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Abstract

Pioneering atmospheric muon neutrino experiments have demonstrated the near-maximal
magnitude of the flavor mixing angle θ23. But the precise value of the deviation D ≡ 1/2 −
sin2 θ23 from maximality (if nonzero) needs to be known, being of great interest – especially
to builders of neutrino mass and mixing models. We quantitatively investigate in a three
generation framework the feasibility of determining D in a statistically significant manner
from studies of the atmospheric νµ, ν̄µ survival probability including both vacuum oscillations
and matter effects. We show how this determination will be sharpened by considering the
up-down ratios of observed νµ- and ν̄µ-induced events and the differences of these ratios
in specified energy and zenith angle bins. We consider 1 Megaton year of exposure to a
magnetized iron calorimeter such as the proposed INO detector ICAL, taking into account
both energy and zenith angle resolution functions. The sensitivity of such an exposure and the
dependence of the determination of D on the concerned oscillation parameters are discussed
in detail. The vital use of matter effects in fixing the octant of θ23 is highlighted.
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1 Introduction

Neutrino oscillation studies have come of age after the recent results from the Super-Kamiokande
(SK) [1], K2K [2], SNO [3] and KamLAND [4] experiments. The existence of oscillations in atmo-
spheric [5] and accelerator generated [2] νµ’s and ν̄µ’s with a modulus of squared mass difference1

|∆m2
31| ∼ 2.1 × 10−3 eV2 (1.4 × 10−3 eV2 < |∆m2

31| < 3.3 × 10−3 eV2 at 3σ) and a mixing an-
gle θ23 ∼ 45◦ (35◦ < θ23 < 54◦ at 3σ) as well as in solar [3, 6] (reactor [4]) νe’s (ν̄e’s) with a
squared mass difference1 ∆m2

21 ∼ 8 × 10−5 eV2 (7.4 × 10−5 eV2 < ∆m2
21 < 9.5 × 10−5 eV2 at 3σ)

and a mixing angle θ12 ∼ 34◦ (30◦ < θ12 < 40◦ at 3σ) is now an accepted fact [7]. The goals
of the next generation of experiments include both increased precision in the already measured
oscillation parameters and the determination of the still unknown quantities such as θ13 (presently
bounded by 0 < θ13 < 12◦ at 3σ [7, 8]) as well as the sign of ∆m2

31 and eventually the CP violating
phase δ in the PMNS matrix. An issue of great importance right now is the precise value of θ23

which dominantly controls νµ-ντ oscillations. The presently allowed range of θ23 does not enable
one to distinguish it from its maximal2 value π/4. A naturally arising question is: how can one
significantly narrow down this range in the future and possibly detect a nonzero deviation

D ≡ 1

2
− sin2 θ23 (1)

from maximal mixing. This is what we consider in the context of forthcoming3 studies of atmo-
spheric νµ’s and ν̄µ’s.

Let us mention some current theoretical ideas regarding θ23. A simple way of understanding
a maximal value for θ23 is to invoke the concept of a µ-τ exchange symmetry [10]. Though
this immediately leads to θ23 = π/4, it also yields at the same time a vanishing θ13 and CP
conservation in the neutrino sector. While the last two features could in principle turn out to be
the facts of Nature, our current hopes are to the contrary. A nonzero and measurable θ13 as well
as the occurrence of CP violation in the neutrino sector can lead to much that is interestingly
new in neutrino physics and can be studied in laboratory experiments with reactor, accelerator,
atmospheric, solar and supernova neutrinos. The general expectation [10], therefore, is that any µ-
τ interchange symmetry, if present, must be broken so as to allow a nonvanishing θ13 and (possibly
observable) CP violation in the neutrino sector. Such a breaking would generally cause D to be
different from zero. However, its magnitude and sign would be given by the yet undetermined
symmetry breaking mechanism. Another idea has been that of quark-lepton complementarity [11].
In this approach a bimaximal neutrino Majorana mass matrix is “rotated” by a unitary matrix
diagonalizing charged left chiral leptons in generation space. The latter is postulated to be the
same as the CKM matrix resulting in a reduction of θ12 from π/4 by an amount comparable to
the Cabibbo angle θC ∼ 13◦ in conformity with observation. In this case θ23 also is expected to

1We work in the conventional picture of three neutrino flavors with CPT conservation assumed. We also employ
standard notation where m2

ij = m2

i − m2

j and θij plus δ are defined by the PMNS matrix of our Eq. (2) in §2.
2Two flavor νµ/ν̄µ oscillations in vacuum are controlled by θ23 only through the factor sin2 2θ23 which is high-

est when θ23 has the maximal value π/4. Matter effects and ∆m2
21-driven subdominant atmospheric neutrino

oscillations have different dependence on θ23.
3An analysis of the allowed range of D, based on extant atmospheric νµ + ν̄µ data, is available in [9].
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be reduced from 45◦ by an amount of the order of sin−1 sCKM
23 ∼ 2.4◦ so that D is expected to be

positive and in the vicinity of 0.04. However, variants [11] of this hypothesis exist with D predicted
to be significantly different from 0.04. There are many other model predictions, utilizing flavor
symmetries, GUT relations and textures, covering |D| from 0.005 to ≥ 0.16, as listed in Table II
of [12].

We thus see that an experimental measurement of D would be of great interest to the builders
of neutrino mass matrix models. Apart from the magnitude of |D|, sgn(D) is also of importance.
Its determination would fix the octant of θ23, i.e. whether θ23 exceeds or is less than π/4. With the
goal of determining D, one can explore different experimental options. A detailed survey of the
capabilities of forthcoming and futuristic accelerator based long baseline neutrino/antineutrino
experiments along this line has already been given in [12, 13]. Here we want to consider future
atmospheric neutrino studies guided by our knowledge of extant ones [9]. A major new venture
in this direction will be the proposed Hyper-Kamiokande/UNO/MEMPHYS type of experiments
[14] with Megaton water Cerenkov detectors. Detailed studies [15, 16, 17] have been made (among
other things) of the νµ + ν̄µ survival probability, information on which will emanate from such a
detector. While this kind of data can yield information also on D [9], it will be largely from the
vacuum oscillations of νµ and ν̄µ and will be less sensitive to matter effects. Depending on the
mass ordering of the neutrinos (normal or inverted), larger matter effects appear in the neutrino or
antineutrino channel for long baseline distances (L > 1000 km). In addition, the sign of the earth
matter effect term in the difference of survival probabilities ∆Pµµ (as defined in §2) depends on the
energy and zenith angle of the atmospheric νµ/ν̄µ. Since water Cerenkov atmospheric neutrino
experiments measure the νµ + ν̄µ survival probability and since their poor detector resolution
means that the data collected would have to be grouped into very broad sub-GeV and multi-GeV
energy bins as in the SK data sample, matter effects in this class of experiments will be partially
washed out. In order to maximize the extraction of information from the individual survival
probabilities of atmospheric νµ’s and ν̄µ’s, propagating both through vacuum and through earth,
one needs to measure them separately as a function of energy and baseline length. In fact, the
individual survival probabilities will be measurable in a large magnetized iron calorimeter such as
the ICAL detector of the proposed INO experiment [18]. This experiment is expected to have a
good detector resolution allowing fine binning of the data in energy and zenith angle, essential for
gleaning out the D dependence of earth matter effects. Our aim is to focus on the feasibility of
utilizing the data in future from such a detector to determine D.

There have already been several studies [19, 20, 21] of the possibility of determining the nor-
mal or inverted nature of the mass ordering of neutrinos, i.e. sgn(∆m2

31), in magnetized iron
calorimetric detectors. The question of the determination of D has been touched upon [20] but
not analyzed in detail. In this paper we carry out a detailed study of the feasibility of a mea-
surement of both the magnitude and the sign of D from data simulated for 1 Megaton year of
exposure of a large magnetized iron calorimeter, such as ICAL, to atmospheric muon neutrinos
and antineutrinos. In principle, a magnetized iron calorimetric detector in an underground ob-
servatory (such as the proposed INO laboratory) could also study other types of events: upward
going muons and electron neutrino events. As a first step, we would like to restrict our studies
to fully contained events only and hence do not consider upward going muons, which are much
harder to incorporate. Furthermore, the large thickness [18] of the iron plates of the proposed
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ICAL detector precludes the detection of electrons and will not trigger on to events induced by
νes and ν̄es. This is why we confine ourselves to atmospheric νµ, ν̄µ studies. Furthermore, ICAL
is designed to have a detection threshold of neutrino energy = 1 GeV and therefore cannot study
sub-GeV events. This is why we consider the multi-GeV regime only. We take a three generation
system and use exact numerical solutions of the neutrino (and antineutrino) equations of motion in
the atmosphere and in earth matter using the PREM [22] density profile as an input. We assume
what we regard as reasonable energy and zenith angle resolution functions for the detector and
concentrate on up-down asymmetry ratios [20] UN/DN and UA/DA for νµ- and ν̄µ-induced events
in appropriate energy and zenith angle bins. We are then able to pinpoint the precise bins from
where the utilizable information on both vacuum oscillations and matter effects can be extracted –
leading to a determination of D. We also show how the use of matter effects through the difference
UN/DN − UA/DA will enable one to fix the sign of D and resolve the octant ambiguity in θ23.

The paper is organized in the following way. Section 2 contains a slightly simplified and
approximate analytical treatment of the survival probabilities of νµ’s and ν̄µ’s propagating in
matter of constant density; this is to bring out the basic physics issues in question, specifically,
highlighting the phenomenon of resonance. In §3 we present our numerical results on the νµ survival
probability (after propagation in earth matter) as it varies with the energy E and baseline length
L; in particular, the occurrence of extrema in this variation is highlighted through the definitions
of SPMIN1, SPMAX and SPMIN2 which appear. Section 4 comprises the methodology for the
extraction of the up-down asymmetry ratios UN/DN and UA/DA from the simulated data. The
details of our statistical (χ2) analysis are presented in §5. The determination of |D| from the
simulated data and the estimated intervals on both sides of D = 0 for which this will be possible
at the 3σ level are given in §6. The procedure for the fixation of the sign of D (and hence the octant
of θ23) is described in §7. In §8, which contains our summary and conclusions, we also provide
a discussion of the sensitivity of an ICAL-like detector to D, as compared to the forthcoming
long baseline and water Cerenkov detector studies with accelerator generated and atmospheric
neutrinos respectively.

2 Approximate analytical treatment of νµ/ν̄µ survival prob-

ability in matter

In the standard parametrization, the Pontecorvo-Maki-Nakagawa-Sakata [23] matrix is given by

U =







c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ c12s23 − s12s23s13e

iδ c23c13





 . (2)

In Eq. (2) cij = cos θij , sij = sin θij and, while the phase δ has been retained, the two Majorana
phases have been ignored since they do not contribute to neutrino oscillations. The effective
Hamiltonian for such oscillations in matter with varying density can be expressed in the flavor
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basis as a function of the path length x of the neutrino from its source. Thus

H(x) =
1

2E
U







0 0 0
0 ∆m2

21 0
0 0 ∆m2

31





U † +







V (x) 0 0
0 0 0
0 0 0





 . (3)

In Eq. (3), ∆m2
ij ≡ m2

i − m2
j , mi and E being the mass of the ith (physical) neutrino and the

neutrino energy respectively, whereas the potential V (x) is given by

V (x) =
√

2GF Ne(x). (4)

Here Ne(x) is the electron density of matter, so that the potential can be rewritten as

V (x) = (7.56 × 10−14)
ρ(x)

gms/cc
Ye(x) eV, (5)

ρ(x) being the density of earth matter in the path of the neutrino and Ye(x) (≃ 0.5) being the
number of electrons per nucleon in the same.

The neutrino evolution operator S(x, 0) has the matrix element

Sγβ(x, 0) = 〈νγ(x)|νβ(0)〉, (6)

β, γ being flavor indices. This obeys the evolution Equation

i
dSγβ(x, 0)

dx
= [H(x), S(x, 0)]γβ. (7)

The probability for a neutrino flavor transition β → γ at a baseline length L is given by

Pβγ(L) ≡ P [νβ(0) → νγ(L)] = |Sγβ(L, 0)|2. (8)

In case the earth matter density ρ is taken4 to be constant between the production and detection
points of the neutrino, the potential V also becomes a constant. It is then useful to diagonalize
the Hamiltonian of Eq. (3) with eigenvalues λ1,2,3(2E)−1.

H =
1

2E
UM







λ1 0 0
0 λ2 0
0 0 λ3





UM†

, (9)

UM being the lepton mixing matrix in matter. Then one can write

Sγβ(L, 0) =
3
∑

i=1

UM⋆

γi e−iλiL(2E)−1

UM
βi , (10)

Pβγ(L) = δβγ −4
∑

j>1

ℜ
(

UM
βi UM⋆

γi UM⋆

βj UM
γj

)

sin2 ∆m2
ijL

4E

+2
∑

j>1

ℑ
(

UM
βi UM⋆

γi UM⋆

βj UM
γj

)

sin
∆m2

ijL

2E
. (11)
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E in GeV L in km A A∆
1 1000 0.099 0.252
1 3000 0.125 0.953
1 5000 0.131 1.673
1 7000 0.155 2.754
1 9000 0.171 3.908
1 11000 0.229 6.409
3 1000 0.297 0.252
3 3000 0.375 0.953
3 5000 0.395 1.673
3 7000 0.465 2.754
3 9000 0.513 3.908
3 11000 0.688 6.409
5 1000 0.495 0.252
5 3000 0.626 0.953
5 5000 0.659 1.673
5 7000 0.775 2.754
5 9000 0.855 3.908
5 11000 1.147 6.409
7 1000 0.693 0.252
7 3000 0.876 0.953
7 5000 0.922 1.673
7 7000 1.084 2.754
7 9000 1.197 3.908
7 11000 1.606 6.409
9 1000 0.892 0.252
9 3000 1.126 0.953
9 5000 1.185 1.673
9 7000 1.394 2.754
9 9000 1.538 3.908
9 11000 2.064 6.409

Table 1: Variation of ∆ and A∆ with E and L assuming ρ to be constant and equal to 4.52
gms/cc.
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More specifically, the muon neutrino and antineutrino survival probabilities are given by

Pµµ(L) = 1 − 4

(

|UM
µ1 |2|UM

µ2 |2 sin2 λ1 − λ2

4E
L + |UM

µ1 |2|UM
µ3 |2 sin2 λ1 − λ3

4E
L

+ |UM
µ2 |2|UM

µ3 |2 sin2 λ2 − λ3

4E
L

)

, (12)

Pµ̄µ̄(L) = Pµµ(L, V → −V ). (13)

The elements of UM , appearing in Eqs. (9), can be parametrized in the same way as the ‘vacuum’
mixing matrix U of Eq. (2) except that one needs to use the corresponding values of the angles
and the phase in matter, i.e. θij → θM

ij and δ → δM .
Tractable analytic expressions Pαβ(L) emerge only after some additional approximations. For

the purpose of displaying the relevant analytic expressions, in addition to assuming the constancy4

of ρ and hence of V , we choose to neglect O(s3
13) and O(α2) terms, α being ∆m2

21/∆m2
31. From

what was discussed in §1, we already know that

s3
13 < 0.008, (14)

α2 ≃ 0.001. (15)

Therefore these approximations do not generally make any significant practical difference from
the exact numerical results, as will be seen later. On the other hand, they do enable us to display
the two quantities of our interest, namely P vac

µµ , which is the muon neutrino survival probability
in vacuum, and ∆Pµµ(L) ≡ Pµµ(L) − Pµ̄µ̄(L), which is the difference between the muon neutrino
and antineutrino survival probabilities in matter, in analytic form, making their physical features
rather transparent. The eigenvalues of λ1,2,3 and the elements of the matrix UM of Eq. (9) can
be calculated within the above mentioned approximations following the method described in Ref.
[24]. They can then be substituted in Eq. (11) to compute P vac

µµ (L) and ∆Pµµ(L) for atmospheric
neutrinos.

In order to display the desired analytic expressions, we first define a dimensionless quantity

∆ ≡ ∆m2
31L

4E
. (16)

The expression for P vac
µµ can now be given as [24]

P vac
µµ = 1 − 4s2

23c
2
23(1 − c2

13s
2
23) sin2 ∆

+ 4αc12c23(c12c23 − 2s13s12s
3
23 cos δ)∆ sin 2∆ + O(α2, s3

13). (17)

4This is an inaccurate assumption for the passage of GeV and multi-GeV atmospheric neutrinos through the
earth when L exceeds 1000 km. However, we need this assumption only for displaying analytic expressions. Our
numerical results are obtained without assuming a constant ρ, and actually, with the PREM [22] earth matter
density profile as an input. Moreover, they are correct to all orders in α ≡ ∆m2

21
/∆m2

31
and s13.
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For the description of matter effects, it is convenient to define another dimensionless quantity

A ≡ 2EV

∆m2
31

. (18)

For atmospheric muon neutrinos of GeV and multi-GeV energies and low to large pathlengths, the
magnitude of A varies from about 0.1 to about 2.1. On the other hand, the energy independent
A∆ varies from about 0.25 to about 6.4 for ρ ≃ 4.52 gm/cc, cf. Table 1, where the values of these
parameters have been given for various choices of E and L. The expression for ∆Pµµ(L) now reads
[24]

∆Pµµ(L) = 4s2
13s

2
23

[

sin2(1 + A)∆

(1 + A)2
− sin2(1 − A)∆

(1 − A)2

]

−8s2
13c

2
23s

2
23

[

sin ∆ cos A∆

{

sin(1 + A)∆

(1 + A)2
− sin(1 − A)∆

(1 − A)2

}

+ ∆ sin 2∆
A

1 − A2

]

−8αs13c12s12c23s23 cos δ

[

cos ∆
sin A∆

A

{

sin(1 + A)∆

1 + A
− sin(1 − A)∆

1 − A

}

+(c2
23 − s2

23) sin ∆

{

sin ∆
2A

1 − A2
+

sin A∆

A

(

cos(1 + A)∆

1 + A
− cos(1 − A)∆

1 − A

)}]

+O(α2, s3
13). (19)

This expression vanishes for s13 = 0, clearly showing the need for the latter to have a nonzero value
in order to make ∆Pµµ nonzero. If the limit α → 0 is taken and the “small A” approximation is
used5, retaining only linear terms in A, Eq. (19) reduces to

∆Pµµ ≃ −16A(1/2 − |Uµ3|2)|Ue3|2|Uµ3|2(∆ sin 2∆ − 2 sin2 ∆) (20)

in agreement with the result first reported in Ref. [25]. In this approximate limit, though not in
general, ∆P A

µµ is directly proportional to |Ue3|2(1/2 − |Uµ3|2). The more general dependence on
s13 and D is, of course, hidden in Eq. (19).

The last-mentioned α → 0 limit may in fact be more relevant than being a mere device to
get to Eq. (20). Given (1) the accidental feature that the atmospheric νµ/νe ratio would have
been ∼ 2 in the relevant energy range if νµ ⇀↽ ντ oscillations were absent and (2) the fact of a
near-maximal θ23, the effect of the solar neutrino squared mass difference ∆m2

21 on atmospheric
neutrino oscillations can be shown to be small [26]. It may therefore be useful to display also the
analytical expression for the survival probabilities of muon neutrinos and antineutrinos with the
assumptions of only the constancy of ρ and the neglect of O(α) terms. Taking the limit α → 0
and using the notation of Eqs. (16) and (18), one then has

lim
α → 0

λ1 =
1

2

[

∆m2
31(A + 1) − (∆m2

31)
M
]

,

5From Table 1, the linear A approximation would appear to be accurate to within 90% only for neutrino energies
below 3 GeV and pathlengths below 9000 km.
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lim
α → 0

λ2 = 0,

lim
α → 0

λ3 =
1

2

[

∆m2
31(A + 1) + (∆m2

31)
M
]

, (21)

for neutrinos with

(∆m2
31)

M
= ∆m2

31|(A − 1)|
[

1 + 4s2
13(A − 1)−2

]1/2
(22)

and replacing A by −A for antineutrinos. Furthermore, it follows that

lim
α → 0

|UM
µ1 | = |s23s

M
13 |, (23)

lim
α → 0

|UM
µ2 | = |c23|, (24)

lim
α → 0

|UM
µ3 | = |s12c

M
13 |, (25)

where sM
13 ≡ sin θM

13 , cM
13 = cos θM

13 and θM
13 is given in terms of θ13 and A by the relation

sin2 2θM
13 = sin2 2θ13

(

∆m2
31

(∆m2
31)

M

)2

=
sin2 2θ13

(A − cos 2θ13)2 + sin2 2θ13

. (26)

Eqs. (20) – (25) enable us to rewrite Eqs. (12) and (13) in the limit α → 0 as

lim
α → 0

Pµµ(L) = 1 − P 1
µµ(L) − P 2

µµ(L) − P 3
µµ(L), (27)

Pµ̄µ̄(L) = Pµµ(L, A → −A), (28)

with

P 1
µµ(L) = sin2 θM

13 sin2 2θ23 sin2 ∆m2
31(A + 1) − (∆m2

31)
M

8E
L, (29)

P 2
µµ(L) = cos2 θM

13 sin2 2θ23 sin2 ∆m2
31(A + 1) + (∆m2

31)
M

8E
L, (30)

P 3
µµ(L) = sin2 2θM

13 sin4 θ23 sin2 (∆m2
31)

M

4E
L. (31)

We note that P 1
µµ(L) vanishes in vacuum (when matter effects go to zero), but P 2,3

µµ do not. In
§3, we shall numerically study the behavior of P 1,2,3

µµ (L) as functions of the neutrino energy E for
different baseline lengths L. The expression for sin2 2θM

13 in Eq. (26) shows the effect of the MSW
resonance when A equals cos 2θ13, i.e.

E = Eres. ≡
∆m2

31 cos 2θ13

2
√

2GFNe

. (32)
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Though Eres. of Eq. (32) has no explicit dependence on L, in practice an implicit L dependence
creeps in through Ne for path lengths involving significant spatial variations of the earth’s density.
Furthermore, at or near the resonance, Eq. (19) would not be trustworthy since, with s13 small, A
is rather close to unity – making some of the RHS terms blow up. At E = Eres., sin2 2θM

13 reaches
its maximum value, i.e. unity. For ∆m2

31 = (2 − 3) × 10−3 eV2 and a small θ13, the resonance
could occur [27] for atmospheric muon neutrinos passing through the earth with energies between
5 and 10 GeV. At resonance, the conversion probability of a muon neutrino becomes sizable even
for a small θ13. The effect of a small nonzero θ13 could then be observed as an excess of upward
going electron neutrinos.

3 Numerical results on νµ survival probability in matter

We now present our results for the muon neutrino survival probability Pµµ in vacuum and in
matter. To obtain these, we have numerically solved the three-generation differential equation of
motion of the neutrinos exactly, using the PREM profile for the earth matter densities [22]. Fig.
1 shows Pµµ as a function of L, for six different fixed values of E. This plot (as well as subsequent
plots presented in this paper except where specified otherwise) has been generated with chosen
benchmark values of the other concerned oscillation parameters ∆m2

31, ∆m2
21, sin2 θ12, sin2 θ13 and

δ – as tabulated in Table 2 – and two values of sin2 θ23 as explained in the caption. The following
features are evident from Fig. 1.

∆m2
31 = 2 × 10−3 eV2

∆m2
21 = 8 × 10−5 eV2

sin2 θ12 = 0.28

sin2 2θ13 = 0.1

δ = 0

Table 2: Chosen benchmark values of oscillation parameters, except θ23, with assumed normal
mass ordering.

• Matter effects inside the mantle begin to be significant for E ∼> 4 GeV, L ∼> 4000 km and
are largest for E between 5 and 6 GeV, reducing a bit for E = 7 GeV.

• For E ∼> 4 GeV and inside the mantle, the survival probability in matter at the peaks
invariably reduces from its value of near unity in vacuum. This effect increases as sin2 θ23 is
increased from 0.36 to 0.5 and beyond.
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• For E ∼> 4 GeV and inside the mantle, matter effects tend to increase the survival probability
at the troughs from its vacuum value of Pµµ = 1− 4c2

13c
2
23(1− c2

13c
2
23). This increase however

reduces as the value of sin2 θ23 is raised from 0.36 to 0.5 and beyond.

• For E ∼> 4 GeV and L large but within the mantle (specifically between 8000 km and 10000
km), the matter contribution to the survival probability, i.e. Pµµ − P vac

µµ , can change sign.

• The survival probability in matter has a fairly sharp discontinuity at the mantle-core bound-
ary and behaves very differently with distance inside the core as compared with the mantle.

For a given neutrino energy E, matter effects begin to be significant only when the neutrinos
pass through matter densities which are close to their resonant value. Lower energy neutrinos need
higher matter densities to hit the resonance condition and vice versa, as can be seen from Eq.
(32). Since, for upward going atmospheric neutrinos, the average density of the earth increases
as L increases, Eres(av) of Eq. (32) decreases with L. In Fig. 2 we show the resonance energy
Eres(av), calculated from Eq. (32) with the benchmark (Table 2) values of sin2 2θ13 and ∆m2

31, as a
function of the distance L travelled by an atmospheric νµ inside the earth. For each L, the average
earth matter density has been calculated using the PREM density profile. For L < 1000 km, the
resonance energy Eres clearly exceeds 9 GeV. Since the flux of multi-GeV atmospheric neutrinos
falls very fast [28] with energy and since we restrict our analysis to fully contained neutrino events
in the detector with E < 11 GeV, we do not expect much matter effect for these short baselines.

In order to understand the extent of matter effects for L > 1000 km, we need to take into
account another factor apart from the difference between E and Eres. That is the role of the
∆m2

31-dependent oscillatory terms in Eq. (27). In this context, it is instructive to start by
looking at the extrema of the oscillatory term sin2(1.27∆m2

31L/E), where ∆m2
31 is in eV 2, L is

in km and E in GeV. We define ESPMIN1, ESPMAX and ESPMIN2 as the respective values of the
energy corresponding to the first6 minimum, the first maximum and the second minimum in the
survival probability Pµµ as L/E increases. In other words, these respectively correspond to the first
maximum, the first minimum and the second maximum as L/E increases in the flavor conversion
probability

∑

β=e,τ

Pµβ. Their values in vacuum are,

ESPMIN1 =
2

π
(1.27)∆m2

31L, (33)

ESPMAX =
1

π
(1.27)∆m2

31L, (34)

ESPMIN2 =
2

3π
(1.27)∆m2

31L, (35)

are plotted, along with Eres, against L in Fig. 2. We deduce from this figure that Eres ≃ ESPMIN1

for L ≃ 4500 km, while Eres ≃ ESPMAX for L ≃ 7400 km and Eres ≃ ESPMIN2 for L ≃ 9700 km.
6This means first or second (as the case may be) starting from the left in Fig. 1, but first or second starting

from the right in Figs. 3 and 4.
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Concentrating on the region 1000 km < L < 4000 km, we find that here 7.4 GeV < Eres < 9.6
GeV, and Eres ≫ ESPMIN1 so that once again the survival probability Pµµ is not much affected
by earth matter. In contrast, for L > 4000 km and with E between 5 and 7 GeV, large matter
effects ensue, as evident from Fig. 1.

The three terms P 1
µµ, P 2

µµ and P 3
µµ, as defined in Eq. (27) and given analytically in Eqs.

(29)–(31), are shown in Fig. 3 as functions of the neutrino energy E for the three special baseline
lengths mentioned above: L = 4500 km (upper panels), 7000 km (middle panels) and 9700 km
(lower panels). The dotted blue lines in Fig. 3 show these three terms in vacuum for sin2 θ23 = 1/2,
while the other lines show them in the presence of matter for different values of sin2 θ23, as explained
in the caption. For these plots we have taken ∆m2

21 = 0, while the other parameters are as in Fig.
1. We discuss below the behavior of the three terms P 1,2,3

µµ separately7.

1. P 1
µµ is proportional to sin2 θM

13 , cf. Eq. (29). Though, approximately equal to sin2 θ13 for
E ≪ Eres, sin2 θM

13 increases with E and reaches the value 1/2 at E = Eres. Beyond Eres,
sin2 θM

13 continues to rise with E till it saturates to the maximum value of unity for E ≫ Eres.
For L = 4500 km, one has S− ≡ sin2[{∆m2

31(A + 1)− (∆m2
31)

M}L/8E] ∼ 1 for most part of
the energy range in Fig. 3. However, for L = 7000 km, S− is ∼ 0.2 in magnitude at E = 1
GeV and rises monotonically to ∼ 0.9 at E = 9 GeV. As a result, for both baseline lengths
of 4500 km and 7000 km, P 1

µµ increases monotonically with energy. For L = 9700 km, S− is
∼ 0.8 around E = 1 GeV, but falls to almost zero at E = 7 GeV and rises yet again to ∼ 0.3
at E = 9 GeV. The consequence is that P 1

µµ, which is a product of a continuously rising
sin2 θM

13 and the oscillatory S− factor, has a complicated behavior as a function of energy at
L = 9700 km. We recall here that P 1

µµ = ∆P 1
µµ ≡ P 1

µµ − P 1,vac
µµ is a pure matter effect term

and hence always positive.

2. The second term P 2
µµ is the dominant term in vacuum. For E ≪ Eres, there is very little

matter effect in it and P 2
µµ remains close to its vacuum value. As E increases towards Eres

and beyond, cos2 θM
13 , which appears as a factor in P 2

µµ, decreases towards 0.5 at Eres and
eventually to near-zero for E ≫ Eres. For E < Eres and all values of L, the matter-dependent
oscillatory factor S+ ≡ sin2[{∆m2

31(A+1)+ (∆m2
31)

M}L/8E] closely follows the behavior of
the corresponding sin2(∆m2

31L/4E) term in vacuum. But the situation changes drastically
for E > Eres. Now the said S+ factor is almost unity at L = 4500 km and 9700 km, but
nearly vanishes at L = 7000 km. Thus we can describe all the cases for P 2

µµ in the following
way. While P 2

µµ follows its vacuum oscillation pattern for E < Eres, it falls to almost zero
as E increases beyond Eres. The latter behavior ensues at L = 4500 km and 9700 km due
to the fall of cos2 θM

13 to zero, whereas at L = 7000 km it is caused by S+ nearly vanishing.
For E ∼ Eres, ∆P 2

µµ ≡ P 2
µµ − P 2,vac

µµ is positive at L = 7000 km but negative at L = 4500
and 9700 km.

3. Turning to P 3
µµ, we see from Eq. (31) that its proportionality to sin2 2θM

13 sin2[(∆m2
31)

ML/4E]
makes it very small in vacuum owing to the smallness of sin2 2θ13. In matter, however, the
growth of sin2 2θM

13 with energy (for E <∼ Eres) till its maximum value at E = Eres makes

7For a similar discussion on the dependence of matter effects in Pµµ on L and E see [21].
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P 3
µµ increase appreciably in this energy range. For our example cases shown in Fig. 3,

(E ≃ 5 GeV and maximal θ23), it increases from about 0.01, 0.0 and 0.025 in vacuum at
L = 4500, 7000 and 9700 km respectively to about 0.14, 0.20 and 0.25 in earth matter. This
means that, at E ∼ Eres, ∆P 3

µµ ≡ P 3
µµ − P 3,vac

µµ is in general positive for all L.

The impact of earth matter effects is largest for any L at E = Eres when the sum of the three
terms P 1

µµ, P 2
µµ and P 3

µµ becomes most different from its value in vacuum. In fact, P 1,vac
µµ (P 3,vac

µµ ) is
exactly (nearly) zero for all E, while – for E ∼ 5−7 GeV – P 2,vac

µµ yields SPMIN1 at L = 4500 km,
SPMAX at L = 7000 km and SPMIN2 at L = 9700 km. While matter effects raise P 1,3

µµ for all L
and E (cf. Fig. 3), apart from mildly increasing P 2

µµ at SPMAX for L = 7000 km, they decrease
it when L = 4500 (SPMIN2) and 9700 km (SPMIN2). There is thus an important difference
between the SPMAX and the two SPMIN cases: matter effects come with the same relative sign
for all the three terms at SPMAX, but increase P 1,3

µµ and decrease P 2
µµ at SPMIN1 and SPMIN2.

The SPMAX case at L = 7000 km thus exhibits the largest effects of earth matter in the total
survival probability Pµµ for E ∼ 5 − 7 GeV. In contrast, these effects partially cancel in the two
SPMIN cases between the increase in P 1,3

µµ and the decrease in P 2
µµ. For L = 4500 km (SPMIN1),

this cancellation is particularly important and the total Pµµ has very little residual matter effect.
Therefore we shall ignore SPMIN1 in our subsequent matter effect discussion. For L = 9700 km
(SPMIN2), the cancellation is not complete and appreciable matter effects do persist in Pµµ. As
noted earlier, one characteristic of the SPMAX case (L = 7000 km and E ∼ 5 GeV) is the decrease
in Pµµ from its maximal value of near-unity in the presence of matter since all the three terms
P 1,2,3

µµ increase. In contrast, Pµµ increases on account of matter in the SPMIN2 case (L = 9700
km, E ∼ 5 GeV, as exemplified here) because of the dominant decrease in P 2

µµ.
We can comment on the respective roles of θ13 and θ23 in determining the effects of matter

on the muon neutrino survival probability. First, the value of θ13, of course, directly controls
the extent of such effects. Figs. 1 – 3 have been generated with sin2 2θ13 = 0.1. For the same
L (and hence the same average matter density), the value of Eres is larger for a smaller θ13,
cf. Eq. (32). On the other hand, the value of (∆m2

31)
M is smaller in that case for a constant

matter density independent of L. The result is a larger mismatch between Eres (at which sin2 2θM
13

becomes maximal) and the energy where P 2,3
µµ reach their extremal values. Matter effects in Pµµ

are therefore reduced for a smaller θ13. Second, Fig. 1 carries evidence of the dependence of the
contribution of matter effects to Pµµ on sin2 θ23. The nature and extent of this dependence is
more clearly brought out by Eqs. (29–31) and Fig. 3. While P 1,2

µµ are seen to be proportional to
sin2 2θ23, the third term P 3

µµ goes as sin4 θ23. A noteworthy point in this connection is that, when
θ23 is close to being maximal, any change in its value affects sin2 2θ23 much less than sin2 θ23. For
instance, when θ23 decreases from 45◦ to 40◦, sin2 2θ23 changes from 1 to 0.97, i.e. by 3%, while
sin2 θ23 is reduced by 16% from 0.5 to 0.41. This is reflected in essentially no visible change in
P 1,2

µµ when sin2 θ23 is reduced8 (increased) from 0.5 to 0.4 (0.6), cf. Fig. 1. On the other hand,
P 3

µµ does increase appreciably as sin2 θ23 is increased from 0.4 to 0.5 leading to an increased θ23-
sensitivity in a muon neutrino disappearance experiment on account of matter effects. As noted
earlier, the net decrease (increase) of the total νµ survival probability Pµµ due to matter effects at
SPMAX (SPMIN2) increases (decreases) as the value of sin2 θ23 is increased. This behavior can

8sin2 2θ23 is the same for sin2 θ23 = 0.4 or 0.6.
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now be understood from the dependence of P 3
µµ on sin2 θ23. Let us first consider SPMAX. Since

the increase due to matter effects in P 3
µµ causes a decrease in the total survival probability Pµµ

at SPMAX and since P 3
µµ in matter increases as sin2 θ23 increases, the matter-induced decrease of

P µµ at SPMAX increases with increasing sin2 θ23. For the SPMIN2 case, the dependence of P 3
µµ on

sin2 θ23, as discussed above, is more subtle. In reality, the main role of the increase in P 3
µµ due to

matter is to wash out the corresponding decrease in P 2
µµ. Therefore, the matter-induced relative

increase of the survival probability Pµµ at SPMIN2 decreases as sin2 θ23 increases.
It is pertinent to stress a couple of points here. First, the strong dependence on sin2 θ23 of the

total survival probability Pµµ in matter coming from P 3
µµ, as discussed above, implies that observed

atmospheric νµ, ν̄µ events could be used not only to probe |D| ≡ |1/2 − sin2 θ23| but also the sign
of D to determine if θ23 < π/4 or > π/4, thus resolving the ambiguity regarding the octant of
θ23. The second issue is the effect of earth matter on the shape of the survival probability as a
function of the neutrino energy. This is shown in Fig. 4 for six different choices for L. The various
choices of sin2 θ23 are given in the figure caption while the other parameters are the same as in
Fig. 1. This figure again tells us that matter effects lower (raise) Pµµ from its vacuum values at
SPMAX (SPMIN1 and SPMIN2), resulting in a relative change of the shape of Pµµ as a function
of E. These matter-dependent effects will of course be projected onto the observed atmospheric
muon neutrino spectrum which will come folded with Pµµ. A detector with good energy resolution
should be sensitive to the spectral shape of atmospheric muon neutrinos and hence should pick
out the shape distortion owing to matter effects.

4 Up-down asymmetry in an ICAL-like detector

A very powerful variable, which clearly displays oscillation effects for atmospheric neutrinos (an-
tineutrinos), is the up-down ratio [29] UN/DN (UA/DA). Here UN (UA) is the number of events
recorded for the “upward” muon neutrinos (antineutrinos) coming with cos ξ < 0 and DN (DA)
is the number of atmospheric events recoded for the “downward” muon neutrinos (antineutrinos)
with cos ξ > 0, ξ denoting the zenith angle of the νµ/ν̄µ trajectory. Downward (upward) neutrinos
and antineutrinos cover short (long) distances. Hence downward ones hardly undergo any flavor
transformation while upward ones are subjected to full flavor oscillations, the relevant oscillation
lengths being in the range 102 − 103 km. Thus the up-down ratio U/D yields crucial information
on the degree of oscillations for upward neutrinos and antineutrinos. Being relatively insensitive9

to the uncertainties in the atmospheric neutrino flux calculations, it is a reliable measure of the
survival probability Pµµ. As such, it can be used to study both the vacuum oscillations of muon
neutrinos and the effect of matter on them [20]. We shall consider the above ratio for atmospheric
muon neutrino and antineutrino events in a large magnetized iron calorimetric detector. Such a
detector named ICAL, has been conceived in the proposed underground neutrino laboratory INO
[18] in India. While the initial proposal is for a detector mass of 50 kton for ICAL, the aim is
to enlarge it to a final detector size of 100 kton. The proposed detector would have a modular
structure with stacks of ∼ 6 cm thick magnetized iron plates interleaved with ∼ 2.5 cm of resistive
plate chambers (RPC) made of glass as the active detector material. A uniform magnetized field

9We have more to say on this issue later in this section.
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of 1 − 1.4 Tesla would enable the charge discrimination of muons distinguishing between νµ– and
ν̄µ−induced events. The full detector would be divided into three modules, the modular structure
allowing the start of detector operations with those modules that are ready even when others are
still under construction. Further details are given in [18].

The expected number of µ (or µ̄) events, induced by oscillating atmospheric muon neutrinos
(or antineutrinos) and recorded in a detector such as ICAL, is given by

Nl = nT

∫ ξmax

ξmin

d cos ξ
∫ π

0
dξ′R̃(ξ, ξ′)

∫ Emax

Emin

dE
∫ ∞

0
dE ′R̃(E, E ′) σl(E

′) ǫl(E
′)

×
[

d2φl(E
′ , ξ′ )

dE ′ d cos ξ′
Pll(E

′, ξ′) +
d2φl′(E

′ , ξ′ )

dE ′ d cos ξ′
Pl′l(E

′, ξ′)

]

, (36)

where, E ′ and E are the true and experimentally reconstructed neutrino energies respectively
and R̃(E, E ′) is the energy resolution function of the detector. Likewise, ξ′ and ξ are the true
and reconstructed neutrino zenith angle and R(ξ, ξ′) is the zenith angle resolution function of the
detector. It is convenient for us to adopt10 Gaussian forms for the energy and length (zenith angle)
resolution functions of the detector:

R̃(x, x′) =
1√

2πσx′

exp

(

−(x − x′)2

2σ2
x′

)

, (37)

where x is E or ξ (L). For the energy resolution we assume 2σE′ = 0.3E ′. The detector resolution
for the zenith angle and hence the distance travelled by the neutrino is expected to be somewhat
better and we assume 2σL′ = 0.2L′. These numbers are more or less the same as the full widths
of the nonGaussian resolution functions given in [18]. The total distance L and the zenith angle
ξ are related by

L =
√

(Re + h)2 − Re
2 sin2 ξ − Re cos ξ , (38)

where Re is the radius of the earth and h the height of the atmosphere. Among the rest of the
quantities of Eq. (36), nT denotes the number of target nucleons times the total live time of the
detector, σl(E

′) is the total νlN → lX scattering cross-section of a νl of energy E ′ and ǫl(E
′) is the

trigger efficiency of the magnetized calorimeter. Here the index l can be µ or µ̄ and d2φl/dE′d cos ξ′

is the differential flux of atmospheric neutrinos νl. Finally, Pll gives the survival probability for
the atmospheric νµ (or ν̄µ) and Pl′l the transition probability of ν ′

l to νl, l′ being either e or ē
correlated to l being µ or µ̄.

We shall present our results for a 100 kT of active detector mass and ten years of running, as-
suming a conservative 50% trigger efficiency11 for the detector 12. In order to calculate the number
of detected events, we use the latest three-dimensional atmospheric neutrino fluxes provided by
Honda et. al. [28], which is also used by the INO collaboration [18]. For the reaction cross-section

10We have checked that for the E and L bin sizes used in this paper the resolution functions make only little
difference to the final results. Hence, the precise form of the resolution function is unimportant.

11In reality, this could be as high as 80%, S. R. Dugad, private communication.
12For any other detector mass and efficiency, the statistics can be accordingly scaled.
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we consider only the DIS process and use the cross-sections given by the CTEQ collaboration [30].
We then distribute the number of µ− (µ+) events induced by the νµ (ν̄µ), into various zenith angle
and energy bins. In the range E = 1−11 GeV, the events are divided into five energy bins, each of
width 2 GeV. The zenith angle binning is presented in Table 3. The bins 1−6 (7−12) correspond
to cos ξ > 0 (< 0) and hence contain downward (upward) going neutrinos/antineutrinos. Upward
going ones have been binned according to Lm, the distance they travel within earth matter. The
range of Lm (in km), corresponding to each zenith angle bin, is given in Table 3. The bins for
downward neutrinos are arranged to have a structure similar to that of upward neutrinos. We
simulate the “data” for the prototype detector, assuming certain “true” values for the oscillation
parameters namely those benchmarked in Table 2, and distribute them into the five energy bins
and the twelve zenith angle bins. Thus we have 5 × 12 = 60 bins of data for the muon events.
The iron detector we consider is magnetized and therefore has charge discrimination capability.
So we have 60 bins of µ− data for the neutrino channel and another 60 bins of µ+ data for the
antineutrino channel. Our total data set therefore comprises 120 bins.

The up-down ratio UN/DN for νµ’s is shown in five different energy bins in Fig. 5. However,
instead of integrating over all upward and downward zenith angles, we have chosen to divide
the said ratio into six zenith angle bins. Each of the panels in Fig. 5 contains UN/DN for a
certain range of the modulus of the zenith angle as shown in the legend. For instance, the first
(last) panel on the top left (bottom right) contains the ratio UN/DN for 0 ≤ | cos ξ| ≤ 0.157
(0.785 ≤ | cos ξ| ≤ 1) and calculated by taking upward going neutrinos with −0.157 ≤ cos ξ ≤ 0
(−1 ≤ cos ξ ≤ −0.785) and downward going neutrinos with 0 ≤ cos ξ ≤ 0.157 (0.785 ≤ cos ξ ≤ 1).
The black and magenta solid lines in Fig. 5 describe the UN/DN spectrum for the realistic case
of upward neutrinos travelling through earth matter and with sin2 θ23 = 0.5 and sin2 θ23 = 0.36
respectively. In contrast, the similar dashed lines show the hypothetical UN/DN spectrum for
the corresponding values of sin2 θ23, if the upward neutrinos were assumed to be travelling in
vacuum even inside the earth. For the same value of sin2 θ23, a comparison of the solid line with
the corresponding dashed line shows the effect of earth matter in changing the muon neutrino
up-down ratio. Furthermore, the degree of this change is seen to depend on the value of sin2 θ23.

An even better way of bringing out matter effects13 in atmospheric muon neutrinos is to look
at the difference UN/DN − UA/DA, where the subscript A now refers to ν̄µ’s. The up-down ratio
U/D yields Pµµ which is the same for neutrinos and antineutrinos in vacuum so long as CPT is
conserved. Therefore, the difference in the up-down ratio between neutrinos and antineutrinos
gives a direct measure of the matter effects in Pµµ. In fact, it relates to ∆Pµµ of Eq. (19). Fig.
6 shows our results for the same choice of zenith angle and energy bins and for the same set of
oscillation parameters with an assumed normal mass ordering as made in Fig. 5. Substantial
matter effects in terms of the deviation of the difference UN/DN − UA/DA from zero are con-
cretely shown in Fig. 6 and in a more pronounced manner in the right hand panels. Once again,
the strength of the matter part in the survival probability is seen to depend on the value of sin2 θ23.

We can summarize the main characteric features of Figs. 5 and 6 as follows:

13For a normal (inverted) mass ordering, matter effects at baseline lengths L > 1000 km for νµ’s (ν̄µ’s) are
significantly larger than for ν̄µ’s (νµ’s), cf. discussion at the end of the section.
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• For a normal mass ordering (∆m2
31 > 0), atmospheric muon neutrinos undergo significant

matter effects for E ∼> 3 GeV and L ∼> 4000 km. A similar statement holds true for muon
antineutrinos if ∆m2

31 < 0.

• Matter effects increase (decrease) the ratio UN/DN in the E and cos ξ bins corresponding to
the SPMINs (SPMAX) for a normal mass ordering. For an inverted mass ordering, a similar
statement can be made about UA/DA.

• The largest impact of earth matter comes in the bin E = 5 − 7 GeV and −0.628 ≤ cos ξ ≤
−0.471 (6000 ≤ Lm ≤ 8000 km), corresponding to the SPMAX. Here UN/DN − UA/DA

reduces for a normal mass ordering to −0.3 to −0.25, depending on the value of sin2 θ23.

• The dependence of the strength of matter effects on the value of sin2 θ23 is most clearly
brought out in the energy and zenith angle bin mentioned in the preceding bullet. Reducing
sin2 θ23 from the maximal 0.5 to 0.36 brings a nearly 10% change in the difference UN/DN −
UA/DA. This highlights the possible role of matter effects in achieving a better sensitivity
to sin2 θ23 and hence a better resolution of its difference from maximality.

Let us make two further comments. First, the main advantage of the up-down asymmetry
parameter, constructed from directly recorded events, is its insensitivity to the error in the absolute
normalization of the atmospheric neutrino flux, on account of cancellations between the upward
and downward fluxes. Recall that this uncertainty has been the main source of systematic error in
extracting the mass squared difference and mixing parameters from any set of observed atmospheric
neutrino events. Additionally, the charge discrimination capability of an ICAL type of a detector
should be able to bring out earth matter effects in the atmospheric neutrino signal much more
effectively by constructing the difference UN/DN − UA/DA from recorded events. The second
comment relates to our assumption of a normal neutrino mass ordering, automatically implying
larger matter effects in the νµ rather than the ν̄µ channel for L > 1000 km. In case Nature has
chosen an inverted ordering of the neutrino masses, the above features would hold qualitatively
except that the situation would be reversed between the νµ and ν̄µ. In particular, the major change
in the plot of Fig. 6 would be that of a sign.

5 Details of the Statistical Analysis

Our twin goal is to check the sensitivity of atmospheric νµ’s and ν̄µ’s to any deviation of θ23

from its maximal value π/4 and to see the effects of earth matter on this sensitivity. In order to
achieve this end, we perform a statistical analysis of simulated “data” generated in an ICAL-like
calorimeter, assuming certain “true” values for the oscillation parameters. For our error analysis
we define a χ2 parameter following [31, 32, 33] as

χ2
atm ≡ min

ξk





120
∑

n=1

(

Ñ theory
n − Ndata

n

σstat
n

)2

+
K
∑

k=1

ξ2
k



 , (39)
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bin cos ξ Total distance L in km Distance in earth Lm in km
1 1.000 to 0.785 15.0 − 19.1 0
2 0.785 to 0.628 19.1 − 23.8 0
3 0.628 to 0.471 23.8 − 31.7 0
4 0.471 to 0.314 31.7 − 47.3 0
5 0.314 to 0.157 47.3 − 91.5 0
6 0.157 to 0.000 91.5 − 437.4 0
7 0.000 to -0.157 437.4 − 2091.5 0 − 2000
8 -0.157 to -0.314 2091.5 − 4047.3 2000 − 4000
9 -0.314 to -0.471 4047.3 − 6031.7 4000 − 6000
10 -0.471 to -0.628 6031.7 − 8023.8 6000 − 8000
11 -0.628 to -0.785 8023.8 − 10019.1 8000 − 10000
12 -0.785 to -1.000 10019.1− 12757.0 10000 − 12500

Table 3: The zenith angles bins used.

In Eq. (39) Ndata
n are the observed number of events in bin n and σstat

n are the statistical errors.
The systematic errors in the data and the theory are accounted for through the set of pulls
{ξk}. The latter are defined in such a way that the number of expected events N theory

n , in bin
n, corresponds to ξk = 0 and their 1σ deviations are given by ξk = ±1. The theoretical and
experimental uncertainties then cause the expected number of events to shift to Ñ theory

n :

Ñ theory
n = N theory

n

[

1 +
K
∑

k=1

πk
nξk

]

+ O(ξ2
k) , (40)

In Eq. (40) Ñ theory
n has been expanded in powers of ξk, keeping only linear terms. The quantities

πk
n give the fractional rate of change of N theory

n due to the kth systematic uncertainty.
The most important theoretical systematic uncertainties come from our lack of knowledge of

the predicted atmospheric neutrino fluxes. In order to cover these, we take an absolute normal-
ization error of 20%, a “tilt” factor of 5% to account for the spectral uncertainty, an uncertainty
of 5% in the neutrino-antineutrino flux ratio and an uncertainty of 5% in the zenith angle de-
pendence. For the DIS cross-sections, we consider an uncertainty of 10% – assuming a modest
improvement in our present understanding of these cross-sections by the time ICAL starts oper-
ating. For the other experimental systematic uncertainties, we take a 5% consolidated error. We
take these somewhat arbitrarily assumed plausible systematic errors for the proposed experiment,
pending actual estimates to be provided by the INO collaboration in future. We calculate the
uncertainties πk

n in Eq. (40) using an approach similar to that used in [31]. Therefore, πk
n is taken

as 20%, 10% and 5% of the number of events for all bins when k corresponds to the absolute
flux normalisation, cross-section uncertainty and experimental systematic error respectively. The
πk

ns for k corresponding to the “tilt” factor and zenith angle dependence of the νµ and ν̄µ flux
are calculated using the method detailed in [31]. For the flux uncertainty coming from neutrino-
antineutrino flux ratio, we take πk

n = 2.5% of the number of events for all the neutrino bins and
πk

n = −2.5% of number of events for all the antineutrino bins.
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Unless otherwise stated, for the numerical analysis done in this paper, the number of “data”
events Ndata

n in the nth bin is simulated at “true” values14 of the parameter set {p (true)}, p
covering ∆m2

31, ∆m2
21, sin2 θ12 and δ, which are set at the corresponding benchmark values listed

in Table 2. The choice of a normal mass ordering is for the sake of being definite rather than
on account of any theoretical prejudice. We shall also present some results for the inverted mass
ordering. The true values of the remaining oscillation parameters sin2 θ23 and sin2 θ13 will be varied
to account for their impact on matter effects and will be stated explicitly as and when used. (Any
change, whenever made in the assumed true values of the other parameters, will also be mentioned
explicitly.) For each such simulated data set, we do a statistical analysis using Eqs. (39) and (40)
to find the sensitivity of ICAL to any deviation of θ23 from maximality as well as to the fixation of
its right octant. Ñ theory

n is calculated for a given set of oscillation parameters using Eq. (40). The
RHS of Eq. (39) is then minimized with respect to the pulls ξk to obtain χ2

atm as a function of the
oscillation parameters. The latter function is then further minimized by varying the oscillation
parameters within their allowed ranges to obtain the sensitivity plots for θ23.

The extent of earth matter effects is determined by the true value of sin2 θ13. Therefore, we
also include the constraints on sin2 θ13 expected to ensue from the combined data expected from
the next generation reactor [34] and long baseline accelerator [35] experiments. So we define the
combined χ2 for the ICAL experiment as

χ2
comb = χ2

atm +

(

sin2 θ13 − sin2 θ13(true)

σs2

13

)2

. (41)

In Eq. (41), χ2
atm is as given by Eq. (39). Furthermore, the second RHS term tries to take

into account the above-mentioned bounds on sin2 θ13 from future laboratory experiments with the
denominator σs2

13

denoting the 1σ uncertainty in it which is assumed [36] to be at the level of
3.5%.

6 Deviation of θ23 from its maximal value

Let us turn now to the focal point of this paper: how well will the deviation of θ23, if any, from
its maximal value be probed with atmospheric neutrinos in the foreseeable future? We take the
combined information from 1 MtonY of simulated data in ICAL, adding on the constraint on
sin2 θ13 to come from future reactor and accelerator experiments. Our procedure is to generate
the data at a certain nonmaximal value of sin2 θ23(true) and then fit this data with the maximal
muon neutrino mixing angle θ23 = π/4, choosing different values of sin2 θ23(true). The results are
displayed in Fig. 7. At each point in this ∆m2

31(true) – sin2 θ23(true) plane, we simulate the 120
bin data in ICAL, taking sin2 θ13(true) = 0.00 (left panel), 0.02 (middle panel) and 0.04 (right
panel) respectively and assuming for all the other parameters the benchmark values given in Table

14In what follows, we shall always distinguish between the “true” values of the oscillation parameters chosen by
Nature at which we generate our projected data and the fitted values of those parameters which are constrained
by the same data. The true values will henceforth be written as sin2 θ23(true) etc., while the fitted values will be
referred to as sin2 θ23 etc.
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2 to be true. Each such data set is then fitted back using Eqs. (40), (39) and (41) with N theory
n

calculated for maximal θ23 mixing. The parameters ∆m2
31 and sin2 θ13 are allowed to take any

possible values in the fitted N theory
n , while ∆m2

21 and sin2 θ12 are allowed to vary freely within 7%
and 15% of their assumed true values respectively15.

The upper and lower panels of Fig. 7 correspond to respective exposures of 1 MtonY and 3.37
MtonY16. The regions of sin2 θ23(true) and ∆m2

31(true) within the white, blue and green bands
of Fig. 7 show the true values of those quantities for which the distinction of a maximal from a
true nonmaximal value of θ23 will not be possible at the 1σ, 2σ and 3σ levels respectively for the
specified exposure. The broken lines give the corresponding limits of sin2 θ23(true) in case earth
matter effects were deliberately switched off by hand. Among those the long-dashed, dot-dashed
and dotted lines respectively yield the 1σ, 2σ and 3σ limiting values of sin2 θ23(true). A comparison
of the broken lines with the corresponding continuous lines show the following feature. Matter
effects tend to increase somewhat the sensitivity of ICAL to test the maximality of sin2 θ23.

We present in Table 4 the intervals of D(true) = 1/2 − sin2 θ23(true) beyond which max-
imal mixing could be ruled out at the 3σ level, with and without matter effects. The latter
corresponds to a fictitious environment of pure vacuum and has been included to see the quanti-
tative role of matter effects here. Specifically, for ∆m2

31(true) = 2.0 × 10−3 eV2 and sin2 θ13(true)
= 0.04 (0.00), sin2 θ23(true) can be distinguished by ICAL from the maximal value of 0.5 at the
3σ level within 17% (20%) from 1 MtonY of exposure and within 11% (14%) if the statistics was
increased to 3.37 MtonY. The corresponding ranges of D(true) are what Table 4 lists. This is
comparable to the sensitivity of the combined data from the forthcoming accelerator-based long
baseline experiments17 to a deviation from maximality of sin2 θ23, which is [12] ∼ 14% at 3σ (for
∆m2

31(true)= 2.5 × 10−3 eV2) 18. Our sensitivity to D is also comparable to that expected with
atmospheric neutrinos in very large futuristic water Cerenkov detectors. For statistics that is 20
(50) times the current SK statistics, denoted as SK20 (SK50), a very large water Cerenkov atmo-
spheric neutrino experiment is expected to test a deviation from a maximal sin2 θ23 upto [9] 23%
(19%) at 3σ.

Let us make some observations here. While atmospheric neutrino data in a very large water
Cerenkov detector could test [9] maximality in sin2 θ23 almost independently of the values of
sin2 θ13(true) and ∆m2

31(true), the sensitivity at a detector like ICAL to D would depend on both
these oscillation parameters. The dependence of the latter on sin2 θ13(true) comes from the greater
importance of matter effects here. The impact of ∆m2

31(true) on the measurement D comes from
the dependence of sin2 θ23 sensitivity to the spectral shape of the data at ICAL, cf. §3. For a
larger ∆m2

31(true), there is a larger averaging of the oscillation signal and the sin2 θ23 sensitivity
is reduced slightly. Such a fact is evident from Figs. 8 and 9 which display the muon (µ−) zenith

15These are the bounds on the solar parameters expected from the future solar and long baseline reactor neutrino
experiments. See for example [37] for a recent detailed discussion.

163.37 MtonY would roughly be the statistics needed in ICAL to match the number of fully contained muon
events in the experiment SK20 which is described later in this section.

17The authors of [12] use a combination of simulated data set from five years of running of MINOS, ICARUS,
OPERA, T2K and NOνA each, expected to come in the next ten years.

18This estimated uncertainty will be quite different if the true value of ∆m2

31
deviates substantially from 2.5×10−3

eV2.
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Range of D(true) in units of 10−2

matter vacuum
sin2 θ13(true) 0.00 0.02 0.04 0.00 0.02 0.04
1 MtonY [9.8,-9.7] [8.8,-10.3] [8.4,-10.7] [9.4,-9.4] [9.2,-10.2] [9.0,-11.1]
3.367 MtonY [7.0,-7.0] [5.9,-7.2] [5.5,-7.2] [6.6,-6.7] [6.3,-7.3] [6.0,-8.0]

Table 4: Simulated ranges of deviation D from maximal sin2 θ23, allowed at 3σ, after two different
exposure times at ICAL. Here ∆m2

31(true) has been taken to be 2.0 × 10−3eV2.

angle spectrum for ∆m2
31 = 2.0×10−3 eV2 and 4.0×10−3 eV2 respectively. The four panels in both

figures show the zenith angle dependence of the muon events in four different energy bins which
are labeled. While the solid black and the magenta dotted lines are for sin2 θ23 = 0.5 (maximal)
and 0.4 respectively, the blue dot-dashed lines correspond to unoscillated neutrinos. A comparison
between Figs. 8 and 9 reveals an interesting feature. The case with the higher value of ∆m2

31 has
a spectral distortion which is less than that with the lower value, especially when E is between
3 and 5 GeV and when E is between 5 and 7 GeV, which are statistically the most important
energy bins. The reason is that the oscillations are faster for ∆m2

31 = 4.0 × 10−3 eV2, leading to
partial averaging and a smaller spectral distortion in the resultant signal. In fact, for the same
reason, matter effects also are slightly more important for ∆m2

31 = 2.0 × 10−3 eV2, as compared
to the higher value quoted above. Such an increased averaging, especially in the statistically more
relevant lower energy bins, results in a slight fall in the sensitivity of ICAL to the precision of the
oscillation parameters. This happens since the use of spectral distortion is a crucial component of
the latter in relation to oscillation parameters, including the deviation D from the maximality of
sin2 θ23.

7 Sensitivity to the octant of θ23

We now come to the determination of the sign of D = 1/2 − sin2 θ23 which decides whether
θ23 < π/4 (D positive) or θ23 > π/4 (D negative), i.e. whether θ23 lies in the first or second octant
of the (0, 2π] range. In a two-generation picture, the dependence of the survival probability Pµµ

only on sin2 2θ23 makes it impossible to fix the octant of θ23. Even in a three-generation framework,
given that θ13 and α are small, the dominant part of Pµµ in vacuum is still found to depend only on
sin2 2θ23. Therefore, once again the fixation of the octant of θ23 would be nearly impossible from
a study of vacuum oscillations in surviving muon neutrinos. This degeneracy, however, is broken
in matter owing to an additional strong sin4 θ23 dependence in Pµµ, as clear from the third term
P 3

µµ in Eq. (31). Since we have already demonstrated the significant potentiality of the ICAL-like
detector in deciphering the effects of earth matter on its observed muon neutrino/antineutrino
events, we expect such a detector to be sensitive to the octant of θ23. That is what we now
numerically investigate.

The simulated event spectrum at this detector is first generated at some nonmaximal “true”
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value of θ23. Then we try and see if the wrong octant of θ23 can be ruled out at a good C.L.
Here we use anticipated constraints on sin2 θ13 from future reactor and long baseline experiments,
but we have allowed all other parameters except sin2 θ23 to vary freely in the fit. We consider
three different cases of sin2 θ23(true) values, namely 0.42, 0.46 and 0.54. The “true” values of
the other oscillation parameters are as listed in Table 2 with an assumed normal mass ordering.
Fig. 10 shows the results of our statistical analysis based on simulated data from 1 MtonY of
ICAL exposure with the left, middle and right panels corresponding to the values 0.42, 0.46 and
0.54 respectively of sin2 θ23(true). In each panel the long dashed magenta, short dashed blue,
dot-dashed green, dotted red and solid black lines show the χ2 for sin2 θ13(true) = 0.00, 0.01, 0.02,
0.03 and 0.04 respectively. For every nonmaximal sin2 θ23(true), there exists a sin2 θ23(false) which
is given by

sin2 θ23(false) = 1 − sin2 θ23(true) (42)

on the other side of π/4. For a vanishing sin2 θ13(true) there are no matter effects and the χ2

corresponding to both the true and false values of sin2 θ23 are the same. Hence they are allowed
at the same C.L. and one fails to fix the octant of θ23 in this case. However, for sin2 θ13(true) 6= 0,
matter effects bring in an octant sensitivity and a false sin2 θ23 solution can be ruled out, provided
D(true) is not too close to zero. For a given sin2 θ13(true), the C.L. at which this can be done for
our illustrative cases of sin2 θ23(true) can be read out using Fig. 10, from the difference in the χ2

between the true and false solutions.
In order to obtain the limiting value of sin2 θ23(true) which could still allow for the determina-

tion of sgn(D) we define

∆χ2 ≡ χ2(sin2 θ23(true), sin2 θ13(true), others(true))

−χ2(sin2 θ23(false), sin2 θ13, others), (43)

with ‘others’ comprising ∆m2
31, ∆m2

21, sin2 θ12 and δ. These, along with sin2 θ13, are allowed to
vary freely in the fit. Eq. (43) gives us a measure of the C.L. at which sin2 θ23(false) is disfavored
for a given sin2 θ23(true). Fig. 11 shows ∆χ2 as a function of sin2 θ23(true) for four values 0.01,
0.02, 0.03 and 0.04 of sin2 θ13(true), corresponding respectively to the blue dashed, and green
dot-dashed, the red dotted and the black solid lines. The left hand panel shows the results for a
normal mass ordering of neutrinos while the right hand panel corresponds to the situation if the
mass ordering for the neutrinos were inverted. The range of sin2 θ23(true), for which sin2 θ23(false)
can be ruled out at the 3σ level, is visible from the figure. In particular, for a normal neutrino
mass ordering, sin2 θ23(false) should be excludable at the 3σ level from 1 MtonY of ICAL exposure
for the following cases:

sin2 θ23(true) < 0.361 or > 0.633 for sin2 θ13(true) = 0.01, (44)

sin2 θ23(true) < 0.402 or > 0.592 for sin2 θ13(true) = 0.02, (45)

sin2 θ23(true) < 0.415 or > 0.580 for sin2 θ13(true) = 0.03, (46)

sin2 θ23(true) < 0.421 or > 0.573 for sin2 θ13(true) = 0.04. (47)
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For an inverted mass ordering, the sensitivity of ICAL to sgn(D) is seen to be slightly less
from Fig. 11. This is the result of the following fact. When the mass ordering is inverted,
larger matter effects appear for ν̄µ’s instead of νµ’s at baseline lengths L > 1000 km. Owing
to smaller interaction cross-sections for the antineutrinos, we roughly expect only half as many
ν̄µ-induced antimuon events in the detector as compared with νµ-induced muon events. Therefore,
the statistical power of the experiment for deciphering sgn(D) goes down by roughly a factor of
half in this case.

In order to quantify the importance of distinguishing the νµ-induced muon events from the
ν̄µ-induced antimuon events by means of the magnetic field in the detector, we have repeated our
χ2 analysis by “switching off” the magnetic field – or in other words by taking the sum of the
muon and antimuon events in each bin. Therefore, in this case we have just a 60 bin data. Such
a non-magnetized iron detector could then rule out the fake octant solution at 3σ level for the
normal mass ordering if sin2 θ23(true) < 0.372(> 0.625) for sin2 θ13(true) = 0.04 or sin2 θ23(true) <
0.398(> 0.600) for sin2 θ13(true) = 0.04. It is not surprising that the potential to rule out the
fake octant deteriorates significantly in this case, since the matter effects crucial for the octant
sensitivity get diluted if neutrino and antineutrino events were added together. Distinguishing
the neutrinos from the antineutrinos is therefore extremely important for the physics potental of
experiments sensitive to large matter effects.

8 Discussions and conclusions

The measurement of both the magnitude and sign of the deviation D of sin2 θ23 from its maximal
value 0.5 is of utmost theoretical importance. The best current limit on this parameter D comes
from the SK atmospheric neutrino experiment giving |D| ≤ 0.16 at the 3σ level [5]. More precise
measurements of θ23 and hence of D are expected from future atmospheric neutrino data both from
the currently running SK experiment and from the planned Megaton water Cerenkov detectors.
Significantly better constraints are expected from data that will emerge from forthcoming long
baseline experiments, owing to their larger statistics and lower systematic errors. However, in both
these classes of experiments, θ23 will be mainly determined by the νµ (and/or ν̄µ) disappearance
channel in vacuum, which predominantly depends on sin2 2θ23. This leads to two very important
consequences. The first one relates to the fact that the mixing angle θ23 is very close to being
maximal. The fact that δ(sin2 θ23) equals δ(sin2 2θ23)/(4 cos 2θ23) has the following implication.
Even though one could determine the value of sin2 2θ23 at the percentage level from the next
generation long baseline experiments, the uncertainty in sin2 θ23 would still remain in the region
of 10-20%, depending on sin2 θ23(true). The second consequence of the predominant sin2 2θ23

dependence of the disappearance probability in long baseline experiments means that they are
almost insensitive to the octant of θ23 and hence to the sign of D.

In this paper we have argued in a quantitative way that the presence of matter effects in the
neutrino survival probability enhances its sensitivity to θ23. In particular, we have shown that
the strong sin2 θ23 dependence of the matter effects in Pµµ can be used to increase the sensitivity
of νµ’s and ν̄µ’s disappearance experiments to D. Using the signal for atmospheric νµ and ν̄µ in
a large magnetized iron calorimetric detector like the planned ICAL at INO in India, we have
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demonstrated the followoing fact: for large enough values of sin2 θ13(true), the detection of matter
effects in the data would be feasible and would lead to better constraints on |D|. Appropriate
binning of the data in both energy and zenith angle holds the key to the observation of matter
effects in the resultant signal. We have distributed our simulated events into twelve zenith angle
bins covering both up and down going neutrinos – each of which was then further divide into five
energy bins, giving us sixty bins of data. The charge discrimination capability of a magnetized
detector like ICAL will allow the separation between νµ- and ν̄µ-induced events. Hence we have
simulated separate data sets for νµ’s and ν̄µ’s. Since for a given neutrino mass ordering, substantial
matter effects appear in only either the neutrino or the antineutrino channel, the effective use
of separate data sets for νµ and ν̄µ will enable the extraction of matter effects in the survival
probability through a statistical analysis. We have defined a χ2 function to analyze the data set
expected from atmospheric neutrino events collected in an ICAL-like detector and presented the
C.L. limits on |D|. We have noted that the presence of matter effects increase the sensitivity of
ICAL to |D| somewhat. For sin2 θ13(true) = 0.04, matter effects are seen to improve the 3σ limit
on |D| from 0.090 to 0.084. We expect to measure |D| within 18% (17%) at 3σ with 1 MtonY
data when sin2 θ13(true) = 0.02 (0.04). This is comparable to the limit on |D| expected from the
forthcoming long baseline experiments and slightly better than what is expected from atmospheric
neutrino experiments with Megaton water Cerenkov detectors.

Matter effects in Pµµ open up a new utility for an ICAL-like detector – sensitivity to the
octant of θ23. As is well known, the atmospheric neutrino data set collected so far by the SK
experiment constrains the atmospheric neutrino mixing angle in the form sin2 2θ23 and is hence
insensitive to the octant of θ23 if its true value were non-maximal This ambiguity in whether θ23

is smaller or greater than π/4 leads to an additional two-fold degeneracy [38] in the measurement
of the mixing angle θ13 and the CP phase δ in long baseline experiments, looking for electron
neutrino appearance in an original muon neutrino beam through the Pµe channel which depends
on sin2 θ23 and hence to the octant of θ23. The Pµµ channel in the long baseline experiments, which
is expected to give the best limits on θ23, is almost insensitive to its octant [15]. The proposed ways
to tackle the θ23 octant ambiguity in the determination of θ13 and δ in long baseline experiments
include (1) combining the data from the Pµe (or Peµ) channel of the long baseline experiment with
data from the next generation reactor experiments [34], (2) combining the data from the Pµe (or
Peµ) channel of the long baseline experiments with different energies and baseline lengths and (3)
combined studies of the Pµe or Peµ (golden) and the Peτ (silver) channels [39].

The octant ambiguity can be resolved from a direct measurement of the sign of D utilizing
atmospheric neutrino data. It was shown in [9] that the atmospheric neutrino data in SK like
experiments could be sensitive to the octant of θ23 through the ∆m2

21 driven sub-dominant os-
cillations. The latter are sizable for very small values of the neutrino energies and result in an
excess in the sub-GeV electron sample in Megaton water Cerenkov detectors. They conclude
that, with a statistics fifty times the current SK statistics, this effect can be used to determine
the correct octant of θ23 at the 3σ level if the true value sin2 θ23(true) < 0.36 or > 0.62. We
have shown in this paper that for large enough sin2 θ13(true), the observation of matter effects in
atmospheric neutrinos in an ICAL like detector could be used very effeciently to determine the
octant of θ23. The observation of significant matter effects in Pµµ allows the rejection of the false
octant solution of θ23 at the 3σ level for sin2 θ23(true) < 0.40 (< 0.42) or sin2 θ23(true) > 0.59
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(> 0.57) for sin2 θ13(true) = 0.02 (0.04) with 1 MtonY statistics in ICAL, given a normal neutrino
mass ordering. For an inverted mass ordering, the false θ23 can be rejected at the 3σ level for
sin2 θ23(true) < 0.37 (< 0.40) or sin2 θ23(true) > 0.62 (> 0.60) for sin2 θ13(true) = 0.02 (0.04). The
sensitivity to sgn(D) in ICAL is therefore slightly less for an inverted mass ordering than for a
normal one. But it is still better than what is expected from other experiments. Hence, using
matter effects to pick the right octant in an INO-like experiment seems to be the most promising
way of resolving the θ23 octant ambiguity by determining the sign of D.

We thank S. R. Dugad, S. Goswami, M. V. N. Murthy, D. P. Roy and A. Raychaudhuri for their

helpful comments.
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Figure 1: Pµµ as a function of L with fixed E (and at various values of E) for neutrinos travelling
in vacuum and matter. The black solid lines and the dashed green lines are for propagation in
matter with sin2 θ23 = 0.5 and 0.36 respectively. The red dotted lines and the blue dot-dashed
lines are for that in vacuum for the same respective values of sin2 θ23. The vertical dashed lines
represent the mantle-core boundary inside the earth.
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Figure 2: The average Eres (blue solid line) as a function of the baseline length in earth. Also
shown are ESPMIN1 (red dotted line), ESPMAX (green dashed line) and ESPMIN2 (black dot-dashed
line) in vacuum. They curve owing to the logarithmic scale of the horizontal axis.
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Figure 3: Plots of P 1,2,3
µµ , the notional quantities of Eq. (27) defined in the limit α → 0, as functions

of the neutrino energy E with a fixed baseline length L for different L-values as shown. The black
solid lines, red long-dashed lines and green dashed lines correspond to νµ’s travelling in matter
with sin2 θ23 = 0.5, 0.4 and 0.6 respectively and the blue dotted lines to the same in vacuum with
sin2 θ23 = 0.5.
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are for neutrinos travelling in matter with sin2 θ23 = 0.5 and sin2 θ23 = 0.36 respectively. The red
dotted and the blue dot-dashed lines show the corresponding respective cases in vacuum.
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Figure 5: The up-down asymmetry expected for muon neutrinos in energy bins of width 2 GeV.
The six panels show the data for six different zenith angle (or L) bins corresponding to upward
neutrinos travelling between Lm = 0 − 2000 km, Lm = 2000 − 4000 km, Lm = 4000 − 6000 km,
Lm = 6000−8000 km, Lm = 8000−10000 km and Lm = 10000−12000 km respectively inside the
earth, cf. Table 3. The solid black lines and the solid magenta lines are for neutrinos travelling in
matter with sin2 θ23 = 0.5 and 0.36 respectively. The dashed black lines and the dashed magenta
lines are for neutrinos travelling in vacuum with sin2 θ23 = 0.5 and 0.36 respectively. For all cases
we have taken ∆m2

31 = 2×10−3 eV2 and the benchmark values of Table 2 for the other parameters.
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Figure 6: The difference between the up-down ratio for the neutrinos (UN/DN) and antineutri-
nos (UA/DA) shown for the various energy and zenith angle bins. The solid black lines are for
neutrinos/antineutrinos travelling in matter with sin2 θ23 = 0.5, while the solid magenta lines are
neutrinos/antineutrinos travelling in matter with sin2 θ23 = 0.36. The dot-dashed blue line shows
UN/DN − UA/DA = 0 for reference. The other oscillation parameters are chosen as in Fig. 5.
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Figure 7: The regions of ∆m2
31(true) and sin2 θ23(true) where maximal θ23 mixing can be rejected

by using 1 MtonY (upper panels) and 3.37 MtonY (lower panels) atmospheric neutrino data in
ICAL at 1σ (white band), 2σ (blue band) and 3σ (green band). The hollow dark lines show the
corresponding bands for neutrinos travelling in pure vacuum. Benchmark parametric values of
Table 2 have been assumed.
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Figure 8: The zenith angle distribution of muon events for four energy bins shown in the four
panels and for ∆m2

31 = 2 × 10−3 eV2. The black solid lines show the events for maximal sin2 θ23,
the dotted magenta lines show the events for sin2 θ23 = 0.4 and the blue dot-dashed lines show the
events for the unoscillated flux.
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Figure 9: Same as Fig. 8, but for ∆m2
31 = 4 × 10−3 eV2.
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Figure 10: χ2 as a function of sin2 θ23, showing the “octant sensitivity” of ICAL. The three panels
project the expected sensitivity of ICAL for three different true value of sin2 θ23: sin2 θ23(true) =
0.42 (left panel), sin2 θ23(true) = 0.46 (middle panel) and sin2 θ23(true) = 0.54 (right panel). The
magenta long-dashed lines, blue short-dashed lines, green dot-dashed lines, red dotted lines and
black solid lines are for sin2 θ13(true) = 0.00, 0.01, 0.02, 0.03 and 0.04 respectively.
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Figure 11: ∆χ2 as a function of sin2 θ23(true), showing the octant sensitivity of ICAL for the
normal (left panel) and inverted (right panel) neutrino mass ordering. The blue short-dashed
lines, green dot-dashed lines, red dotted lines and black solid lines are for sin2 θ13(true) = 0.01,
0.02, 0.03 and 0.04 respectively.
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