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1 Introduction

With the evidence in favor of neutrino masses and mixing at a convincing level now, attempts
to seek the role of physics beyond the standard model in the neutrino sector are acquiring
enhanced degrees of urgency. As it is, the lack of naturalness of the mass of the Higgs
boson in the standard model is a strong pointer towards new physics around the TeV scale.
Since tiny masses can be explained by appealing to energy scales much higher than the
electroweak scale (for example in the seesaw mechanism), it is appropriate to link neutrino
mass generation to new physics options at the TeV scale or above.

Supersymmetry (SUSY) is a frequently explored possibility for new TeV-scale physics.
Its capability for solving the naturalness problem being an accepted fact, serious efforts are
on at accelerators to see signals of SUSY, broken with an intra-supermultiplet mass splitting
O(TeV). Does SUSY play a role in providing the requisite new physics component in the
masses and mixing pattern of neutrinos? This is the question that we would like to address.
Often one has to go beyond the minimal SUSY standard model (MSSM) in order to find
satisfactory mechanisms which can achieve this end. Though a fair amount of work has been
done in this area [I], one is yet to have a satisfactory answer to the following central question
related to the neutrino sector. Why is the mixing pattern of neutrinos, with two large and
one small mixing angles, so drastically different from that in the quark sector, where the
mixing between the three generations can be cryptically described by the progression - small,
smaller, smallest?

In this paper we approach the above problem with the idea that the difference between
the two mixing patterns arises from some aspects of the SUSY model which are specific to
neutrinos and with no counterparts in the quark sector. For this, we make use of nonrenor-
malizable terms arising from high-scale physics. Such terms, coupling some hidden sector
(gauge singlet) chiral superfields to the MSSM ones, are suppressed by the Planck mass
Mp or some power of it. If these terms violate lepton number , they can lead to Majorana
masses for neutrinos. When, in addition, there are superfields containing right-chiral neu-
trinos, contributions to the neutrino mass matrix can come not only from the well-known
seesaw mechanism but also radiatively via one-loop diagrams containing right chiral sneu-
trinos. Though both these contributions have been included in earlier works [2, B, 4], a
clear explanation of the different character of mixing for neutrinos vis-a-vis quarks has been
lacking without the imposition of some additional restriction on the low-energy theory. The
Froggatt-Nielsen mechanism [5] is an example of such additional theoretical inputs. The
literature, of course, is rich with uses of various other symmetries [6], as well as of ‘anarchy’
in the neutrino mass matrix [7]. Drawing inspiration from all these approaches, we suggest
an alternative justification of bilarge neutrino mixing by postulating an array of gauge sin-
glet chiral superfields with flavor-dependent nonrenormalizable couplings to neutrinos. The
specific superpotential that yields the desired results is formulated, and consistency with
the observed suppression of flavour-changing neutral currents (FCNC) in the lepton sector is
used as a constraint. One further has radiative contributions, pertaining only to the neutrino
mass matrix. These are due to the fact that the right chiral sneutrinos may acquire gauge
singlet AL = 2 mass terms. The scenario for neutrinos then immediately becomes quite



distinct from that in the quark sector.

Using the standard seesaw as well as the above-mentioned radiative contributions, we have
examined whether high-scale parameters, such as the vacuum expectation values (VEV) of
scalar as well as of auxiliary components of the gauge singlet chiral superfields, crucial to
this mechanism, are in otherwise acceptable ranges of values. For instance, the Higgsino
mass (p) parameter needs to be around the weak scale for the desired implementation of
the spontaneous breakdown of electroweak symmetry. Such analyses are carried out for
the three alternative possibilitiess of the neutrino mass spectrum allowed by the neutrino
oscillation data, namely, normal hierarchy, inverted hierarchy and degenerate neutrinos. The
simultaneous importance of the radiative as well as the seesaw contributions enables us to
acquire in all the three scenarios substantial regions (of different extent in each case) in the
parameter space of our model that correspond to acceptable solutions.

In section 2 we describe the (by now well-known) structure of the neutrino mass matrix
M, for bilarge mixing. The SUSY model is constructed and the elements of M, are consis-
tently generated in section 3; we also show at the end of this section how FCNC processes,
induced at one loop, are suppressed. The SUSY parameter space, answering to each of the
specific scenarios of normal hierarchy, inverted hierarchy and degenerate neutrinos, is ana-
lyzed in section 4. We comment on some related possibilities in section 5. Section 6 contains
our summary and conclusions.

2 Facts about neutrinos

There is experimental evidence now that neutrinos have tiny masses. We shall work within
the scheme of three light active neutrinos, not including the possibility of an additional light
sterile one suggested by the LSND data till results from the ongoing mini-Boone experiment
settle the issue. We shall further assume CPT conservation. While there is an upper bound
[8] of ~ 1 eV on the sum of neutrino mass eigenvlaues from cosmology, the lack of observation
of neutrinoless double beta decay implies an upper bound of ~ 0.3 eV on the absolute value
of the the 17-element of the neutrino mass matrix [9]. On the other hand, the accumulating
data from solar, atmospheric, accelerator and reactor neutrino experiments persistently point
[T0] towards neutrino oscillations. These data identify favored regions of small but distinct
mass-squared separation of the three different physical neutrino states. At the same time,
they also indicate that the mixing between the second and the third families is near maximal,
that between the first and the second is large, while the one between the first and the third
families is restricted to a small angle. In perfect analogy with the Cabibbo-Kobayashi-
Maskawa (CKM) matrix in the quark sector, the three-flavour neutrino mixing matrix can
be parameterized as
—is

C12C13 S512€13 S513€
_ i5 1)
U= —512C23 — C12523513€" C12C23 — S12523513€" $23C13 . (1)
is is
512523 — C12€23513€ —C12523 — 512€23513€ C23C13

In Eq. (1) ¢;; = cosb,j, s;; = sinb;;, i, j being family indices which run from 1 to 3 (Majorana
phases have been neglected here). We work in the basis where the charged lepton mass matrix
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is diagonalized. While solar (reactor) neutrino (antineutrino) studies suggest that 6,5 ~ 32°
[TT), T2], the atmospheric neutrino deficit needs a3 to be ~ 45° [I3] and data from reactors
require that 613 < 13° [I4]. Thus a pattern of bilarge mixing emerges.

The above pattern allows one to construct a candidate neutrino mass matrix in terms of
the mass eigenvalues my, my, m3. To start with, let us take 63 = 7 and 613 = 0 approxi-
mately, keeping 6,5 free to be large. Then the corresponding transformation matrix can be

written as
c s 0
S c 1
UV - _ﬁ ﬁ ? 5 (2)
V2 V2 V2

where s = sinfj5 and ¢ = cos 5. The neutrino Majorana mass matrix in the flavor basis
can now be obtained by transforming the diagonal matrix with the above:

my
My = Uy mo UE
ms3
mic? + mgys? %(—ml + M) %(ml —my)
= | Fl=mitma)  smus® +mec® +mg)  G(—mus® —mac? +my) | (3)

Z5(m1 —my) 3(mmas® —mac® +mg)  G(mas® +mac® +my)

Thus we see that the requirement of bilarge mixing commits one to a particular structure
of the mass matrix where, of course, the relative magnitudes of the entries depend on the
eigenvalues. For more precise information one has to take up the specific scenario of nor-
mal/inverted hierarchy or that of degenerate neutrinos. In our study, we attempt to link the
diagonal and off-diagonal mass terms of M, to the parameters of the SUSY model at high
scale and see what the different scenarios tell us about the model parameters themselves.

3 The SUSY model and neutrino masses

3.1 Required features of the model

The model that we adopt is motivated by a number of recent works [2, B, @]. In [B], for
example, a minimal extension of the MSSM, including a right-handed neutrino, is used.
There the terms of the effective Lagrangian responsible for neutrino masses are

1
T (IX'NNJp + [XLNH,] ) + h.c., (4)

where Mp is Planck scale and coupling coefficients of order unity have been suppressed. In

Eq. (4), the chiral field X can acquire both SUSY violating and SUSY conserving VEVs [15].
2

The above terms can be responsible for seesaw masses of order %% for the neutrinos (recalling
P

the need to have Fx ~ (z)? ~ Mp(H,), to ensure the generation of other superparticle
masses in the TeV range) . In addition, there can be radiative contributions to the mass
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matrix from AL = 2 sneutrino mass terms after SUSY breaking. These can arise with
the help of a term #[X TX XTNN]p, making contributions that can dominate over seesaw
masses in certain regions of the parameter space.

We aim to explain the bilarge mixing pattern of neutrinos by extending such a model. As
mentioned earlier, the basic philosophy is to envision some feature of neutrinos, which has no
counterpart in the quark sector, as being responsible for the observed bilarge mixing. There
are two features of this kind in such a model: (a) the right-chiral neutrino sector and (b) the
corresponding right-chiral sneutrino sector, with provisions of AL = 2 terms in each. In our
approach, each of these sectors is attributed with a 3 x 3 mass matrix structure which plays
a crucial role in the contribution to the radiative as well as seesaw mass terms. Moreover,
we postulate an array of gauge singlet chiral superfields X;;. Following these propositions,
Eq.(4) is generalized to

Loy = — ((XEN'NI)p + | X, LN H,| ) +he (5)

= N i D ij ul -Co,

where there is a summation over flavor (i.e. generation) indices i, 7. The choice of the above
Lagrangian can be motivated by a global symmetry Gr x G [2]. The factor G helps in solving
the p-problem, and keeps the spontaneous SUSY breaking scale v/Fx low enough for the
superparticle spectrum in the observable sector to be around TeV energies. The summation
over family indices in Eq. (5) can be justified by the global symmetry G'r. This essentially
means that the hidden sector chiral superfields X;; interact with those of the visible sector
with such a global symmetry and that the low-energy flavour structure is the artifact of
such interactions. In case the X;;’s acquire SUSY violating VEVs, then different soft SUSY
breaking terms will arise from the nonrenormalizable interactions shown in Eq. (5) and
other higher dimension terms compatible with all symmetries of the theory. These arise in
addition to the soft terms that have analogues in the squark sector.

Schematic expressions can be written for the neutrino and sneutrino mass terms, thus
obtained, and for the soft SUSY breaking A-terms as well as for the corresponding terms in
the SUSY Lagrangian leading to them. They are obtainable from the following realizations.

1 L
i / Xy LNV H, 20 — (mp)y; ~ (zi;) Mpw/Mp (6)
1 o
i / XEN'NIQ0 — (mp)y; ~ 2F5, [ Mp (7)
1 L
— / XL NI Hod?0 — My Ay ~ FyyyMpw/Mp (8)
P
1 i i Fxt oyt X NN
3!M]33/[Xikalej + Xap Xy X + X X3 Xy N'NY[d°0 — (9)
_1 * * * * * *
(miy)ij ~ WKFXMMFXM@W + <Fle><FXm><5Eik> + (Fx,, ) (Fx ) (2g;) +
P

(Fx,, 0 (Exan) () + (Fxeane) (Fxag) () + (Fx ) (Foxg (@) ],



where Mpw = v/v/2 = 174 Gev. The above expressions are up to unknown multiplicative
factors occurring in the SUSY Lagrangian. It is also assumed that the Dirac mass matrix,
generated by canonical Yukawa couplings (as in the quark sector) arising from renormalizable
terms in the superpotential, has very small off-diagonal elements. Also, in addition to the
AL = 2 mass terms shown above, there may be L-conserving mass terms for right-chiral
sneutrinos as a result of soft SUSY breaking.

Nondiagonal A-terms can potentially contribute to FCNC processes such as y — ey and
hence need to be suppressed. Therefore, we wish to have a structure where Fly,; vanishes for
1 # 7. On the other hand, contributions to off-diagonal terms in the neutrino mass matrix
are essential for bilarge mixing. Such terms will be made to arise from seesaw as well as
radiative processes. As we shall show below, both of these are driven by the VEVs of the
scalar components of the X-superfields. We must therefore have nonzero (x;;) for i # j.

Thus we require nonrenormalizable terms in the superpotential involving the chiral super-
fields X;;, with a rather interesting complementarity between the diagonal and nondiagonal
elements of the array. The diagonal ones can have nonvanishing F-term VEVs and thus can
generate a diagonal A-matrix, whereas the off-diagonal elements must have vanishing F-term
VEVs, though the corresponding scalar VEVs must be nonvanishing. A superpotential, in
which the above characteristics can be achieved, is presented below.

3.2 The superpotential

It was noticed in the previous subsection that bosonic components of the array of chiral
superfields X;; should acquire SUSY violating and SUSY conserving VEVs in a complemen-
tary manner to be able to generate the required neutrino masses and mixing pattern. In
order to achieve this, we first demonstrate a simple situation in which the auxiliary and the
scalar components of a single chiral superfield acquire SUSY violating and SUSY conserving
VEVs respectively. Thereafter we generalize this to an array of such superfields X;.
Consider a set of hidden sector fields, for which the superpotential is of the form [2, 3]

W=8YY —pul)+Y?’X' +Y?X

+S'(XX — p3) + X?Z + X*Z. (10)
Here the R-charge for the chiral field X is %, while the R-charges of the remaining chiral
fields can be chosen so that W has R-charge 2. The explicit assignment of R-charges will
be shown after generalizing this to an array X;;. The superpotential W, shown above, leads
to a scalar potential V' which has local minima. The position of the abosolute minimum

depends on the parameters p; and ps.
Case(1): If |u1| < |pe|, the true minimum occurs at (y) = (g) = (s) = (s') = (¥') =
(z) = (2) = 0 and |(z)| = |(z)| = ‘“—\}' In this case we have (z) # 0 but Fy = 0. Thus

3
there is a nonzero scalar VEV, but SUSY breaking does not show up in the obserbable sector.

Case(2): If |ua| < |p1], the true minimum occurs at |(y)| = [(7)| |“—13‘ and (x) = (z) =

(s) = (¢') = (') = (2) = (2) = 0. In this case () = 0 but Fx # 0 and SUSY is sponta-



Hidden sector Field Xij ij X{j Yi; Yij Sij ng Zij Z-j
R-charge % —% % —% % 2 2 % %

Visible sector Field Q" L U D' E* N' H, Hy
R-charge % % % % % é 1 1

Table 1: R-charges of hidden and visible sector superfields.

neously broken.

Utilizing these lessons, we make a straightforward genralization of the above superpoten-
tial to include an array of chiral superfields X;;:

W=> Wy, (11)

where

Wiy = Sy(YigYiy — piy) + Y5X0 + Vi X +
Siy(Xi Xy — i) + X2 2y + X225 (12)

The R-charges of various superfields in this scheme are shown in Table 1.

With the above R-charge assignments, the nonrenormalizable interactions relevant to us
are all R-invariant. Moreover, the pu-parameter is obtained in the desired range from the
term 5= 3 [ (S} + Sif) H, Had"6, yielding

i (13)

where Fg includes a sum over indices. Thus this scenario has the additional virtue of ex-
plaining the value of p around the electroweak scale, so long as the hidden sector F-terms
can be justified to be at an intermediate scale ~ 10! GeV.

The minima of the scalar potential arising from the above superpotential occur at (s;;) =
(si;) = 0, (xi;) = 0, (2i5) = (%) = 0 and further depend on the parameters p;, u;;. We
choose these parameters in the following way:

1. For i = j, choose || < [uij| so that Fx,, # 0 and (z;;) = 0.
2. For i # j, choose |pu;;| < |pi;] so that Fiy,, = 0 and (x5) # 0.

The generation of off-diagonal entries in the neutrino Majorana mass matrix via nondiago-
nal (z;;) is ensured by this potential. On the other hand, we have secured a diagonal form
for Fx,;, thus suppressing contributions to FCNC processes from A-terms. This interest-
ing complementarity is achieved rather naturally by postulating in the superpotential the
presence of some mass parameters p;; and y;; and their relative hierarchies. Though these
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parameters may all be broadly of the same order, the relative magnitudes of the primed and
unprimed ones can naturally be quite different for different members of the array. The actual
suppression of FCNC processes will be demonstrated in further detail in a later subsection.

3.3 Neutrino mass matrix

Schematic expressions for neutrino and sneutrino mass terms, induced in this scenario, have
already been shown. Now we obtain the exact entries in the neutrino mass matrix. These
will enable us to establish links between observable quantities and the parameters of the
SUSY model. The superpotential yields F'x,, = F;d;; and (z;;) = 0 for ¢ = j. For simplicity,
we shall further assume that all VEVs are real and F; = AMp for all i, thus reducing A to
a single number. After SUSY and electroweak symmetry breaking, Eq. (5) then reduces to

. <;p”> o
—AN'N® + A, n’ — ‘N’ + h.c. 14
‘Ceff + 2]\/— MP \/51/ + c., ( )

where N stands for right-chiral neutrino fields (and not the corresponding superfields). From
Eq. (14) Dirac neutrino mass elements, as indicated already, are given by

ol = 52 (13

while right-handed neutrino mass elements are given by

We can immediately deduce the seesaw masses from the above via the relation

m., = —mDm;zlm:,S. (17)

iz (X

In L.s¢ we could also use the term s |(X]

well as its hermitian conjugate which are consistent with all conserved quantum numbers.
After SUSY breaking this term yields

A? o
Eﬁﬁ = m(xi]—>n’n3. (18)

Consequently, the L-violating mass-squared terms for right-chiral sneutrinos [I6] become

ij)
AL = _ g2l 19
J T (19)
The insertion of L-violating sneutrino masses allows the entry of radiative mass terms via
the loop diagram shown in Fig. 1. The expression for the loop-induced contribution is

v g2 1
[mu] J ( k l) 2 38472 P
g9’ A4<IU>U2 1
38472 Mp 2 m5




A2
—i A7,

ﬁk/ —X— ny

. v ~ , v
ZAZIC% >( XZA]' %
-/ 7
V; | \ J
V; )20 )ZO Vj

Figure 1: Radiative diagram at one loop level which generates Majorana neutrino mass.

where m is the SUSY breaking scale in the observable sector and is of the same order
as the physical neutralino and sneutrino masses. The origin of the parameter A in this
scenario has been shown in equation 8. It is sufficient for us to assume (x;;) = (z;;) and
A=A, = F;/M, = F/Mp for all i, j, which makes each of the above matrices symmetric
in 7, 7. With this choice and after making the transformation v — v so as to change the
overall sign of the neutrino mass term, the seesaw and radiative mass matrices respectively

become
21 (712)% + (213) (T13)(T23) (T12) (T23)
) = M F (T13)(w23)  (w12)” + (223)®  (T12)(213) - (21)
(12)(T23) (12)(713) <£E13>2 + (9323>2

0 T T
"y = _389427TQ J\]; 2:);5 (z12) | 52) EIS : (22)

F x13) (x23) O
In the above expressions we have used A = Mip The uncertainty in m;, caused by running

down to the electroweak scale can be absorbed in (z;;) and F, since we are concerned
with only the orders of magnitude of the latter. Also, the masses of all superparticles
such as neutralinos and sneutrinos have been clubbed together as m here. With such an
approximation already made, the effect of renormalization group evolution is not expected
to make much difference. Finally, with the effects of both nonrenormalizable interactions
and lepton-number violation, taken into account, our most general neutrino mass matrix is

m, =m., +m,,. (23)

Comparing the above mass matrix with Eq. (3), we are led to the following equations in
the notation of section 2.

v 1
me M = gy plie) ¥ ) (24)

1 v? 1
§(m132 + m202 + mg) = 1M F(<I12>2 + (9323>2) (25)
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v? 1

= MF(<$13>2 + (223)°) (26)

\C/—%(—ml +my) = —ng;z ]\Z; 21;5 (T12) + %%(ﬂsﬂzzﬁ (27)
E%mﬁww::_52J25;%”+ﬁ%%@@@ﬁ (28)
Jemst —mad ) =~ LT L) (29

One set of consistent solutions to equations (25),(26) and (27),(28) is (x12) = —(z13). This
reduces the above six equations to four which can be expressed as follows:

_ 0 w0 (o) 0 [P
YU oM, F O 2 oMp F T oM, F
2¢> F5 1
mo= (30)

38472 M;lp | <.§L’23>‘

The last two of the above equations can be combined to eliminate (z53) and yield

e VI
38472 Mp \/mz MpE

a form that will be used in our numerical analysis.

It is remarkable that the angle 615 does not arise in Eq. (30). In the left hand sides of
Eqgs. (24)—(29) we have three independent neutrino mass eigenvalues and there are three
independent parameters on the corresponding right hand sides. The three parameters can
be expressed as:

(31)

~ {z12)| ~ {@as)| P2
Xl - bl X2 - bl X3 - ~ 5 4°
NG Nia oM

Upon using the relation (x15) = —(z13) in Eqs. (24)—(29), we are left with four equations.

(32)

Any three of them can be used to solve x1, x2 and 3 in terms of mq, ms, ms, ¢ and s. On
substituting the values of the y’s in the fourth equation, we obtain a constraint equation
among my, Mo, M3, ¢ and s. The latter is automatically satisfied for m; = my irrespective
of the value of 6;5. Thus the near-equality of two mass eigenvalues, basically reflecting
the smallness of the mass splitting required by the solar neutrino deficit (as compared to
that necessitated by the atmospheric neutrino shortfall), causes ;5 to disappear from the
solutions.

The above feature can perhaps be motivated by symmetries of the neutrino mass matrix.
As has been noted in recent works [I'7], when one sets 63 = 7/4, 613 = 0, and further neglects
the mass splitting mo — my, then the mass matrix becomes invariant under the successive
interchange of the second and third rows, and the second and third columns. This symmetry
is found to be independent of the value of #5: a feature to which the observations of the
previous paragraph can be related.
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Figure 2: 4 — ey, an FCNC process is shown at one loop level.

3.4 Constraint from p — ey

Special care has been taken in our formulation to ensure a diagonal form for F,, so that
FCNC processes are suppressed. However, a strongly constrained process like the radiative
leptonic decay pu — ey can still receive one-loop contributions via two insertions of the L-
violating sneutrino mass, as shown in Fig. 2. In order to estimate such a contribution, one
can compute the corresponding amplitude:

27/ (1) 2
N eg VIV <$> — (1+75> Iy
A~ ot som gy ) MW\ ) @ w)ulp), (33)

where p,p’ are momenta of the incoming muon and the outgoing electron in Fig. 2 and
qg=p —p. Here VI V) are summed mixing matrix elements that enter the corresponding
chargino-lepton-sneutrino vertices. In the above equation we have used A ~ Mgy ~ m.
By comparing this expression with, say the Standard Model amplitude for the u — ey
transition, we notice that there is an additional suppression factor of (%)2 ~ 10~7. This
factor is small enough to automatically ensure a sufficiently low rate for the process u — ev.

4 Different scenarios of neutrino mass hierarchy

From the four equations (30), we notice that low-energy observables are ultimately controlled
by three parameters of the model, namely, |(x12)|, |(z23)| and F. In order to fix them (or
the ranges they lie in), though, one needs to know the values of the neutrino masses, along
with the mixing angles. However, while the mixing angles are experimentally known to be in
certain allowed ranges, all that we can claim to know so far about the masses are the mass-
squared differences Am?, and |Am3,], corresponding to the solar and atmospheric neutrino
deficits respectively. Their allowed ranges of values, together with those of the mixing angles,
can be found, for example, in [I0)]. Based on these ranges, all three scenarios, namely, normal
hierarchy, inverted hierarchy and degenerate masses [I8], can be constructed in our model.
Each of these places the individual mass eigenvalues within specified ranges. On using them,
one can obtain the allowed ranges of the model parameters mentioned above. In the process,
simultaneous use can be made of the fact that the SUSY breaking mass parameter m is
bounded from above if there are observable TeV-scale superparticles. Similarly, a lower
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bound on m can be imposed from negative superparticle searches with present accelerator
data. Using the expression for m, the allowed space for the VEVs of the components of the
gauge singlet chiral superfields can be further constrained. Thus one can check whether the
VEVs of the scalar and auxiliary components of the X;;, as required by neutrino masses, are
consistent with the expected scale of SUSY breaking and the value of the py-parameter. The
self- consistency of the entire scheme gets established in this way:.

For illustration, we take the lower and upper bounds on m to be about 100 GeV and 2
TeV respectively. The allowed mass-squared difference ranges from oscillation data are

Am3, = (8.0£0.3) x 107 %eV?
|AmZ,| = (2.54+0.3) x 1073V (34)

We have taken Mp = 2 x 10'® GeV in our numerical analysis. The results presented below
show the minimum value of v/F to be above 5 x 10° Gev, corresponding to the lower limit
on m, which has its justification in the Large Electron Positron (LEP) collider results.

4.1 Normal hierarchy

This scenario corresponds to

my & my ~ \JAm3,, mg ~ | Am3,|. (35)

In figures 3(a),(b) we have shown the allowed regions in the |(z15)| — VF and |[(z43)| — VF
planes corresponding to the 3¢ range of \/Am3, as well as of \/|Am%,|. On using the lower
and upper limits of 7, mentioned earlier, v/F is found to range between ~ 5 x 109 GeV
and 5 x 10'° GeV. The scalar VEVs, on the other hand, are found to lie in the range of 10!
— 10" GeV. Finally, in figure 3(c) we have plotted 7 against +/F using Eq. (31) for the
lower and upper limits of mg at the 3o level. If I’ has to be related to the SUSY breaking
mass terms, it is desirable to have it in the high side of the allowed region shown here. Thus
values of I like a few times 10'° GeV, and therefore m somewhat on the higher side of the
permissible range, are therefore favored in this model, given the accelerator search limits on
superparticles.

The next point to note is that while my and ms have specific lower as well as upper limits
in the normal hierarchy scenario, m; could, in principle, go down to zero. Nevertheless, the
difference between m; and msy being quite small, the allowed region is restricted to be so
narrow that it can be almost called fine-tuned. As discussed below, the situation is somewhat
different in this respect in the case of inverted hierarchy.

4.2 Inverted hierarchy

Here we have

my & my ~ \/|Amd,|, mz < \/|Am,|. (36)
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Figure 4: Inverted hierarchy: the left panel shows the allowed region in the |(zy3)| — VF
plane. The right panel shows the variation of the SUSY mass scale 7 against v/F in the
allowed range of msg.

Notice that the relation \/|Am3,| = %M gives us the same plot as figure 3(b), with

|(293)| replaced by |(z12)| in the y-axis. In addition, |(z93)| is plotted against v/F in figure
4(a). Since we know that /|Am3,| ~ 0.05 eV, we have allowed a maximum of mz = 0.01 eV.
The minimum value of ms, on the other hand, could in principle be zero. In this case, too,
for each mg3 value there is a limiting upper bound on F coming because m < 2 TeV. The
corresponding parameter range is represented by the shaded area in figure 4(b), where m is
plotted against v/F using Eq. (31) upto a maximum value of mg = 0.01 eV starting from
mgz = 0. The interesting point to note here is that mg has no specified lower limit in this
scenario. As a result, the allowed regions in the parameter space are much wider and less
fine-tuned compared to the normal hierarchy scenario. Our conclusion, therefore, is that the
inverted hierarchy scenario allows a larger flexibility of high-scale parameter combinations
in the scheme adopted here.

4.3 Degenerate masses

This case corresponds to

my & mg & mg > \/|Ambs, (37)

leading to |(x12)| & |(x23)| along with the requirement the actual masses shoul be significantly
greater than the mass-square separations. Since \/|Am3,| ~ 0.05 eV, we have to take mz >
0.05 eV. On the other hand, since these are Majorana neutrinos, there is an upper bound
of about 0.3 €V on the lightest mass from neutrinoless double beta decay as well as from
cosmological constraints [I0]. Therefore, we have plotted |(z12)| against v/F for m; ranging
from 0.1 eV to my = 0.3 eV, showing the allowed range as shaded area. This is shown in
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Figure 5: Degenerate masses: the left panel shows the allowed parameter space in the
|(x12)| — V/F plane. The right panel shows the variation of the SUSY mass scale 7 against
V'F in the allowed range of ms.

figure 5(a) with the usual constraints on F' coming from 7. In figure 5(b), the allowed region
in the m — +/F plane is shown with ms ranging between 0.1 eV and 0.3 eV.

4.4 Overall observations

After analyzing these three cases, we can compare their impact on the parameters of our
proposed model vis-a-vis the same on other similar models put forward in the literature. In
the model considered in [3], for example, there is effectively one parameter which is F' ~ ().
This is because just one right-chiral neutrino was considered there. That is why, despite the
occurrence of both seesaw and radiative masses, the former are negligibly small in magnitude
as compared to the latter. We have a more general (and natural) picture with three right-
chiral neutrino superfields. There are consequently three unconnected parameters F, |[{(x12)]
and |(ze3)|. These give us more freedom enabling us to treat the seesaw and the radiative
masses on the same footing. The plots shown above for the three different neutrino mass
cases imply that the different parameters which enter are in the expected range, thereby
demonstrating the self-consistency of our model.

It should be noted that the SUSY breaking scale m is related to F' by the relation
Mip, and that they are not entirely independent. The results presented in figures 3—5
confirm that such a dependence is consistent with the requirement of neutrino masses and
mixing. Some additional constraints may be required; for example, for m on the higher side,

m ~

one may be restricted to relatively larger values of F'. However, it is impossible to be more
exact in the absence of precise knowledge of the coupling strengths and other numerical
factors in the hidden sector. Naively, eq. (31) is consistent with 7 ~ Mip for ms in the range
.01 — .1 eV. This, in principle, restricts the inverted hierarchy scenario a little bit, although

15



it is difficult to be very precise, for reasons already mentioned.

It is clear from the expression of Eq. (30) for m that our model connects very light
neutrinos to TeV-scale massive particles. The latter include superparticles such as neutrali-
nos and sneutrinos as well as right-chiral neutrinos. Further experimental information on
neutrino masses, specifically the fixation of the hierarchy scenario, will therefore enable us
to indirectly probe such yet undiscovered particles. At the same time, we have guidelines
concerning the SUSY breaking sectors, especially the non-renormalizable terms that may
have other ramifications such as explaining the worrisome p-problem.

5 Other possibilites

In this section we briefly comment on two other representative scenarios where nonrenormal-
izable interactions may be invoked to explain the observed pattern in the neutrino sector.
We emphasize, however, that none of these has any bearing on the conclusions presented in
the last two sections. We include these remarks mainly for the sake of completeness.

In §3.2 we presented a superpotential which led us to diagonal A-terms and the consequent
suppression of FCNC effects. This requires nonvanishing F-component VEVs only for the
diagonal elements of the array of superfields X;;; the nondiagonal members of the array
should have VEVs of the scalar components only, in order to generate off-diagonal elements
of the neutrino mass matrix. One may be curious to ask whether, for the diagonal elements
Xi, one can have nonvanishing VEVs for both the scalar and the auxiliary components and
if such be the case, what their implications should be.

There are some models based on Polonyi fields in which SUSY breaking has been achieved
with a vanishing cosmological constant [I5]. In these supergravity-inspired models, on
integrating out some additional chiral quark fields at a scale A, an effective superpotential

W = A\*Z (38)

is obtained at a scale below A. Here A is a constant O(1) and Z is a Polonyi superfield.
The scalar potential constructed therefrom yields (Fz) = AA?. At the same time, super-
gravity effects lift the flatness of the direction (z) = 0 so that both the scalar and auxiliary
components of the chiral superfield Z have nonvanishing VEVs.

Though one has in the past appealed to such models [2, B, 4], they do pose some
difficulties in our case. A superpotential of the above kind cannot be used for off-diagonal
elements of X;;, since those would generate large A;;’s for i # j and threaten to enhance
FCNC rates. Thus the superpotentials for the diagonal and off-diagonal members would
look very different in such a case, thereby raising doubts about the legitimacy of using the
components of X;; as fields of a similar type. What we have done, on the other hand, does
not raise such questions, since the complementarity of (x;;) and Fy,, is decided essentially
by the relative magnitudes of two sets of mass parameters (u, p’) of the same order, where
some fluctuation is quite natural.

Another possibility [3] lies in considering the effective SUSY Lagrangian

Lesp=[XNN + LNH,]r +h.c., (39)
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having one right-chiral neutrino to explain tiny neutrino masses. Eq. (39) can be readily
generalized to include three right-chiral neutrinos, i.e.

‘Ceff = [XZJNZN] + )\zéz]LleHu]F + h.C,’ (40)

where there is a summation over the flavor indices 7,7 and \; are Yukawa couplings. The
Kronecker ¢ in the second term is to suppress FCNC processes. This Lagrangian can be
justified on the basis of the global symmetry Gp x G, where Gp = SO(3)r and G =
U(l)gr x U(1)r. For SUSY breaking, consider the hidden sector superpotential

3
W= Wy, (41)
ij—=1
where
Wiy = Sy (X Xij — i) + X5V + X5V (42)

The charges for various fields under G in this case are:

Sii(2,0),  X;;(0,2), X;;(0,-2), Yy(2,4), (43)
}72']'(2’_4)’ Ni(1>_1)> Li(1>1)’ HU(O>0)a Hd(0,0).

The minimization of the scalar potential, arising from this superpotential, yields (z;;) # 0
for all 7, 5. After SUSY breaking, Dirac and right-handed neutrino masses are generated as

[mpli; = ﬁ&-%, [mglij = (i) (44)

Hence the seesaw mass is
m, = —mpmz'mb. (45)

For (z;;) ~ 10" GeV and )\; ~ 0.01, we obtain neutrino masses m,, ~ 0.1 eV. Following the
analysis given in the earlier sections, we can explain the observed bilarge neutrino mixing as
well as different hierarchies in some parameter space of (x;;). However, no connection can
be made in this scenario between the tiny neutrino masses and the TeV-scale particles of
MSSM. This is since only (z) enters the game and no (F'). Moreover, a global symmetry of
the form U(1)g x U(1)r does not allow the triple-X higher order term which can generate
the AL = 2 sneutrino mass, cf. Eq. (9), in this particular model. Thus there can be no
radiative contribution, at least not in the lowest orders. So one is unable to use here the
full potential of such a scenario which, in our case, has meant a considerable widening of
the parameter space through an interplay of seesaw and radiative effects, making our model
more accommodating and natural.

6 Summary and conclusion

With a broken supersymmetric theory, we have considered a general scenario where the
neutrino mass matrix is constructed through a combination of the seesaw mechanism and
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radiative effects. All the agents behind the mechanism for this generation come from (a)
a sector containing nonrenormalizable interactions in the superpotential and (b) lepton-
number violating terms. We have used an array of gauge singlet chiral superfields X;; for
this purpose. In terms of these, we have constructed a superpotential which allows both the
above types of contributions, while ensuring FCNC suppression. Right-chiral sneutrinos are
found to have as much of a role in the process as the corresponding neutrinos. It should
be noted that the angle ;3 vanishes on using the bilarge mixing matrix in equation 2. A
small but nonvanishing value of ;3 requires one to modify equations (24)—(29), although no
quatitative change in the conclusions is expected. We have then taken in turn the neutrino
mass scenarios of normal hierarchy, inverted hierarchy and degenerate neutrinos. Using the
masses answering to each scenario, we have traced out the allowed region of the parameter
space of the involved high-scale physics, given in terms of the relevant VEVs of the scalar
and auxiliary components of the superfields X;;. Numerically, these are seen to allow a self-
consistent region of the parameter space. While the scenario of normal hierarchy (and, partly,
that of degenerate neutrinos) forces us into somewhat fine-tuned zones of the parameter
space, the inverted hierarchy picture allows a considerably larger region. With forthcoming
laboratory measurements and cosmological observations hopefully deciding among the above
mass patterns, connecting experimental observables to high-scale physics may become a
realistic proposition, especially if Nature indeed proves to be supersymmetric.
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