Partial diagonality of stress trace

PROBIR ROY

Tata Institute of Fundamental Research, Bombay 400005

MS received 7 November 1974

Abstract. The trace of the stress energy tensor is shown to be diagonal between two states whose total four-momenta are equal. Additional comments are made on certain matrix-elements of the time-derivative of the dilation charge.

Keywords. Stress energy tensor; dilation.

The matrix elements of the stress energy tensor $\theta_{\mu\nu}$ are of interest [Pagels (1966), Gross and Wess (1970)] in a variety of physical situations. Apart from their measurability in gravitational couplings, they also contribute to lepton-hadron reactions [Mack (1971), Chanowitz and Ellis (1972)] through the occurrence of $\theta_{\mu\nu}$ in short-distance operator-product expansions of two hadronic currents. In this note we state and prove a result on certain matrix elements of the trace of the stress energy tensor θ^{μ}_{μ} which may turn out to be a useful constraint in the context of the above applications. The result is that θ^{μ}_{μ} is diagonal between two states of equal four-momenta. It derives crucially from the fact that the volume integral of θ^{μ}_{μ} is the time-derivative of the dilation charge D(t). We also show that dD(t)/dt is diagonal between two states whose relative four-momenta are spacelike or lightlike.

The result that the trace of the stress energy tensor is diagonal between two states of equal four-momenta will find application as a low energy theorem in situations where θ^{μ}_{μ} plays a role. These include gravitational theories where there is a scalar component coupling to θ^{μ}_{μ} as well as theories with dilation fields proportional to θ^{μ}_{μ} . In these cases zero momentum-transfer transitions of a state to itself plus any number of soft photons are forbidden.

Let us first state our main result formally.

THEOREM. If the states $|m\rangle$ and $|n\rangle$ have four momenta p_m and p_n respectively, then $\lim_{p_n\to p_m} \langle n | \theta^{\mu}_{\mu} | m \rangle$, defined appropriately (i.e., with the ratio

 $(p_n^0 - p_m^0)$ $(p_n^2 - p_m^2)^{-1}$ maintained finite), is proportional to δ_{nm} .

Proof. It is sufficient to show that $\langle n \mid \theta^{\mu}_{\mu} \mid m \rangle$ vanishes for $\mid n \rangle \neq \mid m \rangle$ under the given conditions. Use the results [Gell-Mann (1969), Carruthers (1971)] that

$$\int d^3x \theta^{\mu}_{\mu}(x) = \frac{dD(t)}{dt}$$
$$[D(t), P_0] = i \frac{dD(t)}{dt} - i P_0$$

and

$$[D(t), \overrightarrow{P}^2] = -2i\overrightarrow{P}^2$$

to obtain

$$(2\pi)^3 \ \delta^{(3)} \ (p_m - p_n) \langle n \mid \theta_\mu^\mu \mid m \rangle = p_m^0 \langle n \mid m \rangle + i \left(p_n^0 - p_m^0 \right) \langle n \mid D(t) \mid m \rangle$$

or,

$$(2\pi)^{3} \delta^{(3)}(\stackrel{\rightarrow}{0}) \langle n \mid \theta^{\mu}_{\mu} \mid m \rangle = \left[p_{m}^{0} - 2 \lim_{p_{n} \to p_{m}} \frac{p_{n}^{0} - p_{m}^{0}}{\stackrel{\rightarrow}{\rightarrow}} p_{m}^{2} \right] \langle n \mid m \rangle.$$

If $(p_n^0 - p_m^0) (p_n^2 - p_m^2)^{-1}$ is finite, the right hand side is proportional to δ_{nm} and since $\delta^{(3)}(0)$ is nonvanishing, the matrix-element $\langle n | \theta_{\mu}^{\mu} | m \rangle$ must be zero for $|n\rangle \neq |m\rangle$ QED.

In order to maintain the finiteness of $\lim_{p_n \to p_m} (p_n^0 - p_m^0) (p_n^2 - p_m^2)^{-1}$, one has to follow some kind of a prescription in taking the limit in question. One prescription, for instance, is to put the masses equal $(p_n^2 = p_m^2 = \mu^2)$ first and then take $p_n \to p_m$. This leads to the result

$$(2\pi)^3 \,\delta^{(3)} \,(0) \,\langle \, n \mid \theta^{\mu}_{\mu} \mid m \,\rangle = \frac{\mu^2}{p_m^0} \,\langle \, n \mid m \,\rangle \tag{1}$$

which vanishes for $|n\rangle \neq |m\rangle$. It should be pointed out that the equality $p_n = p_m$ of the four momenta is essential to the derivation of the result, otherwise the ratio $(p_n^0 - p_m^0)(p_n^2 - p_m^2)^{-1}$ cannot in general be maintained to be finite. For instance, let $|m\rangle$ be the vacuum and $|n\rangle$ a particle-antiparticle pair state so that in the CM frame $p_n = p_m = 0$ but $p_n^0 \neq p_m^0 = 0$. In this frame the ratio in question becomes infinite and the proof fails. This can be verified explicitly. For particles of spin $\frac{1}{2}$ and mass μ , we have from Pagels (1966) that

$$\langle p, \bar{p} \mid \theta^{\mu}_{\mu} \mid 0 \rangle = \left(\frac{1}{2\pi}\right)^{3} \frac{\bar{u}(p, s)}{\sqrt{4p_{0}\bar{p}_{0}}} [2\mu G_{1}(Q^{2}) P \cdot \gamma + G_{2}(Q^{2}) \times P^{2} + 3\mu G_{3}(Q^{2}) Q \cdot \gamma] v(\bar{p}, \bar{s}),$$
(2)

where $Q^2 = (p + \bar{p})^2$ and $P^2 = (p - \bar{p})^2$ and $G_1(0) = 0$, $G_2(0) = 1$. The right-hand side of eq. (1) nonvanishing in the CM frame. On the other hand, if $|m\rangle$ and $|n\rangle$ are chosen to be single particle states of the same four momenta p, then

$$\langle p \mid \theta^{\mu}_{\mu} \mid p \rangle = \left(\frac{1}{2\pi}\right)^{3} \frac{1}{4p_{0}} \bar{u}(p, s^{1}) 4\mu^{2} u(p, s) = \left(\frac{1}{2\pi}\right)^{3} \frac{\mu^{2}}{p_{0}} \delta_{s^{1} q}$$

in agreement with eq. (1).

The statement on the diagonality of the operator dD(t)/dt (as opposed to θ_{μ}^{μ}) can be made more general by weakening the condition $p_n = p_m$ since one does not need to use the three-dimensional data function $\delta^{(3)}(0)$ here. Thus for $(p_n - p_m)^2 \le 0$, the limit of the matrix element

$$\lim_{p_n \to p_m} \langle n \mid \frac{\mathrm{d}D(t)}{\mathrm{d}t} \mid m \rangle$$

defined in the above manner is proportional to δ_{nm} . This follows because

$$\left\langle n \mid \frac{\mathrm{d}D\left(t\right)}{\mathrm{d}t} \mid m \right\rangle = \left[p_m^0 + \frac{2\left(p_n^0 - p_m^0\right)}{\overrightarrow{p_n^2 - p_m^2}} \overrightarrow{p_m^2} \right] \left\langle n \mid m \right\rangle.$$

So long as $(p_n - p_m)^2 = 0^-$ as $p_n \to p_m$, the ratio $p_n^0 - p_m^0/p_n^2 - p_m^2$ is bounded from above by $\sqrt{(p_n - p_m)^2/(p_n - p_m)} \cdot (p_n + p_m)$; further this last ratio can be maintained to be finite provided $p_n - p_m$ is prescribed not to tend to zero in a direction orthogonal to $p_n + p_m$. For $(p_n - p_m)^2 > 0$, this argument does not hold and the diagonality of dD(t)/dt gets destroyed. This may again be checked by taking the vacuum and the pair-state and using eq. (2).

It is a pleasure to thank Prof. Gyan Mohan and his colleagues for their hospitality at the Indian Institute of Technology, Kanpur where this paper was written.

References

Carruthers P 1971 Phys. Rep. IC No. 1

Chanowitz M and Ellis J 1973 Phys. Rev. D8 2490

Gell-Mann M 1969 Proceedings of the third Hawaii topical conference on particle physics, Western Periodicals, Los Angeles

Gross D and Wess J 1970 Phys. Rev. D2 753

Mack G 1971 Nucl. Phys. B35 592

Pagels H 1966 Phys. Rev. 144 1250