 ≤ cos β̄ ≤ 0.0523 for the phases ᾱ and β̄ of Categories A and B

respectively. Thus each phase could have been in either the first or the fourth quadrant with

89o ≤ |ᾱ| ≤ 90o and 87o ≤ |β̄| ≤ 90o. The new requirement of matching the generated baryon

asymmetry ηA (ηB) for Category A (B) with its observed value in the 3σ range 5.5× 10−10

to 7.0×10−10 [57]–[62] puts restrictions on sin 2ᾱ (sin 2β̄) which fix both the magnitude and

the sign of ᾱ (β̄). To be specific in our numerical analysis, we choose x = M2
2=3/M

2
1 for the

different hierarchical cases as follows : (a) for NHN, x ≥ 10, (b) for IHN, x ≤ 0.1, (c) for

QDN, 0.1 ≤ x ≤ 10. So far, we did not dwell on the mass ordering (normal or inverted) of
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the right handed heavy neutrinos Ni in the QDN case. For the normal ordering (NON) case,

we take 1.1 ≤ x ≤ 10, while for an inverted ordering (ION), our choice is 0.1 ≤ x ≤ 0.9. As

mentioned earlier, the function f(x) is positive for 0.4 ≤ x < 1.0 and negative elsewhere.

We need to avoid the point x = 1 which corresponds to the complete degeneracy of the

Ni, i.e. M1 = M2 = M3 since f(x) diverges at this point. The inclusion of finite width

corrections to propagators of right handed neutrinos in the one loop decay diagrams avoids

this problem. Now, both the previously divergent part of the modified f(x) and the lepton

asymmetry vanish there. We also avoid the near x = 1 region, 0.9 < x < 1.1, to exclude

the so called resonant leptogenesis [63] since that is not part of our scenario. Tables 1 – 3

enumerate the emergent constraints on ᾱ, β̄ in consequence of matching ηA, ηB for each

Category A

Parameters NHN IHN QDN

NON ION

ᾱ ᾱ < 0 ᾱ > 0 ᾱ < 0 ᾱ > 0

89.0o − 89.9o 89.95o − 89.99o 89.1o − 89.9o 89.10o − 89.99o

x 10− 103 0.001 − 0.1 2.0− 9.1 0.1− 0.9

tan β 2− 60 2− 5 2− 60 2− 60

5.0× 103 5.0× 103 5× 103 5.0× 103

Mlowest

109GeV
— — — —

4.9× 106 2.6× 104 3.6× 106 4.9× 106

Category B

Parameters NHN IHN QDN

NON ION

β̄ β̄ < 0 β̄ > 0 β̄ < 0 β̄ > 0

88.8o − 89.9o 89.48o − 89.99o 87.0o − 89.9o 89.84o − 89.99o

x 10− 103 0.001 − 0.1 8.3 - 9.5 0.1− 0.9

tan β 2− 8 2− 12 2− 60 2− 10

8.4× 103 5.0× 103 5.0× 103 5.0× 103

Mlowest

109GeV
— — — —

8.5× 104 1.6× 105 4.9× 106 1.0× 105

Table 1: Allowed ᾱ,β̄ and other parameters for unflavored leptogenesis

of the eighteen different possibilities described earlier with corresponding restrictions on the
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Category A

Parameters NHN IHN QDN

NON ION

ᾱ ᾱ < 0 ᾱ > 0 ᾱ < 0 ᾱ > 0

89.4o − 89.9o 89.0o − 89.8o 89.1o − 89.9o 89.0o − 89.9o

x 10− 103 0.001 − 0.1 1.1 − 10.0 0.1 − 0.9

tan β 25− 60 22− 60 2− 60 2− 60

67 4.9 × 102 23 10
Mlowest

109GeV
— — — —

3.6× 103 3.6 × 103 3.60 × 103 3.6 × 103

Category B

Parameters NHN IHN QDN

NON ION

β̄ β̄ < 0 β̄ > 0 β̄ < 0 β̄ > 0

87.0o − 89.9o 87.0o − 89.9o 87.0o − 89.9o 87.0o − 89.9o

x 10− 103 0.001 − 0.1 1.1− 10 0.3 − 0.9

tan β 16− 60 24− 60 6− 60 7− 60

2.4× 102 5.7 × 102 0.35 × 102 0.49× 102

Mlowest

109GeV
— — — —

3.6× 103 3.6 × 103 3.6× 103 3.6 × 103

Table 2: Allowed ᾱ, β̄ and other parameters for fully flavored leptogenesis

parameters x, tanβ and Mlowest as shown. We would like to make the following comments

on the information contained in tables 1 – 3.

1. Signs of phase angles : We have a positive baryon asymmetry in our universe. From

the formulae for all NHN cases in the Apendices, we can say that sign of f(x) sin 2(ᾱ, β̄)

has to be positive in order to generate such a positive asymmetry. But f(x) is negative

in the NHN region of x ≥ 10. So, ᾱ, β̄ have to be negative for all NHN cases. On

the contrary, for all IHN cases, there is an overall negative sign in the formulae for

η since Im(h2
21) = Im(h2

31) here is opposite in sign to Im(h2
12) = Im(h2

13) that come in

for the NHN case. So, for a positive η, a negative sign of f(x) sin 2(ᾱ, β̄) is needed

in all IHN cases. Again, f(x) is negative in the NHN region of x ≤ 0.1. For this
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Category A

Parameters NHN IHN QDN

NON ION

ᾱ ᾱ < 0 ᾱ > 0 ᾱ < 0 ᾱ > 0

89.0o − 89.9o 89.0o − 89.9o 89.0o − 89.9o 89.0o − 89.9o

x 10− 103 0.001 − 0.1 1.1 − 10.0 0.1 − 0.9

tan β 2− 60 2− 60 2− 60 2− 60

1.7× 103 50 100 100
Mlowest

109GeV
— — — —

4.0× 104 1.03× 104 1.97 × 104 1.45× 104

Category B

Parameters NHN IHN QDN

NON ION

β̄ β̄ < 0 β̄ > 0 β̄ < 0 β̄ > 0

87.0o − 89.9o 87.0o − 89.9o 87.0o − 89.9o 87.0o − 89.9o

x 10− 103 0.001 − 0.1 1.1 − 10.0 0.1 − 0.9

tan β 2− 60 2− 60 2− 60 2− 60

3.25 × 102 6.25× 102 0.37 × 102 0.37× 102

Mlowest

109GeV
— — — —

2.3× 104 5.0 × 104 2.1× 104 1.6 × 105

Table 3: Allowed ᾱ, β̄ and other parameters for τ -flavored leptogenesis

reason, ᾱ, β̄ are positive in all IHN cases. For QDN cases we need to discuss the

possibilities of normal and inverted ordering of Mi separately. Here there are two

terms with f(x) and −f(1/x) along with an overall factor sin 2(ᾱ, β̄). For the NON

region 1.1 ≤ x ≤ 10.0, f(x) is negative while −f(1/x) is negative for 1.1 ≤ x ≤ 2.5.

So, for the region 1.1 ≤ x ≤ 2.5, ᾱ, β̄ are required to be negative. For the remaining

part of the NON region 2.5 ≤ x ≤ 10, f(x) is negative and −f(1/x) positive but the

f(x) term dominates over the −f(1/x) term. So, negative signs also are needed for

ᾱ, β̄, in the region 2.5 ≤ x ≤ 10. Thus all QDN cases with NON require negative

sign of ᾱ, β̄. Again, for QDN with ION, both f(x) and −f(1/x) are positive in the

region 0.4 ≤ x ≤ 0.9. In the rest of the ION region 0.1 ≤ x ≤ 0.4, f(x) is negative

and −f(1/x) is positive. But, now the latter term dominates over the former one. So,
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positive ᾱ, β̄ are needed in all QDN cases with ION. In fact, we see (tables 1 – 3) that

for all normal (both hierarchical and quasidegenrate) mass ordering cases of Mi, the

phases are negative whereas, for all inverted (both hierarchical and quasidegenrate)

mass ordering cases, they are positive. One may also note that in all cases and regimes

the size of the allowed range of tan β is correlated with that of the phase ᾱ/β̄.

2. Magnitudes of phase angles and other parameters : Neither ᾱ nor β̄ can be strictly

90o since η then vanishes. Therefore, a nonzero η is incompatible in Category A with

tribimaximal mixing which requires [16] ᾱ = π/2. The numerical value of η is most

sensitive to the values of sin 2(ᾱ, β̄), Mlowest (M1 for normal mass ordering, M2 for

inverted mass ordering) and to some extent to the function f (and hence x) for ac-

ceptable ranges of k1, k2 (Category A) and l1, l2 ( Category B). The latter are of

course restricted [16] by the neutrino oscillation data. For unflavored leptogenesis with

Mlowest > (1 + tan2 β)1012 GeV, the minimum value of Mlowest is 5 × 1012 GeV, while

we cut the maximum value at 5 × 1015 GeV to avoid the GUT scale whereabouts all

produced asymmetry gets washed out by inflation. Such a large value of Mlowest forces

a small value of sin 2(ᾱ, β̄) in order to have the baryon asymmetry in the right range.

In Category A, the range of |ᾱ| is restricted to 89o ≤ |ᾱ| ≤ 90o so that sin 2ᾱ is small

there. In the IHN case of Category A, other associated factors including f(1/x) cause

further restrictions on ᾱ, cf. Table 1. In Category B the range 87o ≤ |β̄| ≤ 90o is

curtailed to |β̄| > 88.8o due to the large value of Mlowest in flavor independent lepto-

genesis except the QDN (NON) case where other factors are responsible for necessary

suppression.

3. The quadrants of ᾱ, β̄ do not change between unflavored, fully flavored and τ -flavored

leptogenesis, nor is there any dependence of them on the value of tanβ. They only

depend on whether Ni have a normal (M1 < M2=3) or inverted (M1 > M2=3) mass

ordering. For the former, ᾱ and β̄ are always in the fourth quadrant (< 0) since ǫ1

always has a minus sign in front, while the latter always forces them to be in the first

quadrant (> 0) since ǫ2 = ǫ3 always has a plus sign in front.

4. The constraints on sin 2ᾱ, sin 2β̄ - extracted from ηA,B - restrict the allowed intervals

for |ᾱ|, |β̄| more stringently than do constraints on cos ᾱ, cos β̄ obtained [16] from

neutrino oscillation phenomenology.
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6 Effect of radiative µτ symmetry breaking

While explaining a maximal value for θ23, exact µτ symmetry predicts a vanishing θ13.

The latter will make the CP violating Dirac phase δD unobservable in neutrino oscillation

experiments, many of which are being planned to study CP violation in the neutrino sector.

Thus it may be desirable to have a nonzero θ13, however small.

Suppose µτ symmetry is exact at a high energy Λ ∼ 1012 GeV characterizing the heavy

Majorana neutrino mass scale. Running down to a laboratory scale λ ∼ 103 GeV, via one-

loop renormalization group evolution, one picks up small factorizable departures from µτ

symmetry, induced by charged lepton mass terms, in the elements of the light neutrino mass

matrix mν . These cause small departures from 45o in θλ23 and tiny nonzero values for θλ13.

Neglecting m2
µ,e in comparison with m2

τ , one obtains [16] that

mλ
ν ≃









1 0 0

0 1 0

0 0 1−∆τ









mΛ
ν









1 0 0

0 1 0

0 0 1−∆τ









, (6.1)

where mΛ
ν is µτ symmetric and the deviation ∆τ is given in MSSM by

∆τ ≃ m2
τ

8π2v2
(1 + tan2 β)ln

Λ

λ
≃ 6× 10−6 (1 + tan2 β). (6.2)

Working to the lowest nontrivial order in ∆τ , the phenomenological consequences of eq.

(6.1), derived from extant neutrino oscillation data, were worked out in ref.[15]. The allowed

regions in the k1 − k2 (l1 − l2) plane for Category A (B) get slightly extended. Moreover,

one finds that θλ23 ≤ 45o as well as 0 ≤ θλ13 ≤ 2.7o for Category A and 45o ≤ θλ23 as well as

0 ≤ θλ13 ≤ 0.85o for Category B. The upper bounds on θλ13 in both categories correspond to

tan β = 60.

RG evolution from Λ to λ has no direct effect on the baryon asymmetry η. The lepton

asymmetry Yl, produced at the heavy Majorana neutrino mass scale, remains frozen till the

temperature comes down to the weak scale where it is converted to η. The requirement

of the latter being in the observed range leads to correlated constraints on x, Mlowest and

tan β, vide tables 1 – 3. While the constraints on x and Mlowest have some effects on the

magnitude of Λ, they are numerically quite weak. Such is, however, not the case with the

tan β constraints, owing to eq. (6.2). In particular, the bounds on θλ13 can be significantly

affected by restrictions on tan β.
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Let us discuss the consequent effects on the said bounds in the three regimes.

(1) Flavor independent leptogenesis. Here tanβ can go from 2 to 60, as taken in Ref.[15],

for the NHN and QDN cases of Category A and the QDN (NON) case of Category B, cf.

Table 1. Therefore the range of θλ13 remains unchanged for those cases. But the stronger

restrictions on tanβ given in Table 1 for the IHN case of Category A and the NHN, IHN and

QDN (ION) cases of Category B force the corresponding θλ13 and θλ23 to be practically equal

to 0o and 45o respectively for those two situations.

(2) Fully flavored leptogenesis. We can deduce from the information given in table 2 that

the ranges of θλ13 are affected here for either category in each case. The results are given in

table 4.

Category A Category B

NHN IHN QDN NHN IHN QDN

tan β 25-60 22− 60 2− 60 16 − 60 24− 60 6− 60 (NON)

7− 60 (ION)

θλ13 0.47◦ − 2.7◦ 0.36◦ − 2.7◦ 0◦ − 2.7◦ 0.06◦ − 0.85◦ 0.14◦ − 0.85◦ 0◦ − 0.85◦

Table 4: Effect on θλ13 of the more restricted range of tanβ in fully flavored leptogenesis.

(3) τ -flavored leptogenesis. There is no additional restriction on tanβ here as compared

with unflavored leptogenesis, vide table 3. Hence the ranges of θλ13 stand unchanged in either

category for the NHN, IHN and QDN cases.

Now that there is a nonzero θλ13, one has CP violation in the neutrino sector which can

be measured from the difference in oscillation probabilities P (νµ → νe) − P (ν̄µ → ν̄e) [64].

For the CKM CP phase δλ, we find the 3σ range of its value to be 1.0o ≤ δλ ≤ 70o (Category

A) and 1.5o ≤ δλ ≤ 90o (Category B) for both flavored and unflavored leptogenesis in all

regimes. The sign of δλ is opposite to the sign of ᾱ/β̄ for Category A/B and hence it does

change from one regime for Mlowest(1 + tan2 β)
−1

to another for a given mass ordering of Ni.
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7 Conclusion

In this paper we have studied the generation of the observed amount of baryon asymmetry η

in our scheme of µτ symmetric four zero neutrino Yukawa textures within the type-I seesaw.

For each of the two categories A and B of our scheme, we have identified three regimes

depending on the value of Mlowest(1 + tan2 β)
−1

and have studied the normal-hierarchical

(NHN), inverted-hierarchical (IHN) and quasidegenerate (QDN) cases for the masses of the

heavy Majorana neutrinos Ni. The requirement of matching the right value of η forces the

phases ᾱ (Category A) and β̄ (Category B) to be in the fourth quadrant for the NHN and

QDN cases and in the first quadrant for the IHN case in each regime. Restrictions on small

but nonzero θ13, arising from radiative µτ symmetry breaking, have also been worked out.
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Note added

A new paper on supersymmetric leptogenesis appeared [65] after this work was completed.

The authors of ref. [65] have highlighted certain additional contributions to Y∆. These

arise from soft supersymmetry breaking effects involving gauginos and higgsinos as well as

anomalous global symmetries causing a different pattern of sphaleron induced lepton flavor

mixing. While some of the numerical coeffcients – given in the various expressions for η in

our analysis – are likely to change if these effects are included, their overall signs will not.

Consequently, there will be no alteration in our conclusions on the quadrants of the phases

ᾱ and β̄ which remain robust.
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A Baryon Asymmetry in flavor independent leptogen-

esis

Category A

ηNHN
A ≃ 2.47× 10−10 M1

109GeV

k2
2 sin 2ᾱ

X
1/2
A sin2 β

M2=3

M1

f
(

M2
2=3/M

2
1

)

×




1.46 sin2 βX
1/2
A

k2
1

+

(

28.3k2
1

X
1/2
A sin2 β

)1.16




−1

. (A.1)

ηIHN
A ≃ −2.43× 10−10 M2=3

109GeV

k2
1k

2
2 sin 2ᾱ

(1 + k2
2)X

1/2
A sin2 β

M1

M2=3
f
(

M2
1 /M

2
2=3

)

×


1.47(1 + k2
2)

−1
X

1/2
A sin2 β +

(

28 (1 + k2
2)

X
1/2
A sin2 β

)1.16




−1

. (A.2)

ηQDN
A ≃ 2.40× 10−10 k2

2 sin 2ᾱ

X
1/2
A sin2 β

{

M1

109GeV

M2=3

M1
f
(

M2
2=3/M

2
1

)

×



1.48(k2
1)

−1
X

1/2
A sin2 β +

(

27.9 k2
1)

X
1/2
A sin2 β

)1.16




−1

− M2=3

109GeV

k2
1

(1 + k2
2)

M1

M2=3
f
(

M2
1 /M

2
2=3

)

×


1.48(1 + k2
1)

−1
X

1/2
A sin2 β +

(

27.9 (1 + k2
2)

X
1/2
A sin2 β

)1.16




−1}

.

(A.3)

Category B

ηNHN
B ≃ 2.47× 10−10 M1

109GeV

l22 sin 2β̄

(l21 + 2l22)X
1/2
B sin2 β

M2=3

M1

f
(

M2
2=3/M

2
1

)

×





1.46X
1/2
B sin2 β

(l21 + 2l22)
+

(

28.3(l21 + 2l22)

X
1/2
B sin2 β

)1.16




−1

. (A.4)
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ηIHN
B ≃ −2.43× 10−10 M2=3

109GeV

l22 sin 2β̄

X
1/2
B sin2 β

f
(

M2
1 /M

2
2=3

)

×



1.47X
1/2
B sin2 β +

(

28.0

X
1/2
B sin2 β

)1.16




−1

. (A.5)

ηQDN
B ≃ 2.40× 10−10

{

M1

109GeV

l22 sin 2β̄

(l21 + 2l22)X
1/2
B sin2 β

M2=3

M1
f
(

M2
2=3/M

2
1

)

×





1.48X
1/2
B sin2 β

(l21 + 2l22)
+

(

27.9(l21 + 2l22)

X
1/2
B sin2 β

)1.16




−1

− M2=3

109GeV

l22 sin 2β̄

X
1/2
B sin2 β

f
(

M2
1 /M

2
2=3

)

×



1.48X
1/2
B sin2 β +

(

27.9

X
1/2
B sin2 β

)1.16




−1}

. (A.6)

B Baryon Asymmetry in fully flavored leptogenesis

Category A

ηNHN
A ≃ 2.47× 10−10 M1

109GeV

k2
2 sin 2ᾱ

X
1/2
A sin2 β

M2=3

M1

f
(

M2
2=3/M

2
1

)

×





1.72X
1/2
A sin2 β

k2
1

+

(

23.9k2
1

X
1/2
A sin2 β

)1.16




−1

. (B.1)

ηIHN
A ≃ −2.43× 10−10 M2=3

109GeV

k2
1k

2
2 sin 2ᾱ

(1 + k2
2)X

1/2
A sin2 β

f
(

M2
1 /M

2
2=3

)

×





1.74X
1/2
A sin2 β

k2
2

+

(

23.8k2
2

X
1/2
A sin2 β

)1.16




−1

. (B.2)
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ηQDN
A ≃ 2.40× 10−10

{

M1

109GeV

k2
2 sin 2ᾱ

X
1/2
A sin2 β

M2=3

M1
f
(

M2
2=3/M

2
1

)

×





1.75X
1/2
A sin2 β

k2
1

+

(

23.6k2
1

X
1/2
A sin2 β

)1.16




−1

− M2=3

109GeV

k2
1k

2
2 sin 2ᾱ

(1 + k2
2)X

1/2
A sin2 β

f
(

M2
1 /M

2
2=3

)

×





1.75X
1/2
A sin2 β

k2
2

+

(

23.6k2
2

X
1/2
A sin2 β

)1.16




−1}

. (B.3)

Category B

ηNHN
B ≃ 2.47× 10−10 M1

109GeV

l22 sin 2β̄

(l21 + 2l22)X
1/2
B sin2 β

M2=3

M1

f
(

M2
2=3/M

2
1

)

×





2.30X
1/2
B sin2 β

l22
+

(

17.9l22

X
1/2
B sin2 β

)1.16




−1

. (B.4)

ηIHN
B ≃ −2.43× 10−10 M2=3

109GeV

l22 sin 2β̄

X
1/2
B sin2 β

M1

M2=3
f
(

M2
1 /M

2
2=3

)

×



2.32X
1/2
B sin2 β +

(

17.8

X
1/2
B sin2 β

)1.16




−1

. (B.5)

ηQDN
B ≃ 2.40× 10−10

{

M1

109GeV

l22 sin 2β̄

(l21 + 2l22)X
1/2
B sin2 β

M2=3

M1
f
(

M2
2=3/M

2
1

)

×





2.34X
1/2
B sin2 β

l22
+

(

17.7l22

X
1/2
B sin2 β

)1.16




−1

− M2=3

109GeV

l22 sin 2β̄

X
1/2
B sin2 β

M1

M2=3

f
(

M2
1 /M

2
2=3

)

×



2.34X
1/2
B sin2 β +

(

17.7

X
1/2
B sin2 β

)1.16




−1}

. (B.6)
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C Baryon asymmetry in τ-flavored leptogenesis

Category A

ηNHN
A ≃ 2.47× 10−10 M1

109GeV

k2
2 sin 2ᾱ

X
1/2
A sin2 β

M2=3

M1
f
(

M2
2=3/M

2
1

)

×





2.05X
1/2
A sin2 β

k2
1

+

(

20.1k2
1

X
1/2
A sin2 β

)1.16




−1

. (C.1)

ηIHN
A ≃ −1.22× 10−10 M2=3

109GeV

k2
1k

2
2 sin 2ᾱ

(1 + k2
2)X

1/2
A sin2 β

M1

M2=3
f
(

M2
1 /M

2
2=3

)

×














2.07X
1/2
A sin2 β

k2
2

+

(

20.0k2
2

X
1/2
A sin2 β

)1.16




−1

+





2.07X
1/2
A sin2 β

(1 + k2
2)

+

(

20.0(1 + k2
2)

X
1/2
A sin2 β

)1.16




−1










.

(C.2)

ηQDN
A ≃ 1.20× 10−10 k2

2 sin 2ᾱ

X
1/2
A sin2 β

{

2M1

109GeV

M2=3

M1
f
(

M2
2=3/M

2
1

)

×





2.08X
1/2
A sin2 β

k2
1

+

(

19.8k2
1

X
1/2
A sin2 β

)1.16




−1

− M2=3

109GeV

k2
1

(1 + k2
2)

M1

M2=3
f
(

M2
1 /M

2
2=3

)

×















2.08X
1/2
A sin2 β

k2
2

+

(

19.8k2
2

X
1/2
A sin2 β

)1.16




−1

+





2.08 sin2 βX
1/2
A

(1 + k2
2)

+

(

19.8(1 + k2
2)

X
1/2
A sin2 β

)1.16




−1










}

.

(C.3)

Category B

ηNHN
B ≃ 1.23× 10−10 × M1

109GeV

l22 sin 2β̄

(l21 + 2l22)X
1/2
B sin2 β

M2=3

M1
f
(

M2
2=3/M

2
1

)

×















2.05X
1/2
B sin2 β

(l21 + l22)
+

(

20.1(l21 + l22)

X
1/2
B sin2 β

)1.16




−1

+





2.24X
1/2
B sin2 β

l22
+

(

18.4l22

X
1/2
B sin2 β

)1.16




−1










.

(C.4)

ηIHN
B ≃ −1.22× 10−10 M2=3

109GeV

l22 sin 2β̄

X
1/2
B sin2 β

M1

M2=3
f
(

M2
1 /M

2
2=3

)

×














2.07X
1/2
B sin2 β

l22
+

(

20.0l22

X
1/2
B sin2 β

)1.16




−1

+



2.26X
1/2
B sin2 β +

(

18.2

X
1/2
B sin2 β

)1.16




−1










.

(C.5)
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ηQDN
B ≃ 1.20× 10−10 l22 sin 2β̄

X
1/2
B sin2 β

(

M1

109GeV

1

(l21 + 2l22)

M2=3

M1
f
(

M2
2=3/M

2
1

)

×














2.16X
1/2
B sin2 β

(l21 + l22)
+

(

19.1(l21 + l22)

X
1/2
B sin2 β

)1.16




−1

+





2.28X
1/2
B sin2 β

l22
+

(

18.1l22

X
1/2
B sin2 β

)1.16




−1










− M2=3

109GeV

M1

M2=3
f
(

M2
1 /M

2
2=3

)

×














2.16X
1/2
B sin2 β

l22
+

(

19.1l22

X
1/2
B sin2 β

)1.16




−1

+



2.28X
1/2
B sin2 β +

(
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1/2
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(C.6)
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