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Explicit classical solutions to Euclidean Yang-Mills theory
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Abstract. All real classical solutions of the SU(2) Yang-Mills theory with spherical
symmetry in 4-dimensional Euclidean space are constructed analytically and cgtalq-
gued. The uniqueness of the solution of Belavin et al in possessing finite action 1§
explicitly demonstrated.
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1. Introduction

Classical solutions of the SU(2) Yang-Mills theory in Euclidean space have received
considerable attention recently. (For a review see J ackiw et @l 1977). The instanton
or pseudoparticle solution of Belavin et al (197 5) was the first to be explicitly cons-
tructed. This solution has finite total action, is spherically symmetric and is charac-
terised by a.topological quantum number (namely the Poriryagin index) ¢ =1
(—1 for the anti-instanton solution, obtained by a coordinate reflection). It has
been shown to dominate the path-integral expression for the vacuum-to-vacuum
transition amplitude in the quantum theory in Minkowski space-time. It thus plays
an important role in understanding the structure of the gauge theory vacuum
(t> Hooft 19762, b; Jackiw and Rebbi 1976; Callan et al 1976). Finite action solutions
where ¢ is an arbitrary integer (‘ multi-instantons °) are also known (Witten 1976),
but these are not spherically symmetric. The above solutions have the property

that the field tensor Fyp i8 self-dual or self-antidual, i.e.,

Fup = == Fpus (1)

where Fuy =% €uvap Fap:

In fact, this property was required a priori in obtaining the solutions. This is undf:re
standable since the condition of (1), which automatically satisfies the Yang-Mills
equation of motion, is more tractable than the latter. However, (1) im{ned.iately
implies a null value for the energy-momentum tensor Guv and hence can give infor-
mation only on the vacuum rather than on states with non-zero energy. Some
solutions with non-zero O,y are known (de Alfaro ef al 1976; Cervero et al 1977}
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Leznov and Saveliev 1978). In general they do not possess finite Euclidean action.
Moreover, they do not have spherical symmetry but involve some external constant
vector. However, one may argue that, in the description of a closed system, the
absence of such external vectors is desirable on aesthetic grounds. Thus one is led
to seek solutions with spherical symmetry and non-zero 6,y.

It is the purpose of this paper to demonstrate that the classical Euclidean SU(2)
Yang-Mills theory with spherical symmetry is completely solvable. This we do by
explicitly constructing all real solutions. The latter include the instanton and anti-
instanton solutions, which are the only ones to satisfy (1). We explicitly verify, as
carlier claimed by Calvo (1977), that all spherically symmetric solutions with non-
zero energy have infinite total Euclidean action Sg,y. Thus they cannot play any
non-trivial role in quantum transitions which are proportional to exp (—Sgyq/h).
However, we hope that these explicit constructions will encourage efforts to find
other (i.e., not spherically symmetric) solutions with non-vanishing 6y, some of
which may turn out to have finite action. :

In §2 we discuss the reduction of the equation of motion under the assumption of
spherical symmetry, and in §3 we solve the resulting equation and list the solutions.
Some general remarks are made in the concluding § 4.

2. Consequences of spherical symmetry

Any vector field configuration, and hence in particular the gauge potential, can be
written as the sum of longitudinal and transverse parts:

PR @

) ’ a . .
where /' are scalars and & 4y 8I¢ antisymmetric tensors. In the absence of external

vectors as required by spherical symmetry, all tensors must be constructed from the
coordinate vector x, and the isotropic tensors &, and €uvip- (We always restrict
our attention to a 4-dimensional Euclidean space). Clearly, no antisymmetric
teasor of rank two under O(4) can be so constructed. Thus all field configurations
that are spherically symmetric in this strict sense can be written in the form

a

A p = Ou f* (r), where r is the radial co-ordinate: r = (x,x,)"2. Substitution in the
definition of the field tensor,

Fuy = 0pdy, — 00, + ¢ f A, 4, 3
leads to an identically vanishing field strength.*

Evidently, spherical symmetry in the above sense is too stringent a requirement,
and would rule out, for example, the instanton solution. As is well known from the
study of magnetic monopole theory, the resolution of this difficulty lies in extending
the definition of spherical symmetry to allow for the mixing of tensor and internal
symmetry degrees of freedom; instead of separate invariance under spatial and

* We assume that /¢ and h;‘L ,, do not have 3-function-like singularities.
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internal gauge transformations, only a weaker invariance under appropriately com-
bined transformations is required. This introduces ‘other isotropic tensors into the

solution, with explicit mixing of gauge and tensor indices. Now h‘:“; is no longer
constrained to vanish. ' S ’ B

Although the above remarks apply to a large number of gaugé groups, for the
remainder of this paper we confine our discussion to SU(2) as the gauge symmetry.
One can define a tensor 7,y (indeed, for SU(2) it is unique; ’t Hooft 1976b) which is
covariant under a combined rotation and gauge transformation. One representa-
tion is

Napvy = Eapvy + Sap. Opy — 8 8;@

wherea =1,2,3and p,v =1,2,3, 4 Spherically symmetric configurations with
non-vanishing F; , follow from the substitution hfw = — fouv A(r) in (2) with A(r)
being an unknown function of r, i.e.,

A:L = 6,.« fa (r) — Napy Ov h()‘)
= % [Y (1) — Napy %y B (1), 4)
where F'(r) = dF(r)/dr and Xu=x/ |x]. The Lagrangian density,
% =1F, () F, ), | )

then becomes a function of the ‘ coordinates’ f(r) and A'(r) and ‘velocities” f*” ()
and #'(r). The substitution of (3) in (4) and (5) leads to

@ = @y + 2HER LU0

where %, is independent of f* and fa"and involves only h(r) containing the transverse
‘ . . a .
degree of freedom. Thus the equation of motion for the longitudinal part of A 18

DL =22 (4 OO () =0,

i.e., either #'(r) = 0 or f* (r)=0. The first possibility, as shown earlier, corresponds
to the trivial solution F; , =0. Hence we choose the second whereupon (4) becomes

A: (X) = —Nauy O H()
= —Napv /J\Cv (). ’ (6)

In more compact matrix notation (Sciuto 1977) take 4, = gA:L 74/21, 0 uy="apy /2
and In p(r) = gh(r), so that

Ay, = ioyy By (0 p (). M
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The form of A4, in (7) or the first line of (6) is precisely the one posited by Corrigan

and Fairlie (1977) and Wilczek (1977). The only difference is that they allow A(x)

or p(x) to have arbitrary spatial dependence whereas here we have functions of r

alone. It is an interesting fact that a rather restrictive ansatz in the general situation

turns out to be obligatory in the spherically symmetric case.
So far, we have not used the full equation of motion

8uFuy -+ [Ap Fl =0,

where Fy = gF:W 7%/2i. With 4, given by the Corrigan-Fairlie-Wilczek ansati, thi's
takes on a particularly simple form

| -a”[p_gfj] =0,
. P
ie., Cp = cp?,

¢ being an integration constant (Sciuto 1977). In deriving this, use has been made
of the fact that the matrices oy satisfy the O(4) rotation algebra:

[opws oxp] = i(guf\ Oyp 1 8vp Tud — Eup A — A f’p.p)a

as follows from the definition o,y = nguy 7%/2. For spherically symmetric p, as
in (7), we thus have

P” + 3P'/" — LAPB_ ‘ : (8)

Equation (8), although non-linear, is in fact exactly solvable. Before solving it,
however, we first note below the form of the dependence of physically interesting
quantities such as the action (Lagrangian) density % (x), the Pontryagin ‘index
density g (x) and the energy-momentum tensor 6, (x) on p (r).

Under the Corrigan-Fairlie-Wilczek ansatz, the field tensor Fuy can be written,
following Sciuto, in the form

Fuy =—1(op) Tyux — apr Ty)) — i Eopy,

where  Tuy=08,(Inp) dv (In p)—du dv (In p)—% 8,y [8a (In p) da (In p)—O (Inp)],

and E = [p[2p.

This yields
Tr (Fup Fap) = — 2 Ty Ty — 6 E2, | ©
Tt (Fy Fan) = 2 Ty Ty — 6 7, (10)

where FI“V = J; €uvap Faﬁ'
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Moreover, the self-dual and self-antidual parts of Fpy, defined as Ffv by
FE =4 (Fw & m,‘
satisfy  Tr [F';fA F {- (<> v')]’ = ET . - (11)

The left-hand sides of (9), (10) and (11) are proportional to & (%), g (x) and
8,.,(x) respectively. These expressions are valid for an arbitrary function p(x).
For the spherically symmetric case p=p(r), we obtain '

1 Xy X | |
Ty = T[Z sy — B3 V}, o (128)
" ’ e ’
where T.—:”_-—E.-z(’i). : (12b)
p rp \p
1 v 3P’ . 13
Moreover, E = —{p" + =) (13a)
20\ ¥ ,

In terms of E and T, the Lagrangian density is 3g~2 (T?/4+E?). If (8) is satisfied,
(13a) reduces to

E—1 et ‘ (13b)

Hence, for any solution of the form given by (7), only T and E—as given by (12b)
and (13b)—need be computed in order to know all physical properties of interest.
It may be noted that for configurations that are either self-dual (T=0) or self-antidual
(E=0), the action density is proportional to the Pontryagin index density and 6,y
vanishes identically.

3, Explicit solutions

‘We now proceed to give the solutions of (8). Observe first that (7), as well as T or
E, is invariant under a constant rescaling of p : p(r)=>Ap(r)- Thus the value of the
integration constant ¢ is irrelevant to quantities of physical interest. However, ¢
is a useful parameter in classifying the solutions of (8). The change of variables
x(r) = rp(r), z=In r (cf. Marciano and Pagels 1976) takes (8) into the form

T 3 (14)
—— —C = 0.
dz? XX
Equation (14) may be doubly integrated into
d (15)

— X
:Z‘—— Zy = :l:f (% cxt! + X2V+ p)llz ’
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B and z, being integration constants. The inversion of (15) will lead to the solution
x(2) of (14). The integral can be evaluated in terms of inverse Jacobian elliptic
functions (e.g., Abramowitz and Stegun 1970), the precise form depending on the
values of ¢ and the constant 8. In tables 1, 2 and 3, we display the solutions in terms
of p for the cases ¢=0, ¢<<0 and ¢ >0 respectively. Within each category, the solu-
tion is obtained in different forms, depending on the value of . The constant z,
just sets the scale of r, as is clear from (15). For each solution we tabulate the gauge- -
invariant quantities 7 and E defined in §2, together with their singularities. .

It can be seen that the only solutions for which E and T are singularity-free every-
where are those corresponding to subcases (ii) and (iii) of table 1 and subcase (ii) of
table 2. The second of these corresponds to the * vacuum ’ solution, and the third
and the first to the instanton and anti-instanton solutions respectively. The family
of solutions given by subcase (iii) of table 2 has the instanton as a limit (m->1), and is
singular only at the point r=0. Thus it is not immediately clear that the total action
is finite only for m=1. However, after some manipulations one can write for this
subcase ‘

6 1 — m)?
Thus the total action is
1
S=— f A% Tr (Fuy Fu)
_ b a? [ P (1 ——m)‘z]
= e f;wdu{dn (u]m) + W (17)

For ms1, dn is periodic with period 2K(m), and the contribution from each period is
positive; hence the integral diverges. For m =1, dnu =sech u and S = 8x?/g?,
which is the correct value for the instanton solution. The remaining solutions of
tables 1 and 2 and all solutions of table 3 are singular at points other than the
* origin, and hence cannot have finite action. Hence no solution with spherical

Table 1. Solutions for c=0. All these solutions are self-antidual: E=0.

Subcase p T Singularities Remarks
\ (,.z — ,.02) — 8)‘02
= ] o e
@) B=a">0 +a 55 7o E——p r=ry
Thii is the singular form
” 2 (r* + rd 8ry? of the anti-instanton
(i) B=—a"<0 53 ,.00 2 +0 oD None solution; see, e.g., Jackiw
-0 et al (1977)
' 1/
(i) B=0 /:% 0 None Trivial solution Fyy =0
rO ¥ o
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symmetry simultaneously satisfies the requirements of finite total action and non-
vanishing 6,,.

4. Concluding remarks

We have constructed explicitly all real solutions to the classical Euclidean SU(2)
Yang-Mills equation of motion under the assumption of spherical symmetry. of
these, apart from the vacuum solution, only the self-dual instanton solution of
Belavin et a/(1975)(and the anti-instanton, obtained by reflection of the x, coordinate)
possesses finite action. Calvo (1977) had earlier claimed this result without explicitly
solving the equation of motion. However, he had taken the spherically symmetric
gauge potential to have the restricted form of an arbitrary radial function times the
instanton solution. This amounts to making the Corrigan-Fairlie-Wilczek ansatz for
the potential, and is not justified a priori. We have derived the CFW form as a
consequence of spherical symmetry and thus removed this lacuna. Moreover, we
have explicitly demonstrated the complete integrability of the classical Yang-Mills
system with spherical symmetry by the actual analytical construction of all real
solutions. )

We have also looked for finite-action solutions possessing hyperbolic symmetry
(i.e., depending only x* — X?) in Minkowski space-time, and failed to find any.
When continued to Minkowski space, none of the solutions presented here (except the
vacuum) has finite action. Hence it appears that any finite-action solution in Minkow-
ski space must involve a fixed external space-time vector (e.g., de Alfaro et al 1976).
A finite-action classical solution with hyperbolic symmetry has been constructed for
the gauge group SO(3, 1) (Baaklini 1978). The non-compactness of the group plays
an essential role in the construction, and it is our conjecture that such solutions do
not exist for compact gauge groups. The total energy in Minkowski space is also
infinite for the continued solutions, except for those that have 8, =0 identically.
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Note :

After this work was completed, we received a paper by A Actor (Universitit Dortmund pre-
print) which partly overlaps with ours. This paper contains an interesting method of generating
new solutions from a known one. However, it is not concerned with the consequences of spherical
symmetry as such. :




