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Abstract

The severe constraints imposed on the parameter space of the minimal split supersymmetry

model by the infrared fixed point solution of the top Yukawa coupling Yt are studied in detail in

terms of the value of the top quark mass measured at the Tevatron together with the lower bound

on the lightest Higgs mass established by LEP. The dependence of the higgsino mass parameter

µ, the gaugino coupling strengths g̃u,d, g̃′u,d and of the Higgs quartic self coupling λ on the value

of Yt in the vicinity of the Landau pole is discussed. A few interesting features emerge, though

the model is found to be disfavored within the infrared fixed point scenario because of the need to

have several unnatural cancellations at work on account of the requirement of a low upper bound

on tan β.
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I. INTRODUCTION

The naturalness criterion has been one of the guiding principles in the formulation of the

(Minimal) Supersymmetric Standard Model (M)SSM. Once this is accepted, a successful

implementation of high scale gauge coupling unification obtains and the Lightest Super-

symmetric Particle (LSP) emerges as a viable dark matter candidate. But, in view of the

failure of the above criterion in dealing with the cosmological constant and in the light of

the recently advanced landscape paradigm, an important question arises. Can one abandon

the principle of naturalness, admit fine tuning and yet maintain the nice phenomenological

aspects of the SSM at the same time? It has been emphasized [1, 2] that the successful unifi-

cation of gauge couplings of the SSM can be retained even when all the scalars of the theory,

except one finetuned light Higgs boson (akin to that in the Standard Model) lie far above

the electroweak scale. Thus, despite the loss of the original motivation to cure the hierarchy

problem, one can still have a supersymmetric theory with gauge coupling unification, which

is free of many of the undesirable features of the SSM such as the flavor problem, fast proton

decay via dimension five operators, generically large CP violation, a tightly constrained mass

of the lightest Higgs etc. The gauginos and higgsinos of this theory are chosen to lie near

the TeV scale to ensure gauge coupling unification at MGUT ∼ 1016 GeV as well as a stable

LSP in the desirable mass range. This is the scenario of split supersymmetry, as named in

Ref. [2].

Various theoretical and phenomenological aspects, characteristic of the above scenario,

have been discussed in several recent works [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. One can identify a minimal

split supersymmetry model described by six specific parameters : (1) a common mass m̃ for

the heavy scalars, (2) tan β, where the angle β defines the combination of neutral SU(2)L-

doublet Higgs fields which remains light, (3) the higgsino mass parameter µ(MGUT ) at the

GUT scale, (4) the gluino mass mg̃, (5) the grand unification scale MGUT, and (6) the

unified value of the gauge coupling strength αG at MGUT. However, the last two are more or

less fixed by the requirement of consistency with measurements of the three gauge coupling

strengths at laboratory energies. It is thus convenient to discuss different phenomenological

constraints in the space of the first four parameters. It has been already realized [2] that

certain special constraints would ensue (on the parameter space of the minimal split SUSY
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model, in particular) on account of the Landau pole [33, 34] in the top quark Yukawa

coupling Yt and the LEP lower bound on the mass of the Standard Model Higgs. However,

a careful quantitative study of those, including the interrelation between the last mentioned

two aspects, has been lacking and that is the aim of the present work.

We broadly embrace the philosophy of Refs.[2] and [5] in this paper. Our gluino and

electroweak gaugino as well as higgsinos are envisioned to lie in the range of hundreds of

GeV whereas m̃ is taken to be much above 10 TeV and most likely around 109 GeV. Indeed

we vary m̃ all the way upto 1013 GeV beyond which scale one might encounter anomalously

heavy isotopes [2]. We follow the RGE equations set up in Ref.[2] and numerically study the

parameters of the minimal split SUSY model as m̃ is varied with Yt kept at its fixed point

value or in its vicinity. Since the higgsino mass parameter µ(MZ) and the gaugino couplings

are sensitive to values of Yt in this region, we study them as functions of the top mass mt

with m̃ fixed. In Section II we first review the physics of the infrared fixed point of Yt in

MSSM and then extend the discussion to split supersymmetry. In Section III we consider

the implications of this scenario for the Higss mass Mh, the higgsino mass parameter µ as

well as the gaugino coupling strengths. Section IV contains our conclusion and the RGEs

are relegated to the Appendix.

II. INFRARED FIXED POINT OF Yt

Let us first review the fixed point behaviour [33] of the top Yukawa coupling in MSSM.

In the low to moderate tanβ region, the effects of the bottom and tau Yukawa coupling

strengths can be ignored. With this approximation and, given gauge coupling unification at

MGUT, one obtains a simple analytic relation [34, 35, 36, 37, 38, 39] at the one-loop level :

Yt(t) =
Yt(0)E(t)

1 + 6F (t)Yt(0)
. (1)

In Eqn. (1), t = 2 ln(MGUT /Q), Yt = λ2
t /(4π)2, λt is the top Yukawa coupling strength

in the Lagrangian, Q is the running scale variable, E and F are functions of the gauge

couplings:

E(t) = (1 + β3t)
16/3b3(1 + β2t)

3/b2(1 + β1t)
13/9b1 , F (t) =

∫ t

0
E(t′)dt′. (2)

The parameters βi (i = 1, 2, 3) in Eqn.(2) equal biαG/(4π), where (b1, b2, b3) = (33/5, 1, -3)

are the coefficients of the one-loop gauge β-function and αG = αi(0) with the normalization
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α1 = 5
3
αY for the hypercharge coupling. Eqn.(1) implies that a large value (∼ 3.5) at the

GUT scale of the top Yukawa coupling λt in the Lagrangian corresponds to an infrared

quasi-fixed point value of Y f
t :

Y f
t (t) = E(t)/6F (t). (3)

The situation is somewhat different in split supersymmetry. Here all sfermions and the

charged as well as the heavier CP even plus the CP odd Higgs bosons are very heavy

and, as a first approximation, are taken to be degenerate1. Coupling strengths in the split

theory at the scale m̃ are obtained by matching its Lagrangian with that of the full MSSM

valid at higher scales. In particular, the couplings of the light Higgs h in the split effective

theory follow from matching conditions with the interaction terms of the Higgs doublet fields

Hu and Hd in the full MSSM. Suppose we denote the top Yukawa coupling strength in the

Lagrangian of the effective theory as ht. If λt represents the coupling strength of the Yukawa

interaction of the top with Hu in the full MSSM above m̃, then we have [2]

ht(m̃) = λ∗
t (m̃) sinβ, (4)

The evolution of λt at scales greater than m̃ is given at the one-loop level by Eqn. (1).

However, below the scale m̃, ht evolves according to Eqn.(A.13) given in the Appendix

with the matching condition of Eqn.(4). With this evolution also, an infrared fixed point

is observed for ht = hf
t . Though an analytic expression for hf

t becomes complicated, this

striking behaviour can be seen numerically. The corresponding top quark pole mass is then

given by [41]

Mpole
t = hf

t (MZ)v

[
1 +

4α3(MZ)

3π
− 2Y ′f

t (MZ)

]
, (5)

v being ≈ 246 GeV and Y ′f
t = (hf

t )
2
/(4π)2. In our numerical calculations we have also taken

into consideration the effects of bottom and tau Yukawa couplings.

In split supersymmetry tan β enters as an input parameter into the top mass via Eqn.(4).

The experimental upper (lower) limit on the top mass then translates to an upper (lower)

limit on tan β. This feature is demonstrated in Fig. 1 for three values of m̃, namely 104

GeV, 109 GeV and 1011 GeV. We have calculated the results numerically upto tan β = 40

1 Non-universal scalar masses in the split supersymmetry scenario have been considered [40].
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FIG. 1: Top pole mass at the infrared fixed point value as a function of tan β for three different

values of m̃ with the 1-σ band of the Tevatron measurement also shown.

but plotted them only in the small tanβ region which is the most interesting part to look

for in this context. The values of µ and M1/2 at the GUT scale have been taken here to –600

GeV and 300 GeV, respectively. The 1σ error in Mpole
t , as currently quoted in the PDG

listing [42]

Mpole
t = 178.0 ± 4.3 GeV, (6)

in combination with its infrared fixed point value, puts bounds on tanβ defined at the scale

m̃. An interesting new feature, different from what happens in the MSSM, is that tan β can

now be lower than unity for large values of m̃. However, the most important point is that

the fixed point value of the top mass is now consistent with only a thin sliver of an allowed

region in the tanβ − m̃ plane, as shown in Fig.2. On the other hand, if we do not stick to

the fixed point scenario, this severe restriction weakens considerably though a lower bound

on tan β continues to exist and is correlated to the lower limit on Mpole
t .

The value of tanβ in models of split supersymmetry depends upon [1, 30] what one

assumes for the strength of the B-parameter, but it is generally difficult to keep tan β small.

If |B| is of the order of the EW symmetry breaking scale mEW then tanβ ∼ m̃2/m2
EW > 100

for m̃/mEW > 10, violating the upper bound <∼ 100 on tan β coming from the need to keep

the bottom Yukawa coupling strength perturbative, i.e. <∼O(1). On the other hand, in
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usual gravity-, gauge- or anomaly-mediated supersymmetry breaking, it is possible to have

|B| of the order of m̃. In this case, one has tan β ∼ m̃/mEW which allows somewhat larger

splitting in the spectrum while keeping the value of tan β within the above-mentioned upper

limit. However, it is still not sufficient to ensure that tanβ remains within the allowed region

of Fig. 2. We have just seen that in the infrared fixed point scenario in split supersymmetry

the upper bound on tan β (as a function of m̃) is very strong (tan β <∼ 1 for large values of

m̃). Thus, combining this observation with the above argument one can perhaps conclude

that the infrared fixed point scenario is strongly disfavored in split supersymmetry in the

context of gravity-, gauge- or anomaly-mediated supersymmetry breaking (with |B| ∼ m̃ or

in the case when |B| ∼ mEW ). In other words, if tan β is experimentally measured to be

<∼ 1 with a sparticle spectrum that contains physical charginos and neutralinos but with

the scalars (except for one light Higgs) being out of the LHC energy reach, the infrared

fixed point scenario can probably be retained but either at the cost of several unnatural

cancellations having to work together [30] or having a direct mediation mechanism with

D-term supersymmetry breaking (|B| ≫ m̃ and2 |µ| ≪ m̃) which introduces additional

heavy matter fields or a new scale in the theory [5, 29].

III. IMPLICATIONS OF FIXED POINT FOR OTHER MASSES AND COU-

PLINGS

Let us now study how the light Higgs mass Mh changes with tanβ when the top mass

is at its fixed point value. As in the Standard Model, Mh in split supersymmetry can be

written as

Mh =
√

λv, (7)

where λ is the strength of the quartic self-coupling of h, and v is as in Eqn.(5). The matching

condition for the coupling λ at the scale m̃ is

λ(m̃) =
[g2(m̃) + g′2(m̃)]

4
cos22β, (8)

where g and g′ are the respective SU(2)L and U(1)Y coupling strengths with α1 = 5g′2/(12π).

The evolution of λ is governed by Eqn.(A.24) of the Appendix. The mass Mh also constrains

2 Recall that the Higgs mass mixing term Bµ needs to be of the same order as m̃2.
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FIG. 2: Allowed region (coloured) in the m̃ – tan β plane in the infrared fixed point scenario from

the experimental limits on the top mass. The area below the solid line is disallowed by the LEP–2

lower limit [43] of Mh > 114.4 GeV. M1/2 and µ at the GUT scale have been chosen at 300 GeV

and –600 GeV respectively.

tan β as a function of m̃, cf. Fig. 2.

It is also interesting to note how the quartic coupling λ(MZ) changes with the top mass

near the fixed point value. In Fig. 3 we have shown this variation for a fixed tan β and m̃

and for two values of the common gaugino mass M1/2. In both the cases the fixed point

value of the top mass is within the 1σ limit given in Eqn. 6. We can see from this figure that

λ(MZ) shows some variation with the top mass near the fixed point. Accurate knowledge of

chargino and neutralino masses (which will determine M1/2) and of the top mass will enable

one to obtain a precise value of λ(MZ) and then one can calculate the value of λ(m̃) using

the split susy RGE and verify the prediction given in Eqn.8. This figure is plotted for a fixed

value of µ(MGUT ) = -800 GeV but we have checked that the variation of λ(MZ) with Mt

does not have any significant dependence on µ(MGUT ) by varying the latter between -800

GeV and +800 GeV3.

3 In split supersymmetry, the neutralino and chargino masses (and hence |µ(MZ)|) cannot be much higher

than O(TeV). The latter requirement, together with the extremely small region of tanβ, i.e. 0.5 < tanβ <

1.3 (cf. Fig.2), allowed in the infrared fixed point scenario, means that here a |µ(MGUT)|, much larger

than O(TeV), is disallowed since it will not be able to run down to an acceptable value of |µ(MZ)|.
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FIG. 3: Variation of the quartic coupling λ(MZ) near the top-quark fixed point for two values of

M1/2. Here, m̃ = 109 GeV and tan β= 0.74. The value of µ(MGUT ) is taken to be -800 GeV.

The fixed point behaviour of the top Yukawa coupling depends also on gauge coupling

strengths. The unified coupling strength αG and the grand unifying scale MGUT are plotted

in Fig.4 as functions of m̃. In this figure αG and MGUT are shown to decrease with increasing

m̃. The effect of varying tanβ in the allowed range of Fig.2 has been found to be negligible.

The decrease is due to the fact that the effective particle content in split supersymmetry

is smaller than in the MSSM; thus as m̃ becomes larger, the running with split SUSY RG

equations becomes longer and the coupling constants meet at a smaller scale with a smaller

unified value. This feature has also been noticed in Ref.[2]. The values of α2 and α1 at the

electroweak scale are ∼ 0.0335 and 0.0168, respectively. An important point is that MGUT ,

decreasing with m̃, poses no threat to the longevity of the proton here since, as pointed out

in Ref.[2], dimension five and six operators – relevant to proton decay – continue to remain

suppressed. We have also considered the variation of the QCD coupling αs(MZ) with m̃

with a result not very different from that of Ref.[2].

Consider now how other parameters, such as µ(MZ) and gaugino coupling strengths vary

with Mt in the neighborhood of the fixed point value. Fig. 5 shows precisely such a variation

in µ(MZ), plotted vs. Mpole
t , for various choices of µ(MGUT) and m̃= 109 GeV. The common

gaugino mass at the GUT scale has been taken to be 300 GeV and tan β = 0.74. Running

with RGE’s brings µ(MGUT) to µ(MZ). Evident from the figure is the fact that for this

choice of tan β = 0.74, the fixed point value of the top pole mass (∼ 182 GeV) is within
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the 1σ experimental band and we should look into the variation of µ(MZ) in this region

of the parameter space. We can see that near the Landau pole the change in |µ(MZ)| is

sharp for larger values3 of |µ(MGUT )|, less so when the latter is closer to the EW scale. The

value of µ(MZ) can be determined (possibly along with tanβ) from the measurements of
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neutralino and chargino masses [44] at lepton colliders. Hence, with a precise measurement

of the top mass and with the measured value of |µ(MZ)| and tan β, one can predict the

value of µ(MGUT) from the above plots for a given m̃. Of course, it is true that this figure is

drawn for a particular value of the common gaugino mass. In order to get some idea of the

dependence of µ(MZ) on the gaugino mass we have shown in Fig.6 the variation in µ(MZ) as

a function of µ(MGUT ) at the fixed point for three different values of M1/2 and for the same

choice of tanβ and m̃ as in Fig.5. We have also checked that the gaugino mass parameters

M2 and M1 show little variation as functions of top mass near the fixed point which we do

not show here.

Another important split SUSY prediction is the inequality of the gauge and gaugino

coupling strengths below the scale m̃. This effect is large on account of the ultraheaviness

of the sfermions and can be detected in collider experiments involving gaugino production.

The part of the Lagrangian, containing the gaugino couplings, can be written in the notation

of Ref. [2]

Lgaugino−int. =
h†

√
2
(g̃uσ

aW̃ a + g̃′
uB̃)H̃u +

hT ǫ√
2

(−g̃dσ
aW̃ a + g̃′

dB̃)H̃d + h.c. (9)

Here H̃u,d are the ‘up,down type’ higgsino fields, W̃ and B̃ are the Wino and the Bino

respectively, h is the Higgs field and ǫ = iσ2. The boundary conditions of the gaugino
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couplings at m̃ are as follows :

g̃u(m̃) = g(m̃) sinβ, g̃d(m̃) = g(m̃) cosβ (10)

g̃′
u(m̃) = g′(m̃) sinβ, g̃′

d(m̃) = g′(m̃) cosβ. (11)

These couplings are then evolved to the electroweak scale using the renormalization group

equations given in the Appendix. It is interesting to see the behaviour of these couplings

near the infrared fixed point of the top mass. Following Ref.[7], one can define ‘anomalous’

gaugino couplings κu,d, κ′
u,d by the following equations,

κu = 1 − g̃u

g sinβ
, κd = 1 − g̃d

g cosβ
, (12)

κ′
u = 1 − g̃′

u

g′ sinβ
, κ′

d = 1 − g̃′
d

g′ cosβ
. (13)

The behaviour of these anomalous gaugino couplings near the infrared fixed point top mass

is shown in Fig.7. Measurements of gaugino couplings g̃ and gauge couplings g lead to the

determination of m̃, if tan β is known: according to Eqs. (10) and (11), the couplings κu,d

and κ
′

u,dvanish at the scale m̃.

IV. CONCLUSION

In this paper we have studied the infra-red fixed point behaviour of the top Yukawa cou-

pling and its associated phenomenology in split supersymmetry. In the fixed point scenario

we find that only a thin band of the tanβ − m̃ plane is allowed. This is a combined ef-

fect of the experimental limits in the measurement of the top mass and the position of the

Landau pole. This observation makes the infrared fixed point scenario heavily disfavored

in the context of split supersymmetry, since it requires additional unnatural cancellation

of parameters (in usual gauge, gravity or anomaly mediated supersymmetry breaking) in

order to keep tanβ within the allowed limits. One should, however, note that such smaller

values of tanβ can possibly be obtained in the context of direct mediation of supersymmetry

breaking with D-terms. Even if one does not assume the exact fixed point value for the top

mass, there is still a lower limit on the parameter tan β as a function of m̃, which can be

less than unity for large values of m̃. The LEP constraint that the Higgs must be heavier
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point for tan β = 0.74 for which the fixed point value of M
pole
t = 181.9 GeV. Here, m̃ = 109 GeV.

than 114.4 GeV puts additional restriction on minimal split SUSY parameters. We have

studied various couplings as well as the value of the grand unifying scale in this scenario

and, in particular, have drawn attention to the very interesting behaviour of the higgsino

mass parameter µ(MZ) near the the fixed point. We have also discussed the variations in

the gaugino coupling strengths g̃u,d, g̃′
u,d and of the Higgs quartic self coupling λ, near the

fixed point.

Note added in Proof: After this work was submitted, we saw a paper by Delgado and

Giudice (hep-ph/0506217) which claims to have excluded the top-mass fixed point solution

in split supersymmetry incorporated within an SU(5) GUT by assuming the corresponding

boundary conditions for the soft scalar masses and by requiring the absence of charge and
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color violating minima.
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APPENDIX

In this appendix we have written down the renormalization group equations for split

supersymmetry which are taken from Ref. [2] but with the notations we have used in our

numerical calculations.

Evolution between MGUT and m̃

The 2-loop renormalization group equations for the gauge couplings are given by

dα̃i

dt
= −biα̃

2
i − α̃2

i [
3∑

j=1

Bijα̃j − (dt
iYt + db

iYb + dτ
i Yτ )], (A.1)

where t = 2 ln MGUT

Q
and Q is the renormalization scale. α̃i =

(
gi

4π

)2
, Yt,b,τ =

(
λt,b,τ

4π

)2
. We

have used the GUT normalization condition g2
1 = (5/3)g′2. The β-function coefficients are

given by

b =
(

33

5
, 1,−3

)
, B =




199
24

27
5

88
5

9
5

25 24

11
5

9 14


 (A.2)

dt =
(

26

5
, 6, 4

)
, db =

(
14

5
, 6, 4

)
, dτ =

(
18

5
, 2, 0

)
(A.3)

The equations for the Yukawa couplings at the one loop level are given by

dYt

dt
= Yt

(
16

3
α̃3 + 3α̃2 +

13

15
α̃1

)
− 6Y 2

t − YtYb (A.4)

dYb

dt
= Yb

(
16

3
α̃3 + 3α̃2 +

7

15
α̃1

)
− 6Y 2

b − YtYb − YbYτ (A.5)
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dYτ

dt
= Yτ

(
3α̃2 +

9

5
α̃1

)
− 4Y 2

τ − 3YτYb (A.6)

At the one loop level the equations for the gaugino masses and µ are given by

dMi

dt
= −biα̃iMi (A.7)

dµ

dt
=

[
3

2
α̃2 +

3

10
α̃1 −

3

2
Yt −

3

2
Yb −

1

2
Yτ

]
µ (A.8)

Evolution between m̃ and max (mt, Mχ̃0
1
)

Now,

dα̃i

dt
= −biα̃

2
i − α̃2

i [
3∑

j=1

Bijα̃j − {dt
iY

′
t + db

iY
′
b + dτ

i Y
′
τ − dW

i (Ỹu + Ỹd) − dB
i (Ỹ ′

u + Ỹ ′
d)}],

(A.9)

where

dW =
(

9

20
,
11

4
, 0

)
, dB =

(
3

20
,
1

4
, 0

)
, (A.10)

and

b =
(

9

2
,−7

6
,−5

)
, B =




104
25

18
5

44
5

6
5

106
3

12

11
10

9
2

22


 (A.11)

dt =
(

17

10
,
3

2
, 2

)
, db =

(
1

2
,
3

2
, 2

)
, dτ =

(
3

2
,
1

2
, 0

)
, (A.12)

Ỹu, Ỹd, Ỹ′
u, Ỹ′

d are defined generically as Ỹ = g̃2

(4π)2
where the gaugino couplings (g̃’s)

are defined in Eqn.(9) and Y′
t,b,τ =

(
ht,b,τ

4π

)2
with ht and λt are related by Eqn.(4) and

hb,τ (m̃) = λ∗
b,τ(m̃)cosβ.

Below the scale m̃ the renormalization group equations of the Yukawa couplings at the one

loop level are given by

dY ′
t

dt
= 3Y ′

t

(
8

3
α̃3 +

3

4
α̃2 +

17

60
α̃1

)
− 1

2
Y ′

t (9Y
′
t + 3Y ′

b + 2Y ′
τ + 3Ỹu + 3Ỹd + Ỹ ′

u + Ỹ ′
d)

(A.13)
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dY ′
b

dt
= 3Y ′

b

(
8

3
α̃3 +

3

4
α̃2 +

1

12
α̃1

)
− 1

2
Y ′

b (3Y
′
t + 9Y ′

b + 2Y ′
τ + 3Ỹu + 3Ỹd + Ỹ ′

u + Ỹ ′
d)

(A.14)

dY ′
τ

dt
= 3Y ′

τ

(
3

4
α̃2 +

3

4
α̃1

)
− 1

2
Y ′

τ (6Y
′
t + 6Y ′

b + 5Y ′
τ + 3Ỹu + 3Ỹd + Ỹ ′

u + Ỹ ′
d) (A.15)

The gaugino mass equations are (including next-to-leading order corrections)

dM3

dt
= 9α̃3M3(1 + cg̃α̃3), (A.16)

where cg̃ = 38/3 in MS and cg̃ = 10 in DR.

dM2

dt
= 6(α̃2 −

1

2
Ỹu −

1

2
Ỹd)M2 − 2

√
ỸuỸdµ (A.17)

dM1

dt
= −1

2
(Ỹ ′

u + Ỹ ′
d)M1 − 2

√
Ỹ ′

uỸ
′
dµ (A.18)

The renormalization group equation for the µ parameter below the scale m̃ is given by

dµ

dt
=

[
9

4

(
α̃1

5
+ α̃2

)
− 3

8
(Ỹu + Ỹd) −

1

8
(Ỹ ′

u + Ỹ ′
d)

]
µ − 3

2

√
ỸuỸdM2 −

1

2

√
Ỹ ′

uỸ
′
dM1

(A.19)

The equations for the gaugino couplings are given by

dỸu

dt
= 3Ỹu

(
11

4
α̃2 +

3

20
α̃1

)
− 1

4
Ỹu(5Ỹu − 2Ỹd + Ỹ ′

u) − (ỸuỸdỸ
′
uỸ

′
d)

1/2

−1

2
Ỹu(6Y

′
t + 6Y ′

b + 2Y ′
τ + 3Ỹu + 3Ỹd + Ỹ ′

u + Ỹ ′
d) (A.20)

dỸ ′
u

dt
= 3Ỹ ′

u

(
3

4
α̃2 +

3

20
α̃1

)
− 3

4
Ỹ ′

u(Ỹ
′
u + 2Ỹ ′

d + Ỹu) − 3(ỸuỸdỸ
′
uỸ

′
d)

1/2

−1

2
Ỹ ′

u(6Y
′
t + 6Y ′

b + 2Y ′
τ + 3Ỹu + 3Ỹd + Ỹ ′

u + Ỹ ′
d) (A.21)

dỸd

dt
= 3Ỹd

(
11

4
α̃2 +

3

20
α̃1

)
− 1

4
Ỹd(−2Ỹu + 5Ỹd + Ỹ ′

d) − (ỸuỸdỸ
′
uỸ

′
d)

1/2

−1

2
Ỹd(6Y

′
t + 6Y ′

b + 2Y ′
τ + 3Ỹu + 3Ỹd + Ỹ ′

u + Ỹ ′
d) (A.22)

dỸ ′
d

dt
= 3Ỹ ′

d

(
3

4
α̃2 +

3

20
α̃1

)
− 3

4
Ỹ ′

d(Ỹ
′
d + 2Ỹ ′

u + Ỹd) − 3(ỸuỸdỸ
′
uỸ

′
d)

1/2

−1

2
Ỹ ′

d(6Y
′
t + 6Y ′

b + 2Y ′
τ + 3Ỹu + 3Ỹd + Ỹ ′

u + Ỹ ′
d) (A.23)
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Now, the evolution equation for the Higgs quartic coupling λ is

dλ̃

dt
= −6λ̃2 − 1

2
λ̃[−9

(
1

5
α̃1 + α̃2

)
+ 6(Ỹu + Ỹd) + 2(Ỹ ′

u + Ỹ ′
d) + 12Y ′

t + 12Y ′
b + 4Y ′

τ ]

−9

4

(
1

2
α̃2

2 +
3

50
α̃2

1 +
1

5
α̃1α̃2

)
+

5

2
(Ỹ 2

u + Ỹ 2
d ) + ỸuỸd +

1

2
(Ỹ ′

u + Ỹ ′
d)

2

+(
√

ỸuỸ ′
u +

√
ỸdỸ ′

d)
2

+ 6Y ′2
t + 6Y ′2

b + 2Y ′2
τ , (A.24)

where λ̃ = λ
(4π)2

.

Caution: If Mχ̃0
1

> mt, in the evolution from Mχ̃0
1

to mt of the gauge couplings

b =
(

41

10
,−19

6
,−7

)
, B =




109
50

27
10

44
5

9
10

35
6

12

11
10

9
2

−26


 (A.25)

dt =
(

17

10
,
3

2
, 2

)
, db =

(
1

2
,
3

2
, 2

)
, dτ =

(
3

2
,
1

2
, 0

)
, dW = 0 = dB. (A.26)
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