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Abstract

A simple unifying mass matrix is presented for the three active and one sterile

neutrinos νe, νµ, ντ , and νs, using an extension of the radiative mechanism proposed

some time ago by Zee. The total neutrino-oscillation data are explained by the scheme

νe ↔ νs (solar), νµ ↔ ντ (atmospheric) and νe ↔ νµ (LSND). We obtain the inter-

esting approximate relationship (∆m
2)atm ≃ 2[(∆m

2)solar(∆m
2)LSND]1/2 which is well

satisfied by the data.

http://arXiv.org/abs/hep-ph/9806272v1


Three neutrinos, each associated with a charged lepton (e, µ, τ), are now known. The

invisible width of the Z boson, coming from the decay Z → νν̄, is also consistent[1] with

exactly three such neutrinos. This means that if there is a fourth neutrino, either it has to

be very heavy (with mass greater than MZ/2) or it does not couple to Z. In particular,

if it is light, then it must not have any electroweak gauge interactions. Such an object is

often referred to as a “sterile” neutrino. The reason that this may be a necessary part of

our understanding of particle physics is that there are at present three classes of neutrino

experiments[2, 3, 4] which show evidence of neutrino oscillations with three very different

∆m2’s, i.e. differences of mass-squares. If all three interpretations are correct, then we need

four light neutrinos. (A possible but rather extreme three-neutrino scenario[5] is to have

large anomalous ντ -quark interactions.) It is thus of theoretical interest to find a natural

mechanism which explains the masses and mixings of these four neutrinos in the present

experimental context.

A specific model for a 4 × 4 neutrino mass matrix was proposed[6] already some time

ago.. The form of this matrix agrees with subsequent purely phenomenological analyses[7, 8]

of all neutrino-oscillation data. Our present study concerns the possibility that all neutrino

masses are zero at tree level, but are generated radiatively at one-loop to match the pattern

in [6], using a mechanism first proposed by Zee[9]. We extend previous work[10, 11] on this

topic to include a sterile neutrino[12] with the help of an extra U(1) gauge symmetry[13].

The resulting mass eigenvalues lead to the approximate relationship

(∆m2)atm ≃ 2
√

(∆m2)solar(∆m2)LSND (1)

which is well satisfied by the data.

Our model extends the standard electroweak gauge model to include three singlet fermion

fields νsL, NR, and SR, as well as 3 singlet scalar fields χ+
1 , χ+

2 , and χ0
2. There are also two

scalar doublets (φ+
1 , φ

0
1) and (φ+

2 , φ
0
2), where only one is needed in the minimal standard
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fermions L-parity SU(2)L × U(1)Y U(1)′

(νi, li)L − (2,−1/2) 0

liR − (1,−1) 0

νsL − (1,0) 1

NR + (1,0) 1

SR + (1,0) 0

scalars L-parity SU(2)L × U(1)Y U(1)′

(φ+
1,2, φ

0
1,2) + (2,1/2) 0

χ+
1 + (1,1) 0

χ+
2 + (1,1) 1

χ0
2 + (1,0) 1

Table 1: List of fermion and scalar fields in our model.

model. To obtain radiative masses for the three doublet neutrinos, just (φ+
1,2, φ

0
1,2) and χ+

1

are enough[9, 11]. The more difficult task is to include the singlet neutrino νsL into a 4 × 4

radiative mass matrix of the same form. A natural way that this may come about is to

have an extra gauge symmetry U(1)′ for the fields νsL, χ+
2 , and χ0

2 which is broken at a

higher (∼ TeV) scale. The axial-vector anomaly, generated by νsL, is cancelled by NR which

transforms as νsL under U(1)′. We also add SR which is trivial under U(1)′. A large mass

for NR is then ensured through the Yukawa interaction S̄RNR
Cχ0

2 since 〈χ0
2〉 >∼ 1 TeV. The

particle content of the model is summarized in Table 1.

We have an unbroken discrete Z2 symmetry, namely L-parity, to distinguish between two

classes of fermions. The leptons now have odd L-parity, replacing the usual additive lepton

number. This allows the four neutrinos to acquire Majorana masses. However, tree-level

neutrino masses are forbidden by the assumed particle content of our model, even after the
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spontaneous breaking of the gauge symmetry. Note that νs does not get a Majorana mass

because of U(1)′; it also does not get a Dirac mass by pairing up with NR or SR because

of L-parity. More specifically, consider the following interaction Lagrangian density of the

fields shown in Table 1.

Lint =
∑

i,j

fij(νiLljL − liLνjL)χ+
1 +

∑

i

f ′

i ν̄sLliRχ
+
2 +

∑

i

hi(ν̄iLφ
+
1 + l̄iLφ

0
1)liR

+µ(φ+
1 φ

0
2 − φ0

1φ
+
2 )χ−

1 + µ′χ+
1 χ

−

2 χ
0
2 + h′NRSRχ

0
2

∗

+ h.c., (2)

where we have used the notation ψiζj = ψi
Cζj for two fermion fields ψ and ζ . Evidently,

fij is antisymmetric in its generation indices. We have assumed in (2) that (φ+
2 , φ

0
2) do

not couple to leptons. This is easily achieved by a separate discrete Z2 symmetry which is

explicitly broken, but only by soft terms such as φ−

1 φ
+
2 + φ0∗

1 φ
0
2 + h.c. in the Higgs potential,

as in the minimal supersymmetric standard model, for example. As shown below, the above

interactions induce a radiative neutrino mass matrix for νe, νµ, ντ , and νs of the form

Mν =















0 a b d

a 0 c e

b c 0 f

d e f 0















, (3)

which generalizes the 3×3 matrix of the Zee model [9] by including a fourth row and column.

In Fig. 1 we show the one-loop diagram linking νi and νj which contributes to the cor-

responding entry in Mν . This is of course identical to that of Ref. [9] and [11]. Note that

i 6= j necessarily, hence only off-diagonal entries can be nonzero. Since hi = mli/〈φ
0
1〉, we

obtain

a = feµ(m2
µ −m2

e)
(

µv2

v1

)

F (m2
χ1
, m2

φ1
), (4)

b = feτ (m
2
τ −m2

e)
(

µv2

v1

)

F (m2
χ1
, m2

φ1
), (5)

c = fµτ (m
2
τ −m2

µ)
(

µv2

v1

)

F (m2
χ1
, m2

φ1
), (6)
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where v1,2 ≡ 〈φ0
1,2〉, and the function F is given by

F (m2
1, m

2
2) =

1

16π2

1

m2
1 −m2

2

ln
m2

1

m2
2

. (7)

In Fig. 2 we show the analogous one-loop diagram linking νi to νs. We find

d = (feτf
′

τmτ + feµf
′

µmµ)

(

µ′u

v1

)

F (m2
χ1
, m2

χ2
), (8)

e = (fµτf
′

τmτ + fµef
′

eme)

(

µ′u

v1

)

F (m2
χ1
, m2

χ2
), (9)

f = (fτµf
′

µmµ + fτef
′

eme)

(

µ′u

v1

)

F (m2
χ1
, m2

χ2
), (10)

where u ≡ 〈χ0
2〉. In the following, we will assume that f ′

eme is negligible. Moreover, while u

is expected to be large compared to v1,2, that can be compensated by mχ2
being larger than

mχ1
or mφ1

. Thus d, e, f need not be larger in magnitude than a, b, c. In any case, we have

the important relationship

d =
be

c

(

1 −
m2

µ

m2
τ

)

+
ffeµ

fτµ
, (11)

where m2
e in Eq. (5) has been neglected.

We make the same observation as in Refs. [9] and [11] that b and c are likely to be the

dominant entries of Mν because they are proportional to m2
τ . This means that ντ combines

with a linear combination of νe and νµ to form a pseudo-Dirac particle. Let us also assume

that |feτ | << |fµτ |, so that |b| << |c|. Then the 2× 2 submatrix spanning νe and νs is given

by

Mνeνs
=





−2ab/c d− be/c− af/c

d− be/c− af/c −2ef/c





=





−2ab/c −ffeµ/fµτ − (be/c)(m2
µ/m

2
τ )

−ffeµ/fµτ − (be/c)(m2
µ/m

2
τ ) −2ef/c



 , (12)

where we have used Eq. (11) and the fact that |a/c| << |feµ/fµτ |. Hence

mνe
≃ −2

ab

c
, mνs

≃ −2
ef

c
, (13)
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and for mνe
<< mνs

, the νe − νs mixing is (cfeµ/efµτ + bm2
µ/fm

2
τ )/2. This is assumed to be

small, so as to satisfy the solar neutrino data. We now have

(∆m2)solar ≃ 4
e2f 2

c2
. (14)

Since Mν has zero trace, it can easily be shown that the leading expressions for its

eigenvalues are given by

− 2
ab

c
, c+

ab

c
+
ef

c
, − c+

ab

c
+
ef

c
, − 2

ef

c
. (15)

Hence the mass-squared difference between the two Majorana components of the pseudo-

Dirac neutrino with mass c is

∆m2 = 4(ab+ ef) ≃ 4ef ≃ (∆m2)atm. (16)

Since this is for a νµ−ντ mixing of 45◦, we have taken it to explain the atmospheric neutrino

data. Finally, the LSND data involve the mixing of νe and νµ, hence

(∆m2)LSND = c2, (17)

with mixing given by b/c. Combining Eqs. (14), (16), and (17), we obtain Eq. (1), as claimed.

Current neutrino-oscillation data are consistent with (∆m2)LSND ∼ 1 eV2 and (∆m2)solar

∼ 6 × 10−6 eV2. In that case, (∆m2)atm is predicted by Eq. (1) to be about 5 × 10−3 eV2,

which is supported by the most recent data from Super-Kamiokande. In our model, νµ and

ντ have the same mass c ≃ 1 eV and they mix maximally. Let b ≃ 0.04 eV, then the νµ − νe

mixing parameter (sin2 2θ)LSND is 4b2/c2 ∼ 6 × 10−3, in good agreement with data. For

νe − νs oscillations, we let

feµc

2fµτe
+

bm2
µ

2fm2
τ

≃ 0.04, (18)

so that (sin2 2θ)solar is also about 6 × 10−3, again in good agreement with data. More

specifically, we can let e ≃ 0.12 eV and f ≃ 0.01 eV, then mνs
∼ 2ef/c ≃ 2.4 × 10−3 eV.
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Furthermore from Eq. (18), feµ/fµτ is now about 0.008 and from Eqs. (4) and (6), a ∼ 3×10−5

eV, hence mνe
∼ 2ab/c ∼ 2×10−6 eV, justifying our assumption that mνe

<< mνs
. We have

thus a completely successful phenomenological picture of neutrino oscillations.

The model of Ref.[11] differs from ours in that νs is assumed there to acquire a tree-level

mass which is just slightly bigger than the radiative mass of νe. [This is of course rather ad

hoc, but it is necessary to satisfy solar data.] Let us compare its consequences with those

of ours. In the former, the parameter a is forced to be large in magnitude because 4ab is

identified there with (∆m2)atm, resulting in |feµ| ∼ |fµτ |. This condition is subject to severe

phenomenological constraints because feµ contributes to µ decay. In fact, in that scenario,

f 2
eµ ∼ f 2

µτ < 7 × 10−4GF . (cos2 φM−2
1 + sin2 φM−2

2 )−1 where M1,2 are the physical charged

Higgs masses and φ is their mixing angle. In our model, because of Eq. (16), a can be and

is very small, hence |feµ| << |fµτ |, so that our |fµτ | is not constrained to be small.

We note also that the form of Eq. (3) for the neutrino mass matrix with c as the dominant

entry is not sufficient by itself to have the correct νe−νs submatrix needed to explain the solar

data. Without Eq. (11), which is an automatic consequence of our model, that submatrix

would have dominant off-diagonal terms, i.e.

Mνeνs
∼





0 d

d 0



 , (19)

which would make νe and νs pseudo-Dirac partners with the requisite mixing of 45◦ in conflict

with solar neutrino data.

A third point concerns the fermion singlets NR and SR. They have even L-parity, which

is unbroken in our model, hence they do not mix into the lepton sector. Both of them are

massive, because the terms SRSR and NRSRχ
0
2

∗

+h.c. are allowed in the Lagrangian density.

The scale of U(1)′-breaking, i.e. 〈χ0
2〉 can be taken beyond 1 TeV, thereby pushing up these

masses. It is to be noted that the off-diagonal terms in the Z−Z ′ mass matrix are prohibited

due to the absence of appropriate Higgs fields in the present model. We also assume that

7



the kinetic mixing between the U(1)Y and U(1)′ gauge bosons is negligible. Hence our Z ′

couples at the tree level only to νsL, NR, χ+
2 and χ0

2. Thus present experimental bounds [14]

on a possible Z ′ with standard-model-like couplings do not apply. However, because νs mixes

with νe radiatively, Z ′ develops a small coupling to νe. To avoid any possible conflict with

nucleosynthesis or current electroweak phenomenology, we assume MZ ∼ 1 TeV or greater,

which is of course natural since we already assumed 〈χ0
2〉 ∼ 1 TeV or greater.

The charged scalar χ+
1 contributes to the standard-model effective charged-current inter-

action due to the presence of the fij(νiLljL − liLνjL)χ+
1 term in the Lagrangian density. The

corresponding effects on processes, such as electron-neutrino scattering, are experimentally

severely constrained. They give rise to the constraint f 2
eµ/M

2 < 0.036GF [11], where M is

the mass of the charged scalar mediating the process. Since we have |feµ| << |fµτ |, this is

no problem for us. The proposed hierarchical relation |feµ| << |fµτ | is also consistent with

the constraint from the branching ratio of the decay τ− → µ−ν̄µντ being (17.35 ± 0.10)%

[14] since the latter only requires f 2
µτ/M

2 < 0.13 GF .

In summary, we have demonstrated that the present results of solar, atmospheric as well

as LSND experiments can be explained with three electroweak-active neutrinos and a sterile

one with a minimal extension of the standard SU(2)L × U(1)Y electroweak gauge model.

The extra U(1)′ gauge and Z2 discrete symmetries are needed to avoid tree-level Majorana

or Dirac mass terms. All neutrino masses are radiatively generated in one loop by an

extension of the Zee model. Our proposal results in an interesting relationship (∆m2)atm ≃

2[(∆m2)solar(∆m
2)LSND]

1/2
which is well satisfied by the present experimental data and will

be critically tested with more accurate data forthcoming in the near future.
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νiL

χ+
1

ljL

< φ0
1 >

ljR νjL

φ+
1

< φ0
2 >

FIG. 1. One loop radiative νi − νj (i, j = e, µ, τ) mass due to charged Higgs exchange.

νiL

χ+
1

ljL

< φ0
1 >

ljR νsL

χ+
2

< χ0
2 >

FIG. 2. One loop radiative νi − νs (i = e, µ, τ) mass due to charged Higgs exchange.
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