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Abstract

Though the minimal model of anomaly mediated supersymmetry breaking has been signif-

icantly constrained by recent experimental and theoretical work, there are still allowed regions

of the parameter space for moderate to large values of tanβ. We show that these regions will

be comprehensively probed in a
√

s = 1 TeV e+e− linear collider. Diagnostic signals to this end

are studied by zeroing in on a unique and distinct feature of a large class of models in this genre:

a neutral winolike Lightest Supersymmetric Particle closely degenerate in mass with a winolike

chargino. The pair production processes e+e− → ẽ±
L
ẽ∓

L
, ẽ±

R
ẽ∓

R
, ẽ±

L
ẽ∓

R
, ν̃ ¯̃ν, χ̃0

1χ̃
0
2, χ̃0

2χ̃
0
2 are all

considered at
√

s = 1 TeV corresponding to the proposed TESLA linear collider in two natural

categories of mass ordering in the sparticle spectra. The signals analysed comprise multiple

combinations of fast charged leptons (any of which can act as the trigger) plus displaced ver-

tices XD (any of which can be identified by a heavy ionizing track terminating in the detector)

and/or associated soft pions with characteristic momentum distributions.
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1 Introduction

The Minimal Supersymmetric Standard Model (MSSM [1]), with softly broken N=1 supersymmetry,

is the prime candidate today for physics beyond the Standard Model (SM). Suppose the soft

supersymmetry breaking terms explicitly appearing in the MSSM Lagrangian are regarded as low

energy remnants of a spontaneous or dynamical breaking of supersymmetry at a high scale. We

then know that the latter cannot take place in the observable sector of MSSM fields; it must occur

in a hidden or secluded sector which is generally a singlet under SM gauge transformations. Though

the precise mechanism of how supersymmetry breaking is transmitted to the observable sector of

MSSM superfields is unknown, signals of supersymmetry in collider experiments sometimes depend

sensitively on it. There are several different ideas of transmission, such as gravitational mediation

at the tree level [2] and gauge mediation [3], each with its distinct signatures. A very interesting

recent idea, that is different from the above two, is that of Anomaly Mediated Supersymmetry

Breaking (AMSB) [4, 5] which is explained below. This scenario has led to a whole class of models

and their phenomenological implications have been discussed [4 - 23], but let us confine ourselves

here to the minimal version [4]. The latter has characteristically distinct and unique laboratory

signatures. These have been explored in some detail for hadronic collider processes [8 - 13]. But

there are also quite striking signals that such models predict for processes to be studied in a high

energy e+e− (or µ+µ−) linear collider [14]. This paper aims to provide a first detailed study of

such signals in this type of a machine.

In ordinary gravity-mediated supersymmetry breaking tree level exchanges with gravitational

couplings between the hidden and the observable sectors transmit supersymmetry breaking from

one to the other. If Λss is the scale of spontaneous or dynamical breaking of supersymmetry

in the hidden sector, explicit supersymmetry violating mass parameters of order Ms ≡ Λ2
ssM

−1

pl ,

Mpl being the reduced Planck mass ∼ 2 × 1018 GeV, get generated in the MSSM Lagrangian.

However, in general, there are uncontrolled flavour changing neutral current (FCNC) amplitudes in

this scenario. Though gravity is flavour blind, the supergravity invariance of the Lagrangian still

admits direct interaction terms between the hidden and the observable sectors, such as

Leff ≃
∫

d4θ
h

M2
pl

Σ†ΣQ†Q. (1)

In Eq. (1), Σ and Q are generic chiral superfields in the hidden and the observable sectors respec-

tively, while h is a dimensionless coupling of order unity. When supersymmetry is broken in the

hidden sector, say through a nonzero vacuum expectation value 〈FΣ〉 of the auxiliary component,

masses get induced for spin zero sparticles in the observable sector. There is no symmetry to keep h

diagonal in flavour space. As a result, the squark soft mass matrix can have significant off-diagonal

terms in that space, leading to a major conflict with strong experimental upper bounds on FCNC

amplitudes from K − K̄ and B − B̄ mixing as well as from unobserved µ → eγ decay and µ → e

conversions in nuclei [24].
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Attempts to solve the above mentioned flavour problem have generally required special family

symmetries [25] in addition to supergravity. In the alternative scenario [3], namely gauge mediated

supersymmetry breaking, FCNC amplitudes are naturally absent. However, models of that category

have other difficulties like the CP problem and the µ vs µB (µ and B being the higgsino mass and

the Higgs sector supersymmetry violating parameters respectively) problem which are less severe in

gravity-mediated scenarios. It is in this context that the recently proposed AMSB scenario has right

away become interesting. Anomaly mediation is in fact a special case of gravity mediation where

there are no direct tree level couplings between the superfields of the hidden and the observable

sectors that convey supersymmetry breaking. This is realized, for instance, when the hidden and

the observable sector superfields are localized on two parallel but distinct 3-branes located in a

higher dimensional bulk as schematically depicted in Fig. 1.

3-brane

Visible sector

BULK

(Super-Weyl anomaly)

Hidden sector

3-brane

Figure 1: Supersymmetry breaking across the extra dimension(s).

Suppose that the two branes are separated by the bulk distance ∼ rc where rc is the compacti-

fication radius. Then any tree level exchange with bulk fields of mass m (> r−1
c ) will be suppressed

by the factor e−mrc . Supergravity fields propagate in the bulk, but the supergravity-mediated

tree level couplings can now be eliminated by a rescaling transformation. The problem can be

considered in the background of a conformal compensator superfield Φ whose VEV is given [4] by

〈Φ〉 = 1 + m3/2θθ, m3/2 being the gravitino mass. The rescaling transformation is then given by

QΦ → Q. However, this rescaling symmetry is anomalous at the quantum level and the communi-

cation of supersymmetry breaking from the hidden to the observable sector takes place through the

loop-generated superconformal anomaly. The latter is topological in origin and naturally conserves
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flavour so that no new FCNC amplitudes are introduced from supersymmetry breaking terms. Thus

other advantages of gravity mediated supersymmetry breaking are retained in the AMSB scenario

while the flavour problem is solved.

Let us assume that all explicit soft supersymmetry breaking parameters of the MSSM originate

from AMSB. Then the masses of the gauginos and of the scalars get generated at the same order

in the corresponding gauge coupling strengths. Therefore these masses are not expected to be

very different. The expressions for the said quantities, in fact, become renormalization group

invariant with sleptons becoming tachyonic. The latter fact is the most severe problem in the

AMSB scenario and there are several proposals in the literature to solve it. We shall focus on

the minimal [4] model of AMSB where the problem of tachyonic sleptons is tackled by adding

a universal constant term m2
0 to the expressions for squared scalar masses, i.e., m2

0 contributes

equally to the squared masses of all scalars present in the theory. One can now solve the tachyonic

slepton problem through a suitably chosen m2
0 making all squared slepton masses positive, the

scale invariance of the expressions for scalar masses being lost. The evolution of scalar masses

governed by the corresponding renormalization group equations (RGE), starting from a very high

energy scale, must therefore be taken into account. However, except for the addition of an extra

parameter, this is quite a feasible procedure. Recently, a mechanism to generate the minimal

AMSB spectrum (including the universal additive constant m2
0 in all squared scalar masses) has

been proposed [23]. In this scheme only the SM matter superfields are confined to the 3-brane of

the observable sector while the gauge superfields live in the bulk along with gravity. The presence

of gauge and gaugino fields in the bulk results in the additional universal supersymmetry breaking

contribution to all scalar masses squared. This contribution is naturally of the same size as its

anomaly-induced counterparts.

One can say, on the basis of this last discussion, that the minimal AMSB model has now

been soundly formulated and is worthy of serious consideration. Indeed, its parameter space has

been severely constrained [26 - 29] by recent measurements of the g − 2 of the muon [30] and

of the branching fraction for the decay B → Xsγ, but some regions of the parameter space still

survive. This model is characterized by several distinct features with important phenomenological

consequences: a rather massive gravitino (∼ a few TeV) and nearly mass-degenerate left and right

selectrons and smuons while the staus split into two distinct mass eigenstates with the τ̃1 being

the lightest charged slepton. Most importantly, the model has gaugino masses proportional to the

β-functions of the gauge couplings. The latter leads to the existence of a neutral near-Wino as the

lightest supersymmetric particle (LSP) χ̃0
1 and closely mass-degenerate with it a pair of charged

near-Winos as the lighter charginos χ̃±
1 . A tiny mass difference ∆M (< 1 GeV) arises between them

from loop corrections and a weak gaugino-higgsino mixing at the tree level. Because of the small

magnitude of ∆M , χ̃±
1 , if produced in a detector, will be long-lived. Such a chargino then is likely

to leave [31] a displaced vertex XD and/or a characteristic soft pion from the decay χ̃±
1 → χ̃0

1 +π±.

The pair production of MSSM sparticles and their decays which are characteristic of AMSB
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scenarios, have been considered in various theoretical studies conducted with respect to experiments

in a hadronic collider [8 - 13]. But the same can be carried out for electron and muon colliders too

[14]. Let us specifically take an e+e− linear collider at a CM energy
√

s = 1 TeV; the reason for

such a choice will be explained below. We consider pair production processes such as e+e− → ẽ±L ẽ∓L ,

ẽ±R ẽ∓R, ẽ±L ẽ∓R, ν̃ ¯̃ν, χ̃0
1χ̃

0
2, χ̃0

2χ̃
0
2. One could also produce smuon or stau pairs and look at the signals

coming from their cascade decays. In case of smuons the event rates would be reduced typically by

a factor of five on account of s-channel suppression. This is the reason why we have not explicitly

considered smuon pair production here, though one can look for it in principle. A similar argument

holds for stau pair production. Also, for the sake of simplicity, we choose not to consider taus in the

final state here because of the lesser experimental efficiency in identifying them. There are broadly

two types of AMSB mass spectra which we call Spectrum A and Spectrum B, to be described later.

The cascade decay chains of the produced sparticles are different for the two spectra. We consider

both spectra in detail and provide quantitative discussions of signals with final states containing

multiple combinations of XD/soft pions and fast charged leptons in both cases. As mentioned

earlier, significant constraints [26 - 29] on the minimal AMSB model have been derived recently

from measurements of the rare deay rate Γ(B → Xsγ) and of the muon anomalous magnetic moment

(g − 2)µ. Specifically, negative values of the Higgsino mass parameter µ have been effectively ruled

out. However, we shall show that some regions of the AMSB parameter space are still allowed

for moderate to large values of tan β (the ratio of the two Higgs VEVs). These are precisely the

regions that we target in our studies. Moreover, the required absence of charge and colour violating

global minima suggests [32] that charged sleptons in the minimal AMSB model are rather heavy

and beyond the reach of a
√

s = 500 GeV linear collider, the proposed JLC and NLC machines.

It is interesting to note that the region still allowed by the (g − 2)µ and the B → Xsγ constraints

is almost the one allowed from more theoretically motivated stability conditions. This is why we

have chosen a
√

s value of 1 TeV, to be attained by a linear collider such as the proposed TESLA

[33]. Charged sleptons of the minimal AMSB model are therefore likely to be above (within) the

kinematic reach of the former (latter) machine.

There have, of course, been other proposed models to solve the problem of tachyonic sleptons

[15 - 22]. In most of these, however, the sparticle mass spectrum differs from that of the minimal

model both in the gaugino as well as in the scalar sector. Since we are interested only in a near-

Wino LSP scenario, we shall not discuss the phenomenology associated with those models1 which

lack this feature. The near-Wino LSP feature is retained, however, in models invoking additional

D-term contributions to soft scalar masses [16 - 18] keeping the sum of squared scalar masses

RG invariant. This is because the mass spectrum in the gaugino sector remains the same as in

the minimal AMSB model. Thus such schemes will lead finally to the kind of signals in a high

energy e+e− linear collider2 that we are going to discuss in the minimal model. However, the

1See, for example, the second paper in [15].
2Similar considerations apply to a future µ+µ− collider with the difference that the pair production of smuons

will be more copious than that of selectrons.
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extreme degeneracy of the right and left selectrons (smuons) is lost here with the right becoming

heavier. This feature can change the patterns of the cascade decays of various sparticles leading

to observable consequences different from those of the minimal model. We shall discuss these

complications separately.

The paper is organized as follows. In section 2 we describe and discuss the mass spectra of the

minimal AMSB model and distinguish between the two cases A and B. In section 3, we enumerate

processes of the pair production of different sleptons and neutralinos, as mentioned earlier; we also

consider the relevant cascade decay chains that lead to our desired signals. The numerical results

of these computations are presented in section 4 which also contains discussions of the results. The

final section 5 provides a brief summary of our conclusions.

2 Spectra and Couplings of the Minimal AMSB Model

Scalar masses in the minimal AMSB model are determined via the RGE equations of the MSSM

with appropriate boundary conditions at the gauge coupling unification scale MG ∼ (1.5 − 2.0) ×
1016 GeV. In the present analysis, the evolution of gauge and Yukawa couplings as well as that of

scalar mass parameters are computed using two-loop RGE equations [34]. We have also incorpo-

rated the unification of gauge couplings at that scale with α3(MZ) ≈ 0.118. The magnitude of the

higgsino mass parameter µ gets fixed from the requirement of a radiative electroweak symmetry

breaking. It is computed at the complete one-loop level of the effective potential [35], the optimal

choice for the renormalization scale being Q =
√

(mt̃1
mt̃2

), mt̃1
(mt̃2

) being the lighter (heavier)

stop mass. We have also included a supersymmetric QCD correction to the bottom-quark mass [36],

which is significant for large tan β. The model has only four parameters: the gravitino mass m3/2,

the common scalar mass parameter m0, tan β and sgn(µ). However, we exclude the case µ < 0

since that has now been ruled out [26] by the recent (g − 2)µ data. The appropriate boundary

conditions at the GUT scale for the masses and the trilinear couplings are given below. It should

be re-emphasized at this point that gaugino masses and trilinear scalar couplings can be computed

from these expressions at any scale once the appropriate values of the gauge (g) and Yukawa (h)

couplings at that scale are known. We shall ignore Yukawa terms in the superpotential (and also

the trilinear scalar couplings) pertaining to the first two generations, though not those involving

the third generation. Sfermions of the heaviest family are therefore treated differently from those

of the two lighter ones.

The scale invariant one-loop gaugino mass expressions are

Mi = bi
g2
i

16π2
m3/2. (2)

where b1 = 33/5, b2 = 1, b3 = −3. To leading order, M1,2,3 are independent of m0 and increase

linearly with m3/2. Furthermore, at one-loop level the squared masses for the Higgs and third

generation scalars are
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m2
i = Ci

m2
3/2

(16π2)2
+ m2

0, (3)

where i ≡ (Q, Ū , D̄, L, Ē,Hu,Hd) in standard notation, with the Ci’s being given as

CQ = −11

50
g4
1 − 3

2
g4
2 + 8g4

3 + htβ̂ht + hbβ̂hb
,

CŪ = −88

25
g4
1 + 8g4

3 + 2htβ̂ht ,

CD̄ = −22

25
g4
1 + 8g4

3 + 2hbβ̂hb
,

CL = −99

50
g4
1 − 3

2
g4
2 + hτ β̂hτ , (4)

CĒ = −198

25
g4
1 + 2hτ β̂hτ ,

CHu = −99

50
g4
1 − 3

2
g4
2 + 3htβ̂ht ,

CHd
= −99

50
g4
1 − 3

2
g4
2 + 3hbβ̂hb

+ hτ β̂hτ .

In Eqs. (4), Q and L refer to the respective squark and slepton SU(2) doublet superfields, while Ū ,

D̄ and Ē stand for the singlet up-squark, down-squark and charged slepton superfields respectively

and Hu (Hd) describes the up-type (down-type) Higgs superfield. Moreover, the β̂’s are given by

β̂ = (16π2)
−1

β, (5)

where β is the usual beta-function. Thus

β̂ht = ht

(
−13

15
g2
1 − 3g2

2 − 16

3
g2
3 + 6h2

t + h2
b

)
,

β̂hb
= hb

(
− 7

15
g2
1 − 3g2

2 − 16

3
g2
3 + h2

t + 6h2
b + h2

τ

)
,

β̂hτ = hτ

(
−9

5
g2
1 − 3g2

2 + 3h2
b + 4h2

τ

)
.

Finally, the scale invariant expressions for the third generation trilinear A couplings are

At =
β̂ht

ht

m3/2

16π2
, Ab =

β̂hb

hb

m3/2

16π2
, Aτ =

β̂hτ

hτ

m3/2

16π2
. (6)

The expressions for sfermion masses and A-parameters of the first two generations can be obtained

from the above by simply dropping the Yukawa couplings.

One of the interesting features of the minimal AMSB model is that the ratios of the respective

SU(3), SU(2) and U(1) gaugino mass parameters M3, M2 and M1 are given, after taking into

account the next to leading order (NLO) corrections and the weak scale threshold corrections [9],

by

|M1| : |M2| : |M3| = 2.8 : 1 : 7.1 (7)

7



(Note that eq. (7), as deduced in [9], is true only for low and moderate values of tan β. For large

values of tan β where bottom and τ Yukawa couplings are nonnegligible, the ratio |M1|/|M2| slightly

increases [13].) As a result of eq. (7), the lighter chargino χ̃±
1 and the lightest neutralino χ̃0

1 become

almost degenerate. The small difference in the masses, with the lightest neutralino being the lightest

supersymmetric particle (LSP), comes from the tree-level gaugino-higgsino mixing as well as from

the one-loop corrected chargino and the neutralino mass matrix. The small mass-splitting ∆M can

be approximately written as

∆M =
M4

W tan2 θW

(M1 − M2)µ2
sin2 2β

[
1 + O

(
M2

µ
,
M2

W

µM1

)]

+
αM2

π sin2 θW

[
f

(
M2

W

M2
2

)
− cos2 θW f

(
M2

Z

M2
2

)]
, (8)

with

f(x) ≡ −x

4
+

x2

8
ln(x) +

1

2

(
1 +

x

2

)√
4x − x2

[
tan−1

(
2 − x√
4x − x2

)
− tan−1

(
x√

4x − x2

)]
(9)

The second term in the RHS of eq. (8) is the one-loop contribution which is dominated by gauge

boson loops.

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

28 32 36 40 44 48 52 56

∆M
(G

eV
)

m3/2 (TeV)

tanβ = 10

tanβ = 30

µ > 0
m0 = 450 GeV

Figure 2: Mass difference ∆M between the lighter chargino (χ̃±
1 ) and the LSP (χ̃0

1) as a function

of the gravitino mass (m3/2) for tan β = 10 (upper curve) and tan β = 30 (lower curve), µ > 0 and

m0 = 450 GeV.

We have numerically investigated the mass-splitting ∆M in various region of the parameter

space. Given the LEP lower limit [37] of 86 GeV on the mass of the lighter chargino for nearly

degenerate χ̃±
1 -χ̃0

1, it can be concluded that the upper limit on ∆M cannot be much in excess of

500 MeV. On the other hand, the condition of radiative electroweak symmetry breaking in the
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AMSB scenario gives the ratio |µ/M2| to be approximately between 3 and 6. For very large M2 (i.e.

for very large µ) the mass difference ∆M reaches an asymptotic value of ≈ 165 MeV. Fig. 2 shows

the typical variation of ∆M as a function of m3/2 for a choice of µ > 0 and m0 = 450 GeV. The

two choices of tan β are shown in the figure. The curve is cut off on the left by the lower bound3 on

m3/2 implied by the experimental constraint [37] on the χ̃±
1 mass (mχ̃±

1

> 86 GeV) for the nearly

degenerate χ̃±
1 -χ̃0

1 case. On the right, it gets terminated because otherwise the stau becomes the

LSP with a further increase4 in m3/2 for this particular value of m0. This is also the reason why

we have not been able to show the limiting value of ∆M ≈ 165 MeV on this plot.

In Fig. 3, we show a sample plot of various sparticle contours in the m0 − m3/2 plane for two

different choices of the other parameter, namely tan β. The sign of µ has been taken to be positive.

One of the very striking features of the minimal AMSB model is the strong mass degeneracy between

the left and right charged sleptons. As a result of this, the third and the second generation L-R

mixing angles become substantial. They can reach the maximal limit provided tan β is large. This

large L-R mixing of the smuons has been shown to have a strong influence on the neutralino loop

contribution (which is a rather small effect as compared to the dominant chargino loop contribution)

to (g − 2)µ [38] in the context of the minimal AMSB scenario. The corresponding constraint on

the parameter space has been derived assuming that the supersymmetric contribution to (g − 2)µ

is restricted within a 2σ limit of the combined error from the Standard Model calculation and from

the current uncertainty in the Brookhaven measurement [26 - 29]. A similar constraint [26, 28]

from the measured radiative decay rate Γ(B → Xsγ) has been invoked.

The top left corners of both the diagrams in Fig. 3, marked by X, are not allowed. This is

due to the twin requirements of τ̃1 not being allowed to be the LSP and mτ̃1 having to exceed the

experimental lower bound of 70 GeV [39]. Any further increase in m3/2 for a particular value of

m0 is disallowed since then the staus become tachyonic. Furthermore, the lower limit on m3/2 in

each figure comes from the experimental constraint [37] mχ̃±

1

> 86 GeV. One can also check that

the maximum possible value of m3/2 for a given m0 is a decreasing function of tan β [38]. Recently,

new bounds on minimal AMSB model parameters have been proposed from the condition that the

electroweak symmetry breaking minimum of the scalar potential is the deepest point in the field

space [32]. Selected parameters for our entire numerical calculation have been chosen so as to be

consistent with all these bounds.

The continuous and dashed curved lines in Fig. 3 stand for contours of constant charged slepton

and sneutrino masses respectively 5. It is easy to see why the latter are lower than the former. The

3The lower bounds on m3/2 for two different choices of tan β are a little different. However, in this figure we have

taken the same origin for both the curves.
4The value of m3/2 for this to happen is higher for tanβ = 10 but here we have terminated it at the value

corresponding to tanβ = 30.
5We have liberally allowed a certain amount of uncertainty in the theoretical lower bounds [32] on m0 and m3/2

from the required absence of color or charge nonconserving vacua in the one-loop effective potential on account of

two-loop as well as weak threshold corrections.
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Figure 3: Contours of constant charged slepton (continuous) and sneutrino (dashed) masses in the

m0 −m3/2 plane for (a) tan β = 10 and µ > 0, (b) tan β = 30 and µ > 0. The number adjacent to

each pair of curved lines corresponds to the sneutrino (slepton) mass for that particular contour.

The dotted horizontal lines are the contours of constant χ̃0
2 mass. The number adjacent to each

horizontal line is the mass of χ̃0
2 for that contour. The boundaries of constraint, labelled by FM

and CHKLS (the near vertical boundary in (a) from (g − 2)µ and the near horizontal boundaries in

(a) and (b) from Γ(B → Xsγ)), have been taken from Refs. [26] and [28] respectively. The shaded

regions are the allowed regions in the two figures.

sneutrino mass is linked with the left charged slepton mass through the SU(2)L relation

m2
ν̃ = m2

L̃
+

1

2
m2

Zcos2β. (10)

Thus, for tan β > 1, mν̃ is always smaller than mL̃. Since the right and the left sleptons are very

highly degenerate, sneutrinos are always lighter than the right sleptons too. The horizontal lines in

Fig. 3 are contours of constant χ̃0
2 mass. It may be noted that no χ̃0

1 mass contour has entered these

figures since the LSP χ̃0
1 is always significantly lighter than χ̃0

2. Depending on various parametric

choices, we see that the AMSB sparticle mass spectrum can be broadly classified into two natural

categories with mass ordering as given below (sparticle symbols standing for sparticle masses):

• Spectrum A: χ̃0
1(≈ χ̃±

1 ) < ν̃ < ẽR(≈ ẽL) < χ̃0
2

• Spectrum B: χ̃0
1(≈ χ̃±

1 ) < χ̃0
2 < ν̃ < ẽR(≈ ẽL).

Note that, in AMSB scenarios with a wino LSP, χ̃±
2 and χ̃0

3,4 are higgsino-dominated and heavy

enough to be neglected in our signal studies. Also, for large values of tan β, there exists a region

10



where the mass of χ̃0
2 is between that of the lighter stau τ̃1 and the first generation sleptons. This

variant, which we call Spectrum B1, is characterized by

• Spectrum B1: χ̃0
1(≈ χ̃±

1 ) < τ̃1 < χ̃0
2 < ν̃ < ẽR(≈ ẽL).

For most of the decay modes, the spectra B and B1 have identical behaviour, and we do not list

them separately. The only exception is the decay of χ̃0
2, which is discussed in Section 3.2.

It can be seen from Fig. 3 that mass-orderings, other than A and B above, are allowed only in

very restricted regions of the m3/2−m0 plane and correspond to the fine tuning of some parameters.

This is why we do not consider them further. As already mentioned, staus and smuons are not

considered for production here. That is the reason why we have not included them in the two

classes of spectrum written above. (However, for completeness, one may note that the smuons are

almost degenerate with the selectrons, while the lighter stau is the lightest slepton for large values

of tan β). Finally, the regions in the parameter space, where the LSP can be either the τ̃1 (the two

stau mass eigenstates are separated because of the large off-diagonal terms in the stau mass matrix)

or the sneutrino, are disfavoured on cosmological grounds. Such LSPs are also incompatible with

the stability of the supersymmetric scalar potential [32]. Thus, there are really only two distinct

classes of spectra which are relevant and interesting for our present study.

3 Production and Decays of Sparticles

The basic production processes that we consider are e+e− → ẽ±L ẽ∓L , ẽ±Rẽ∓R, ẽ±L ẽ∓R, ν̃ ¯̃ν, χ̃0
1χ̃

0
2, χ̃0

2χ̃
0
2.

We have not included the process e+e− → χ̃±
1 χ̃∓

1 since that will yield two displaced vertices/soft

pions in addition to ET/ ; the only way to trigger the reaction would be to consider an additional

initial-state-radiated (ISR) photon [31]. However, apart from the rate being lower by a factor

α, such a signal could also come from the light higgsino (|µ| ≪ |M1,2|) scenario. The process

e+e− → χ+
1 χ−

1 γ in the AMSB model has been discussed in Ref. [40]. Another possible process

that we have not considered is the heavier e+e− → χ̃±
1 χ̃±

2 since the dominant decay mode of χ̃±
2

in the AMSB scenario is χ̃±
2 → χ̃±

1 h and then the branching ratio for a final configuration with

multilepton + soft pion + ET/ is rather small.

In this section we shall also enumerate all possible decay channels of the low-lying sparticles

χ̃±
1 , χ̃0

2, ẽL, ẽR and ν̃ that result in one or more leptons plus at least one soft charged pion

accompanied by missing energy. Let us highlight some important characteristics, selection criteria

and conventions that we have used.

• χ̃±
1 and χ̃0

1 are almost exclusively winos and χ̃±
1 decays slowly (with a visibly displaced vertex

XD) only6 to χ̃0
1 + soft π±.

• χ̃0
2 is almost a bino; at least, those decays that require a nonzero wino component of χ̃0

2 are

neglected, while the higgsino components are unimportant since we are considering only e or

6Henceforth π wil be used to denote XD and/or charged soft pion.
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µ in the final state. An exception is made for χ̃0
2 decay in spectrum B, and is discussed in

section 3.2.

• Whenever one or more two-body decay channels are kinematically allowed, we do not consider

possible three- or four-body channels. Three-body channels, for instance, are significant only

when no two-body decay channel exists and are considered only in that situation.

• Written without any suffix, ν̃ and ν indicate both electron and muon-type sneutrinos. Sim-

ilarly, ℓ (ℓ1, ℓ2) stands for e or µ. For simplicity, we do not consider any τ signals. We use

the same notation for both (s)neutrino and anti(s)neutrino; they can be discriminated from

the charge of the associated (s)lepton.

3.1 Decay cascade for Spectrum A

For Spectrum A, the allowed decay channels are as follows:

1. χ̃0
2 → νν̃, ℓ±L ℓ̃∓L , ℓ±R ℓ̃∓R.

2. ẽL → eχ̃0
1, νeχ̃

±
1 .

3. ẽR → eχ̃0∗
2 → eνν̃. Note that ẽR must have a three-body decay since χ̃0

1 has a vanishing bino

component. Also, the virtual χ̃0∗
2 goes into the νν̃ channel rather than the ℓ±L ℓ̃∓L channel since

ℓ̃L is never lighter than ẽR in minimal AMSB. (In other AMSB models [16 - 18] where ẽR is

heavier than ℓ̃L, this mode is also allowed.) However, the τ τ̃1 channel, though included in

the calculation of the branching fractions of other channels, is not considered explicitly since

we do not look at final states with τ ’s.

4. ν̃ → νχ̃0
1, ℓ∓χ̃±

1 .

This immediately predicts the decay cascade for low-lying sparticles. As already pointed out,

χ̃±
1 results in a visibly displaced vertex XD and/or a soft charged pion. We club χ̃0

1, which invariably

appears at the end in sparticle dacays, and ν under ET/ . Thus, the end products of various sleptons

and χ̃0
2 are

1. ν̃ → ℓ±π∓ET/ (it can have a completely invisible mode ν̃ → νχ̃0
1 and thus can act as a virtual

LSP).

2. ẽL → eET/ , πET/ .

3. ẽR → eET/ , eℓ±π∓ET/ .

4. χ̃0
2 → ℓ±π∓ET/ , ℓ+ℓ−ET/ , ℓ+

1 ℓ−1 ℓ±2 π∓ET/ (ℓ1, ℓ2 = e, µ).

We focus on the following six production processes in an e+e− linear collider. Only those final

states with one or two soft charged pions accompanied by at least one charged lepton and ET/ are
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enlisted; however, only states with one soft pion, and dileptons with two soft pions, are discussed

in detail in the next section. Note that some of the possible final states, e.g., five leptons and a

soft pion, has negligibly small cross sections due to very small branching ratios in various stages of

the cascade.

3.1.1 Production processes

Process 1: e+e− → ν̃ ¯̃ν : Possible final states here are ℓ±π∓ or ℓ+ℓ−π+π−. The leptonic flavour is

the flavour of the produced ν̃; if we consider only ν̃e pair production (which will be more copious

than ν̃µ pair production due to the t-channel ẽL exchange diagram) the final state will have one or

two electrons.

Process 2: e+e− → ẽ+

L ẽ−L : The only possible signal here is e±π∓.

Process 3: e+e− → ẽ+

R ẽ−R : There can be two possible pionic final states in this case, namely,

e+e−ℓ±π∓, and e+e−ℓ±1 ℓ∓2 π+π−. Note that here ℓ1 and ℓ2 may be different since they come from

the flavour-blind χ̃0
2 decay. Thus, there are four possible combinations of two-pion final states.

Process 4: e+e− → ẽ±Rẽ∓L : This process takes place only through the t-channel exchange of χ̃0
2.

The corresponding final states are e±π∓, e+e−ℓ±π∓ and e±ℓ∓π+π−.

Process 5: e+e− → χ̃0
1χ̃

0
2 : The final state here is essentially that obtained from the cascade decay

of χ̃0
2. We will focus on only two generic channels, namely, ℓ±π∓ and ℓ+

1 ℓ−1 ℓ±2 π∓ (ℓ1, ℓ2 = e, µ).

Depending on the flavours of ℓ1 and ℓ2, there are actually six channels.

Process 6: e+e− → χ̃0
2χ̃

0
2 : The pair production of χ̃0

2 produces a rich variety of possible final states.

Single pion final states include ℓ±π∓, ℓ±1 ℓ+
2 ℓ−2 π∓ and ℓ±1 ℓ+

2 ℓ−2 ℓ+
3 ℓ−3 π∓. Note that every possible

configuration necessarily has an odd number of charged leptons. Depending on the leptonic flavour,

one has twelve channels with single soft pions plus one or more charged leptons plus ET/ . There are

three two-pion final states with an even number of charged leptons: ℓ±1 ℓ∓2 π+π−, ℓ±1 ℓ+
2 ℓ−2 ℓ∓3 π+π−

and ℓ±1 ℓ+
2 ℓ−2 ℓ+

3 ℓ−3 ℓ∓4 π+π−. These result in fifteen flavour-specific channels.

3.2 Decay cascade for Spectrum B

The allowed decay channels for Spectrum B are as follows:

1. ẽL → eχ̃0
1, eχ̃0

2, νeχ̃
±
1 .

2. ẽR → eχ̃0
2. Thus ẽR has a more prompt decay in spectrum B than in spectrum A.

3. ν̃ → νχ̃0
1, νχ̃0

2, ℓ∓χ̃±
1 .

4. χ̃0
2 does not have the two-body decay channel to a lepton and a slepton. Its dominant decay

modes are: χ̃0
2 → χ̃0

1h, χ̃0
2 → χ̃0

1Z, χ̃0
2 → χ̃±

1 W∓, where h is the lightest CP-even Higgs

scalar. The last two modes occur through the tiny wino and/or higgsino components of the

predominantly binolike χ̃0
2. Still, they dominate over the three-body decay channels mediated

by virtual sneutrinos or left charged sleptons: χ̃0
2 → νν̃∗ → ννχ̃0

1, νℓ±π∓χ̃0
1; χ̃0

2 → ℓ±L ℓ̃∗L
∓ →
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ℓ+ℓ−χ̃0
1, ℓ±νπ∓χ̃0

1. Since an ℓ̃R cannot decay into ℓχ̃0
1, any ℓ̃R-mediated decay does not

occur. The two-body modes are, of course, not kinematically suppressed; the mass limit of

χ̃±
1 governs the minimum mass splitting of χ̃0

2 and χ̃0
1 and precludes any such suppression.

For Spectrum B1 (see the last paragraph of Section 2), the two body channel χ̃0
2 → τ τ̃1 opens

up, and the branching ratios of all the above-mentioned two-body channels get suppressed.

Since we are not looking at final states with τ ’s, it would be hard to detect a χ̃0
2 in this case.

The decay cascades for sleptons and gauginos are:

1. χ̃0
2 → ℓ±π∓ET/ , ℓ+ℓ−ET/ . χ̃0

2 also has a virtual LSP mode χ̃0
2 → ννχ̃0

1. The leptons come from

the decay of W and Z; h decays dominantly into bb̄ and τ τ̄ which we do not consider here.

Note that the three-body channels also give the same final states, albeit in a tiny fraction.

As discussed earlier, the branching ratios for these modes suffer a heavy suppression once we

look at Spectrum B1.

2. ν̃ → ℓ±π∓ET/ , ℓ+ℓ−ET/ (and the virtual LSP mode listed for spectrum A).

3. ẽL → eET/ , πET/ , eℓ+ℓ−ET/ , eℓ±π∓ET/ .

4. ẽR → eET/ , eℓ+ℓ−ET/ , eℓ±π∓ET/ .

Next, we enlist the signals for the pair production of charged sleptons and gauginos. As stated

earlier, our signals consist of one or more charged leptons (but no τ) plus one or two soft charged

pions, accompanied with ET/ .

3.2.1 Production processes

Process 1: e+e− → ν̃ ¯̃ν : Possible one pion final states are ℓ±π∓ and ℓ+
1 ℓ−1 ℓ±2 π∓, where ℓ1 and

ℓ2 can both be e or µ irrespective of the sneutrino flavour. Thus, there can be six flavour-specific

final states. The only possible two-pion final state is ℓ±1 ℓ∓2 π+π−, which actually is a combination

of three flavour-specific channels.

Process 2: e+e− → ẽ+
L ẽ−L : The one-pion final states are ℓ±π∓, e+e−ℓ±π∓, e±ℓ+ℓ−π∓, and

e+e−ℓ+
1 ℓ−1 ℓ±2 π∓. Written in full, they indicate two one-lepton, three three-lepton and four five-

lepton final states. The two-pion states are e±ℓ±π∓π∓ (note that in this case we may have a

like-sign dilepton signal) and e+e−ℓ±1 ℓ±2 π∓π∓ (this will result in a four-lepton signal, with three of

them of the same sign).

Process 3: e+e− → ẽ+
Rẽ−R : Right selectrons can only decay to χ̃0

2, so the possible one-pion signals

are e+e−ℓ±π∓ and e+e−ℓ+
1 ℓ−1 ℓ±2 π∓. Altogether, they add up to six one-pion final states. The only

possible two-pion state is e+e−ℓ±1 ℓ±2 π∓π∓.

Process 4: e+e− → ẽ±Rẽ∓L : There are four generic one-pion final states for this associated pro-

duction process, namely, e±π∓, e+e−ℓ±π∓, e±ℓ±ℓ∓π∓ and e+e−ℓ+
1 ℓ−1 ℓ±2 π∓, which result in eight

flavour-specific channels. The two-pion final states can be e±ℓ±π∓π∓ and e+e−ℓ±1 ℓ±2 π∓π∓.
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Process 5: e+e− → χ̃0
1χ̃

0
2 : There is only one possible channel, viz. ℓ±π∓.

Process 6: e+e− → χ̃0
2χ̃

0
2 : Possible one-pion channels are ℓ±π∓ and ℓ+

1 ℓ−1 ℓ±2 π∓, resulting in six

channels altogether.

In the three-lepton channel, two leptons of opposite sign and identical flavour should have their

invariant mass peaked at mZ . The only possible two-pion channel is ℓ±1 ℓ±2 π∓π∓. Note that this

decay may also give a like-sign dilepton signal.

Spectrum Signals Parent Channels

e π ν̃ ¯̃ν, ẽLẽL, ẽLẽR, χ̃0
1χ̃

0
2, χ̃0

2χ̃
0
2

µ π ν̃ ¯̃ν, χ̃0
1χ̃

0
2, χ̃0

2χ̃
0
2

A e e ℓ π ẽRẽR, ẽLẽR, χ̃0
1χ̃

0
2, χ̃0

2χ̃
0
2

µ µ ℓ π χ̃0
1χ̃

0
2, χ̃0

2χ̃
0
2

ℓ1 ℓ1 ℓ2 ℓ2 ℓ3 π χ̃0
2χ̃

0
2 (ℓ1,2,3 = e, µ)

e π ν̃ ¯̃ν, ẽLẽL, ẽLẽR, χ̃0
1χ̃

0
2, χ̃0

2χ̃
0
2

µ π ν̃ ¯̃ν, ẽLẽL, χ̃0
1χ̃

0
2, χ̃0

2χ̃
0
2

B e ℓ1 ℓ2 π ẽRẽR, ẽLẽR, ẽLẽL, ν̃ ¯̃ν, χ̃0
2χ̃

0
2

(ℓ1,2 = e, µ)

µ µ µ π χ̃0
2χ̃

0
2, ν̃ ¯̃ν

e e ℓ1 ℓ1 ℓ2 π ẽLẽL, ẽRẽR, ẽLẽR (ℓ1,2 = e, µ)

Table 1: Possible one or multilepton signal with one soft pion. All possible combinations of leptonic

flavours are to be taken into account where the flavour is not shown explicitly.

A list of all possible final states and their parent sparticles, as discussed above, for both Spectra

A and B, is given in Table 1 for one pion channels. A similar list is given in Table 2 for two pion

channels. In the next section, we discuss some of the one-pion signals and the dilepton plus dipion

signal, in detail, but let us note a few key features right at this point.

• One can sometimes have the same signal for Spectrum A or B; however, their sources are

different. This means that the production cross-section and different distributions will also

vary from one spectrum to the other; this may help discriminate between them. A useful

option may be to use one polarized beam when some of the channels would be altogether

ruled out.

• One must have an odd (even) number of charged leptons produced in conjunction with one

(two) soft pion(s) in order to maintain charge neutrality. However, one can have a maximum

of five leptons in the one-pion channel for both Spectra A and B. On the other hand, for

two-pion channels, Spectrum A allows at most six charged leptons, while Spectrum B allows

only four. The signal cross sections of the multilepton channels (with lepton number ≥ 4)
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may, however, be unobservably small with the presently designed luminosity of a
√

s = 1 TeV

linear collider.

• Three charged lepton plus one soft pion (3ℓ1π) signals are interesting in their own right.

Consider the 3µ1π signal. For Spectrum B, two opposite sign muons must have their invariant

mass peaked at mZ , while no such compulsion exists for Spectrum A. This can serve as a

useful discriminator between these two options.

• For signals with more than three charged leptons, one must have at least two electrons for

Spectrum B, while all of them can be muons for Spectrum A. This can be directly traced to

the fact that for Spectrum B a selectron pair is the parent whereas a χ̃0
2 pair generates the

multilepton signal in Spectrum A.

• For two-pion and two charged lepton final states, one may have more like-sign dileptons for

Spectrum B than for Spectrum A. For one-pion states, one may get a stronger same-flavour

like-sign dilepton signal for Spectrum B. The reasons are twofold: (a) Spectrum B gives χ̃0
2

pairs more frequently at intermediate stages of the cascade and (b) χ̃0
2 in Spectrum A is

expected to be heavier than in Spectrum B. In fact, for Spectrum A χ̃0
2 may even be outside

the energy reach of the collider, in which case there will not be any like sign dilepton events

in the final state.

• From theoretical considerations of charge and colour conservation, sleptons are expected [32]

to be somewhat heavy in the minimal AMSB model. In fact, the lower bounds on their masses

depend on the chargino mass.

Spectrum Signals Parent Channels

e ℓ π π ν̃ ¯̃ν, ẽLẽR, χ̃0
2χ̃

0
2

µ µ π π ν̃ ¯̃ν, χ̃0
2χ̃

0
2

A e e ℓ1 ℓ2 π π ẽRẽR, χ̃0
2χ̃

0
2 (ℓ1,2 = e, µ)

µ µ µ ℓ π π χ̃0
2χ̃

0
2

n e, (6-n) µ, π π χ̃0
2χ̃

0
2

(0 ≤ n ≤ 6)

e ℓ π π ν̃ ¯̃ν, ẽLẽL, ẽLẽR, χ̃0
2χ̃

0
2

B µ µ π π ν̃ ¯̃ν, χ̃0
2χ̃

0
2

e e ℓ1 ℓ2 π π ẽRẽR, ẽLẽL, ẽRẽL (ℓ1,2 = e, µ)

Table 2: The same as in Table 1, with two soft pions.

Before we conclude this section, let us just mention how the decay products change identity

when we deviate from the assumptions of minimal AMSB and make ẽR sufficiently heavier than
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ẽL. First, note that the decay ẽR → ẽL plus a virtual higgsino-type neutralino is suppressed both

due to its mass and the selectron coupling of the latter. It need not be considered. We can then

discuss the three following scenarios:

• Spectrum A′: χ̃0
1(≈ χ̃±

1 ) < ν̃ < ẽL < ẽR < χ̃0
2

• Spectrum A′′: χ̃0
1(≈ χ̃±

1 ) < ν̃ < ẽL < χ̃0
2 < ẽR

• Spectrum B′: χ̃0
1(≈ χ̃±

1 ) < χ̃0
2 < ν̃ < ẽL < ẽR

In spectrum A′, only ẽR acquires a new decay channel, viz., ẽR → eℓ+ℓ−ET/ . This is because

the virtual χ̃0∗
2 can now decay into a left charged slepton, which is lighter than the corresponding

right charged slepton. Thus, one may have a 5ℓ + π signal from the pair production of ẽR. In

spectrum A′′, ẽR has the two-body decay to ẽR → eχ̃0
2. Apart from the fact that the lifetime of ẽR

is significantly shorter in this model as compared to spectrum A, the final products are identical

(assuming that ẽR, the heaviest low-lying charged slepton, is within the kinematic reach of the

machine). The decay pattern of spectrum B′ is identical to that of spectrum B since the pattern

for the latter does not depend upon the degeneracy of ẽL and ẽR.

4 Numerical results and discussions

Cross sections for the production of various two-sparticle combinations have been calculated at an

e+e− CM energy of 1 TeV for two values of tan β, namely, 10 and 30, for µ > 0. Here, we would

like to point out that in our parton level Monte Carlo simulation we have not taken into account

the ISR and beamstrahlung effects. The said cross sections, computed under this condition, were

multiplied by the proper branching fractions of the corresponding decay channels to get the final

states described in Tables 4 and 5. Coming to numbers, the selection cuts that have been used on

the decays products are as follows:

• The transverse momentum of the lepton(s) pℓ
T > 5 GeV.

• The pseudorapidities of the lepton(s) and of the pion |η| < 2.5.

• The electron-pion isolation variable ∆R =
√

(∆η)2 + (∆φ)2 > 0.4.

• The missing transverse energy ET/ > 20 GeV.

• The transverse momentum of the soft pion pπ
T > 200 MeV for a detectable pion.

The kinematic distributions of the final state particles for the e± + π∓ + ET/ signal have been

studied for the following sample point in the AMSB parameter space corresponding to Spectrum A:

m3/2 = 44 TeV, tan β = 30, µ > 0 and m0 = 410 GeV. For these values of AMSB input parameters,

∆M = 198 MeV. In order to obtain the total distribution of some kinematic variable X one now
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needs to add the contributions from all the individual channels as mentioned earlier. The total

normalized distribution can be expressed as:

1

σ

dσ

dX
=

n∑

i=1

1

σi

dσi

dX
(11)

Spectrum Parameter Set m0 (GeV) m3/2 (TeV) tan β

(a) 340 44 10

(b) 350 42 10

(c) 360 39 10

A (d) 380 46 30

(e) 410 44 30

(f) 450 47 30

(a) 330 32 10

(b) 350 33 10

B (c) 360 34 10

(d) 460 44 30

(e) 475 44 30

(f) 510 47 30

Table 3: Selected parameter points with µ > 0 for computed cross sections.

In Eq. 11, X can be the transverse momentum pe
T of the electron, the decay length L of

the chargino or the soft pion transverse momentum pπ
T and i runs from 1 to 6, covering all pro-

cesses which give rise to this distribution. The electron pT distribution corresponding to the signal

e±π∓ET/ , for spectrum A, is shown in Fig. 4(a) and demonstrates a very wide distribution. This

highly energetic electron can be used to trigger such events. After that one can look for the heavily

ionizing charged track by the chargino ending in a soft pion in the Silicon Vertex Detector (SVD)

located very close to the beam pipe. For this purpose, the knowledge of the chargino decay length

is very important. The probability that the chargino decays before travelling a distance λ is given

by P (λ) = 1 − exp(−λ/L), where L = cτ(βγ) is the average decay length of the chargino. From

this, one can generate the actual decay length distribution of the chargino as λ = −L ln[1− P (λ)],

where P (λ) is generated by a random number between 0 and 1. In Fig 4(b), we have displayed the

chargino decay length distribution with the selection cuts mentioned above. Though most of the

events in this figure cluster at lower decay lengths for which the χ̃±
1 decay would be so prompt as

to make the charged track invisible (in this case the end product soft π will still be detectable), a

substantial number of events do have reasonably large decay lengths for which XD may be visible.

In case the chargino track is not seen, our signal can still be observed by looking at the soft pion
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impact parameter bπ which is determined primarily by the chargino decay length and ∆M . It turns

out that, for our chosen point in the AMSB parameter space, the soft pion impact parameter is

always significantly above the value where it can be resolved (bres ∼ 0.1 cm). Hence, the prospects

of resolving the impact parameter of the soft pion are quite high. The normalized pT distribution

of the soft pion has been shown in Fig 4(c). Most of the events peak at the lower pπ
T < 200 MeV,

which can be understood from the value of ∆M for this point in the parameter space. The impo-

sition of selection cuts on the soft pion kills the peak of the distribution. Nevertheless, we are left

with a substantial number of events, which can be observed. The distribution looks quite similar

for Spectrum B and is not shown here.

Signal PS Cross Sections (fb)

ν̃ ¯̃ν ẽL
¯̃eL ẽR

¯̃eR ẽL
¯̃eR + ẽR

¯̃eL χ̃0
1

¯̃χ0
2 χ̃0

2
¯̃χ0
2 Total

a 29.04 46.7 - 0.014 3.4 0.655 79.80

b 29.51 45.09 - 0.016 3.5 0.733 78. 85

eπ + ET/ c 30.82 44.44 - 0.023 3.16 0.616 79. 05

d 21.6 31.63 - 2.88 ×10−5 1.86 0.171 55.26

e 18.91 24.33 - 2.57 ×10−5 0.98 0.05 44.27

f 12.36 13.43 - 2.65 ×10−5 0.53 0.01 26.33

a - - 1.36 ×10−4 0.011 1.77 0.238 2.01

b - - 3.65 ×10−4 0.012 1.60 0.254 1.86

eeµπ + ET/ c - - 0.00 0.018 1.01 0.166 1.19

d - - 0.00 2.37 ×10−5 0.014 0.035 0.049

e - - 0.00 2.57 ×10−5 0.013 0.008 0.021

f - - 0.00 2.65 ×10−5 0.007 0.001 0.008

a 35.09 - - 0.0073 - 0.070 35.16

b 36.22 - - 0.0085 - 0.088 36.31

eeππ + ET/ c 39.56 - - 0.013 - 0.079 39.65

d 23.72 - - 1.41−5 - 0.016 23.73

e 21.36 - - 2.57×10−5 - 0.0059 21.36

f 14.48 - - 1.272 ×10−5 - 0.0031 14.48

Table 4: Some selected signals in Spectrum A for sample choices of parameters in Table 3. The

contributions from different sources are also shown in the Table. Cross sections less than 10−4 fb

are not added to the total cross section. Here, PS stands for Parameter Set.

For reasons of space and practicality, we shall display numerical results for only a selected subset

of the final states listed in section 3 - mainly to get an idea of signal strengths. Specifically, let us

choose the final states e π ET/ , e e µ π ET/ , e e π π ET/ for both Spectrum A and Spectrum B. In
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Tables 4 and 5, numbers for the cross sections in the three channels mentioned above are displayed

for the spectra A and B respectively with the AMSB parameter points as selected in Table 3. The

individual processes have widely different contributions to these channels because of the fact that

their individual production cross sections and branching ratios in the cascade decays are highly

parameter dependent. For example, for the AMSB input (a) of spectrum B,

Signal PS Cross Sections (fb)

ν̃ ¯̃ν ẽL
¯̃eL ẽR

¯̃eR ẽL
¯̃eR + ẽR

¯̃eL χ̃0
1

¯̃χ0
2 χ̃0

2
¯̃χ0
2 Total

a 44.12 63.87 - 0.068 0.328 0.029 108.41

b 39.03 54.34 - 0.0759 0.333 0.030 93.80

c 36.07 49.30 - 0.0711 0.317 0.027 85.78

eπ + ET/ c 11.86 11.40 - 0.011 0.041 0.0005 23.31

d 9.46 7.90 - 0.013 0.049 0.0008 66.37

e 3.98 1.80 - 0.0080 0.040 0.0004 5.82

a 6.8×10−7 0.004 0.037 0.631 - 0.0085 0.68

b 8×10−5 0.013 0.051 0.738 - 0.009 0.81

c 6.6 ×10−5 0.011 0.044 0.709 - 0.008 0.77

eeµπ + ET/ d 1.9 ×10−5 1.9 ×10−4 5.5 ×10−4 0.094 - 1.6 ×10−4 0.094

e 1.5 ×10−5 6.1 ×10−4 7.0 ×10−4 0.108 - 2.5 ×10−4 0.10

f 7.63 ×10−6 1.5 ×10−4 1.5 ×10−4 0.066 - 1.2 ×10−4 0.066

a 62.63 0.007 - 1.01 - 0.165 63.81

b 54.81 0.021 - 1.16 - 0.172 56.16

c 49.9 0.017 - 1.09 - 0.155 51.16

eeππ + ET/ d 13.24 2.4 ×10−4 - 0.113 - 0.002 13.35

e 10.6 7.5 ×10−4 - 0.131 - 0.003 10.73

f 4.16 1.75 ×10−4 - 0.075 - 0.001 4.23

Table 5: Some selected signals in Spectrum B for sample choices of parameters in Table 3. The

contributions from different sources are also shown in the Table. Cross sections less that 10−4 are

not added to the total cross section. Here, PS stands for Parameter Set.

• BR.(ν̃e → e∓ + χ̃±
1 ) ∼ 79%

• BR.(ν̃e → ν + χ̃0
1) ∼ 20%

• BR.(ν̃e → ν + χ̃0
2) ∼ 2.9 × 10−4%

• BR.(χ̃0
2 → χ̃0

1 + h0) ∼ 10.8%

• BR.(χ̃0
2 → χ̃±

1 + W∓) ∼ 77.3%
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• BR.(χ̃0
2 → τ + τ̃1) ∼ 10.2%

• BR.(χ̃0
2 → χ̃0

1 + Z0) ∼ 1.7%

• BR.(ẽL → χ̃0
1 + e) ∼ 32.5%

• BR.(ẽL → χ̃±
1 + ν) ∼ 67.4%

• BR.(ẽR → χ̃0
2 + e) ∼ 98%

• BR.(χ̃±
1 → π± + χ̃0

1) ∼ 98%

All these very different branching ratios play a crucial role in determining the final number. It

turns out that BR.(χ̃0
2 → τ + τ̃1) increases with tan β, reducing the signal cross section at larger

tan β, since we have not observing τ ’s in the final state. Apart from this complicated dependence of

the different branching fractions, the signal cross sections tend to decrease with increasing m0, and

m3/2, simply because of phase space suppression. In the worst cases of the signal cross sections,

assuming an integrated luminosity of 500 fb−1, one would expect 13165, 4 and 7240 signal events

in the eπ + ET/ , eeµπ + ET/ and eeππ + ET/ channels respectively from Spectrum A, while 2910,

33,and 2115 signal events are predicted from spectrum B for the same final state configurations.

An alternative MSSM scenario of nearly degenerate χ̃0
1 and χ̃±

1 (and χ̃0
2 as well) can arise [31]

when |µ| ≪ |M1,2|. In such a case a mass-difference ∆M(χ̃±
1 − χ̃0

1)
<∼ 1 GeV can be obtained by

setting [31] |M1,2| >∼ 5 TeV and |µ| >∼ MZ/2. Though this is a rather unnatural scenario and quite

difficult to obtain in a phenomenologically viable model, we can ask whether our signal can be

mimicked here. The answer is no. The two-body decays of selectrons, relevant for us, are highly

suppressed in this other scenario on account of the factor me/MW in the concerned couplings. The

latter arises because χ̃±
1 , χ̃0

1,2 are all almost exclusively higgsinos here. So selectrons primarily

have three-body decays ẽ → νeWχ̃0
1,2, eZχ̃0

1,2 mediated by virtual heavier charginos/neutralinos

(χ̃±
2 /χ̃0

2), which are gauginos, with finals states dominated by jets. One can easily estimate the

ratio of the partial widths of left selectron decays into two-body and three-body channels to be

O(10−4) in this scenario demonstrating that the desired two-body decays would be unobservable.

Therefore, our final state of a fast electron (muon) and a soft pion distinguishes AMSB models

from the light higgsino scenario. This new result was highlighted in Ref. [14] and is more or less

true for the other signals discussed in this paper.

We now come to the question of Standard Model background to our signal. The signal can be

classified into two categories. There is one in which we see a heavily ionizing nearly straight charged

track ending with a soft pion with large impact parameter and ET/ , the signal being triggered with

one or multiple fast electrons or muons. In the other case, while the other aspects remain the same,

one may not see the heavily ionizing charged track but the impact parameter of the soft pion can

be resolved and measured to be large. In the first case the heavily ionizing charged track is due to

the passage of a massive chargino with a very large momentum. Due to this reason the charged
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Figure 4: Normalized kinematic distributions of decay products: (a) pT of charged lepton, (b) decay

length of the lighter chargino, and (c) pT of the charged pion arising from e± + π∓ + ET/ signal for

spectrum A. The AMSB input parameters are m3/2 = 44 TeV, tan β = 30, µ > 0 and m0 = 410

GeV.

tarck will be nearly straight in the presence of the magnetic field. One cannot imagine a similar

situation in the SM with such a nearly straight heavily ionizing charged track due to a very massive

particle. An ionized charged track can possibly arise from the flight of a low energy charged pion,

kaon or proton but it will curl significantly in the magnetic field. Another distinguishing feature

of the charged track in our signal is that it will be terminated after a few layers in the vertex

detector and there will be a soft pion at the end. In the second case, where the ionizing track

is unseen, possible SM backgrounds can come from the following processes: e+ + e− → τ+ + τ−

and e+ + e− → W+ + W−. In the case of e+ + e− → τ+ + τ−, one τ can have the three body

decay τ → eνeντ or µνµντ and the other τ can go via the two body channel τ → π + ντ . Thus we

can have a final state of the type e(µ) + π + ET/ . Since we are considering an (e+e−) CM energy

of 1 TeV, and the pion comes from a sequence of two-body production and decay, it will have a

fixed high momentum much in excess of 1 GeV. This will clearly separate this type of background

from our signal since in our case the resulting pion is very soft with a momentum in the range of

hundreds of MeV. In the case of e+ + e− → W+ +W− a similar argument follows. Here one W can

go to e(µ) + νe(νµ) and the other one can go to τ + ντ . The τ can subsequently go to one π and a
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ντ , thereby producing the final state e(µ) + π + ET/ . As we have discussed just now, the resulting

pion will have a very large momentum and again one can clearly separate the background from the

signal.

5 Conclusions

In this paper we have presented a detailed study of possible signals from the electroweak sector of the

minimal AMSB model in a 1 TeV CM energy e+e− linear collider. AMSB scenarios are attractive

since they do not have the FCNC problems of tree level gravity mediated supersymmetry breaking

models but retain their other virtues. One interesting feature of most AMSB scenarios (including

the minimal model) is the occurance of two nearly degenarate winolike states, the LSP neutralino

χ̃0
1 and the lightest chargino χ̃±

1 , as well as of the long-lived decay χ̃±
1 → χ̃0

1 + soft π± resulting

in a displaced vertex XD with a heavy ionizing track and/or a detectable soft π± with a distinctly

large impact parameter. Each of our signal events consists of fast leptons (any of which can be the

trigger) accompanied by XD/soft π numbering one or two.

Sleptons play a key role in our analysis. Sleptons in the minimal AMSB model are predicted, on

the basis of the required absence [32] of charge and color violating minima in the one-loop effective

potential, to be heavy and beyond the reach of a 500 GeV CM energy e+e− collider. This is why

we have considered e+e− collision at
√

s = 1 TeV as in the proposed TESLA machine [33]. We

have calculated all relevant two-sparticle production cross sections and have generated numbers

for event rates at a given integrated luminosity by considering all cascade decay modes. We have

plotted sample distributions for the transverse momentum of a final state lepton, that of a soft π

as well as for the chargino decay length. Our generated event numbers are large enough to enable

us to make the following definitive statement with confidence. An experimental effort along our

suggested directions will completely cover the remaining allowed region of the parameter space of

the minimal AMSB model.
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