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Partial diagonality of stress trace
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Abstract. The trace of the stress cnergy tensor is shown to be diagonal between
two states whose total four-momenta are equal. Additional comments are made
on certain matrix-elements of the timie-derivative of the dilation charge.
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The matrix elements of the stress energy tensor ., are of intcrest [Pagels (1966),
Gross and Wess (1970)] in a variety of physical situations. Apart from their
measurability in gravitational couplings, they also contribute to lepton-hadron
reactions [Mack (1971), Chanowitz and Ellis (1972)] through the occurrence of
8,, in short-distance operator-product expansions of two hadronic currents. In
this note we state and prove a result on certain matrix elements of the trace of the

stress energy tensor 64, which may turn outto be a useful constraint in the context

of the above applicétions. The result is that 0/, is diagonal between two states
of equal four-momenta. It derives crucially from the fact that the volume

integral of 0}, is the time-derivative of the dilation charge D (r). We also show
that dD (¢)/dt is diagonal between two states whose relative four-momenta are
spacelike or lightlike.

The result that the trace of the stress energy tensor is diagonal between two
states of equal four-momenta will find application as a low energy theorem in
situations where 0% plays a role. These include gravitational theories where
there is a scalar component coupling to 04, as well as theories with dilation fields
proportiona‘i to 0,‘2. In these cases zero momentum-transfer transitions of a state
to itself plus any number of soft photons are forbidden.

Let us first state our main result formally. -

THEOREM. If the states | m ) and | # ) have four momenta p,, and p, respectively,
then lim (n| 6% |m), defined  appropriately  (ie., with the ratio

P> Pm
->

>
(ps —p») (ps — p,)™* maintained finite), is proportional to §,,.
Proof. It is sufficient to show that (# |8, | m ) vanishes for | n ) 5 | m ) under
the given conditions. 'Use the results [Gell-Mann (1969), Carruthers (1971)] that
4
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dD (1)
Horvy = 27\
f d3xtl, (x) = - T
_.dD (@) .
[D (f), Pn] = l.-—&*‘ 1Pu
and
- R
[D (t), P = — 2iP*
to obtain

->
(2m)* 3% (7 — pa) (1 | B L my = pu ([ m)y +1(py — pm) (1| D (1) | 12

or,
> P Dm>
@Ry o (0)(n |0y |m) = [p,‘,’, — 2 lim 5> - 1)';,] {n|m).
Du=dBm p= ~
Pun = Pm
> -> )
If (p, — pm) (P — pi)! is finite, the right hand side is proportional to 8,n and

e
since 3@ (0) is nonvanishing, the matrix-clement (#n | 0% | m ) must be zero for

tn Yy |m)QED.

In order to maintain the finiteness of lim (p) — po) (P2 — p2)-Y, one has

b »pm

to follow some kind of a prescription in taking the limit in question. One pre-

scription, for instance, is to put the masses equal (p% = p2 =n?) first and then
take p,—>Pm. This leads to the result

-> #,2
Q) 83 (0) (n | 04 | m =é)—;§‘(nlm) | (1

which vanishes for | n)# | m). It should be pointed out that the equality p, = p,,

of the four momenta is essential to the derivation of the result, otherwise the
> >

ratio (p% — Pm) (Ps — Pm)™ canuot in general be maintained to be finite. For

instance, let | m ) be the vacuum and |n) a particle-antiparticle pair state so that
_’

->
in the CM frame p, =p, =0 but p, £ pg = 0. 1In this frame the ratio in ques-
tion becomes infinite and the proof fails. This can be verified explicitly. For
particles of spin ¥ and mass u, we have from Pagels (1966) that

1\? #(p, s) |
(p.21010) = (5) T2= 2uG, @) Py + G, (09
KP4+ G (@) Qv (5, @)

where Q% = (p +p)* and P* = (p — p)* and G1(0) =0, G, (0) =1. The right-
hand side of eq. (1) nonvanishing in the CM frame. Onp the other hand, if | m )

and | n) are chosen to be single particle states of the same four momenta p, then

1\ 1 3,2
o# ;_(_) B 1 4,2 _ (1 I
(21lulr)=\5) 35 @ D42 (p, 5) = 57) 500
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in agreement with eq. (1).

The statement on the diagonality of the operator dD (¢)/ds (as opposed to 0%
can be made more general by wecakening the condition p, = p,, since one doc¢s not

-.) .
need to use the three-dimensional data function 8® (0) here. Thus for (p, — p,)?
< 0, the limit of the matrix element

lim (n| db (@) | m)

Pn->om dz

defined in the above manner is proportional to 8,,. This follows because

2 (pa — om)
V4 dD (¢) N R < \Pan - ’
n | T | m J Po + 1._; —;2 P | m ).
‘ - >
So long as (p, — p,)? =0 as p, —p,, the ratio p) — pa/py — pm is bounded

-> -> -> -> -> -»> . )
from above by +/(p, — p.)¥(p» — p,) - (P. + Pn); further this last ratio can be
-> -> - .
maintained. to be finite provided p, — p,, is prescribed not to tend to zero in a

direction orthogonal to ;,, +;))m- For (p, — pn)%? > 0, this argument does not
hold and the diagonality of dD (r)/dr gets destroyed. This may again be checked
by taking the vacuum and the pair-state and using eq. (2).
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