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A basis independent formulation of quark-lepton complementarity is implemented at a high scale

for quasidegenerate Majorana neutrinos.

It is shown that even with the renormalization group

evolution in the minimal supersymmetric standard model, the scenario can be consistent with the
data provided a nontrivial role is played by the Majorana phases. Correlated constraints are found
on these phases and the neutrino mass scale using the current data. We also indicate how future
accurate measurements of the mixing angles can serve as tests of this scenario and restrict the values

of the Majorana phases.
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Neutrinos provide a fertile ground for novel and
testable ideas due to the present availability and future
prospects of more precise information [1l] on their masses
and mixing angles. We aim to combine three such ideas
in this letter: (a) quark-lepton complementarity (QLC)
12, 3, 4, 1, 6, @], (b) quasidegenerate neutrinos (QDN)
[¥], and (c) nontrivial Majorana phases. The possibility
of such a combination was mentioned in [3], but we ex-
plicitly demonstrate its feasibility by use of the renormal-
ization group (RG) evolution in a transparently analytic
way.

QLC links the difference between the maximal (45°)
and the measured (33.8%3% degrees [1]) value of the
neutrino mixing angle 612 to the Cabibbo angle 6. =
12.6° £ 0.1° [9]. This can be done by postulating the
relation 015 + 6. = 45°. However, the various implemen-
tations of this relation in the literature (e.g. in [3]) are
fraught with basis ambiguities [L0] and issues of scale [].

In this letter, we follow a basis independent formulation
of QLC from [3]:

Upmns = ngKMUEimax ) (1)
where Uppsns is the Pontecorvo-Maki-Nakagawa-Sakata
matrix unitarily transforming mass eigenstates of neu-
trinos to their flavor eigenstates, Vo s is the Cabibbo-
Kobayashi-Maskawa matrix [d] and UP™2% is the unitary
matrix which diagonalizes the bimaximal form [11] of the
neutrino Majorana mass matrix Mbmax. Eq. () yields

012 + 0./V2 = 45° + O(6?) . (2)

The identification of eq. () as a statement of QLC be-
comes more transparent in the basis with U, = 1, where
Uy represents the unitary (mass — flavor) transforma-
tion of the left chiral components of the f (= u,d, 1) type
of charged fermions which diagonalize the Yukawa cou-
pling matrix combination YY} [17]. Thus, in this basis,
YJ Y, is diagonal in flavor space. It follows that Vg
(= UJU,) now equals Uy, so that a comparison between
eq. [@) and the definition of Upyns (= UlTUl,), with the
assumption of U, being UP™a* now yields the quark-

lepton symmetry relation Uy = U;. Eq. (@), as it stands,
is basis independent, however.

A quark-lepton symmetry relation such as (@) is ex-
pected to be valid at the GUT scale ~ 10'6 GeV. In our
scenario, neutrino masses are generated by an effective
dimension-5 operator (I-h)(I-h)/A at the scale A and
the mechanism that gives rise to this operator is imma-
terial. The mechanism may include right handed neutri-
nos, in which case we have to assume that the threshold
effects [13] do not spoil the relation till A ~ 10'2 GeV,
above which all the right handed neutrinos are expected
to lie. All the other threshold effects are taken to be fla-
vor blind. We thus postulate the relation (@) to hold at a
scale A ~ 102 GeV. Our results are only logarithmically
sensitive to the exact choice of scale.

Quasidegenerate neutrinos are very much allowed by
present cosmological constraints [14] as well as neutrino-
less double (-decay experiments [15]. From the model
building point of view, the quasidegenerate spectrum
can be obtained rather naturally through type II see-
saw mechanism by invoking discrete symmetries like fla-
vor SO(3) |8]. It can also be produced in models with
Abelian family symmetries [16], or with flavor symme-
tries like L,, — L, [17]. In the minimal supersymmetric
standard model (MSSM), the neutrino masses and mix-
ing angles may evolve significantly from A to the SUSY
breaking scale A via the RG equations [18, [19]. This
evolution can potentially spoil the QLC signatures in the
low energy data [3]. In this letter, we study the evolution
of the QLC equation () analytically as well as numer-
ically, including the effect of Majorana phases [19, 2],
and show its consistency with the observed mixing an-
gles in the QDN scenario.

We take the neutrino masses mi 23 to be complex in
general and parametrize their absolute values in terms of
three real parameters mg, pa and eg as

[ma| = mo(1 —pa)(l —es),
Ima| = mo(1 —pa)(l +es),
Ims| = mo(1 + pa), (3)

with mg, the parameter setting the neutrino mass scale,
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and eg being required to be positive, while a positive
(negative) p4 implies a normal (inverted) neutrino mass
ordering. These parameters may be related to the solar
and atmospheric mass squared differences ((5m§ ~ 8 X
1075 eV? and [dm?%] ~ 2 x 1073 eV?) and the the sum of
the neutrino absolute masses through

omg = |mal® — [mi?> = 4mg(1 — pa)’es ,
om%| = [Ima]?® = (Im1]/2 + [m2|/2)*| = 4mGpal ,
El|ml| = 3m0(1 — pA/?)) . (4)

In @) we have made use of |eg] < 1 (for instance, if
mo ~ 0.2eV, one has [pa| ~ 1.8x1072 and e5 ~ 5x10™%)
while neglecting terms which are O(e%).

The RG evolution of the hierarchical charged fermion
masses is known to be small [21]], and we neglect it. The
bimaximal neutrino mass matrix emerging at a high scale
A gets modified at the low scale A to yield [12, 22]

My =Txg IF Mbmax T (5)

where Zx = exp[— f:((/;\)) K (t)dt] is the scalar factor that

arises from the RG evolution due to the gauge couplings

and the fermion-antifermion loops. In MSSM, we have

K(t) = —6g% —2g% + 6Tr(Y,'Y,). Here t(Q) is defined to

be t(Q) = (167%) 1 In(Q/Qo) with Qo an arbitrary scale.
The other factor Z, in (@) is given by

ey
7, = expl— / YY) ()] (6)
#(A)

In the basis chosen for our QLC scenario,
Y}'Y; = Vorwr Diag(y?, Yo y2) Viienr - (7)

Since y2 < yﬁ < y?%, we can neglect y. and y,. If, in
addition, we neglect the elements of the CKM matrix
that are of the order of 62 or smaller, only the {3-3}

element of YlTYl survives. Then we have
T, ~ Diag(1,1,e 27), (8)
where in the MSSM, one has
A, =m?(tan? B + 1)(167%0?) " In(A/)) . (9)

Here v = /v2 —l—vfi where v, and vy are the vevs of
the two neutral Higgs scalars, with tan 8 = v, /vg. For
A ~ 1012 GeV, XA ~ 103 GeV, tan 3 ~ 30 and v ~ 246
GeV, we find that A, ~ 6 x 1073. Therefore, unless the
coefficients of A, are O(10%) or higher, we can neglect
terms that involve two or more powers of A. Henceforth,
we keep only the terms linear in A;.

The mass matrix ({) in the flavor basis takes the fol-
lowing form at the low scale:

A B —BX
My=| B C+A4/2 (C-A4/2)X
—BX (C—A/2)X (C+A/2)Y

Ik (10)

where we have used the notation A = (my +ms)/2,B =
(—my +m2)/(2v2) ,C = m3/2 ,X = (1 -A,) , and
Y =(1-2A,).

We parametrize the unitary matrix U, that diagonal-
izes M) by

U, = Diag(eiqbﬁAT s ew“AT, €i¢TAT)R23 (71'/4 + kngT) X
Diag(1,1,e”)Ri3(k13A,)Diag(1,1,e%) x
Ria(m/4 + k12Ar)Diag(€ml/27 6ia2/27 6ia3/2) ,(11)

where R;; is the rotation matrix in the ij plane, a;’s are
the Majorana phases, and the phases ¢, ¢, and ¢, are
required to diagonalize a general neutrino mass matrix
[23]. Thus the new mixing angles are

012 = /4 + k127 023 = T/4 + ks Ar 013 = k13A .

For A, = 0, we have Uy = UP™a*_ We approximate
the deviation of Uy from UP™a* by keeping terms that
are linear in A;. The current allowed ranges of the mix-
ing angles are such that the deviations from QLC values
without RG running are very small. Therefore, the ap-
proximation |k;;A,| < 1 should be always valid so that
we can neglect the higher order terms in k;;A-. Further-
more, the Dirac phase §, which is vanishing at the high
scale and is generated only through the RG evolution, is
retained only to the first order, and consequently plays
no role in our O(A,) analysis.
The values of k;; are found to be

1 |m1 +m2|2
k2 = oo sy
4 (Imal* — [ma[?)
k 1 |: |m2+m3|2 |m1+m3|2 :|
23 — )
4 [(Imsl* = [m2l?) ~ (Ima]* — |ma[?)

1 |m2 +m3|2 |m1 +m3|2
k13 = Z |: 2 2N\ 2 _ 2 . (12)
(Imsl? = |mal?)  (Ims|* = [ma|?)

The above expressions are valid as long as the values of
m;’s and 6m%/A’s are described accurately by the O(A;)
terms in their RG evolution. Though this condition al-
ways holds with the m;’s, for A, 257”25/,4/7”(2) the O(A2)

terms dominate over the O(A;) terms in 6m%/A [19] and

egs. (@) are no longer a good approximation. They are
valid only for A; < ém%/m§, i.e. for motan < 3 eV.
Higher A, values also lead to |k12A.| > 1, so that the
evolution of 615 is too large to be naturally accomodated
with the current data.

Equations () are consistent with the running of an-
gles computed in the general case [19], though they have
been computed here in a much simpler way for the spe-
cial case of bimaximal neutrino mixing. In terms of the
parameters mg, pa, €s defined in eq. ([Bl), the expressions

@) become

k12 = [(1+cosas) + e%(l —cosan)]/(8eg) ,

r
5[2 + cos(ag — ag) + cosas] + %4 + O(es) ,

ki3 = (T'/8)[cos(ag — ag) — cosas] + O(es) , (13)
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FIG. 1: Contours of 612 =39.8° in the mo (eV)—a2 (radians)
plane shown for tan 3 = 5 (20) by solid (dashed) lines. The
regions above the contours are excluded by data for that par-
ticular tan 8 value.

where T' = (1/pa) — pa. One of the three Majorana
phases 1,23 can be rotated away and we have chosen
that to be ag.

The following observations can now be made:

e Quasi-degeneracy of the neutrinos (mg > dm?% / 4) is
required for any significant enhancement of all k;;’s: the
magnitude of kis is enhanced when eg = dm%/[4md(1 —
pa)?] < 1, whereas the magnitudes of kg3 and ki3 are
enhanced for psdm? /(4m?) < 1.

e The values of the Majorana phases are crucial in decid-
ing the values of k;;’s: As ag — 0 we have k12 ~ 1/(4eg).
When a3 is nonzero, the value of k12 decreases rapidly.
At ay = 7, we have k12 to be nearly as small as eg/4.
Both |kas| and |k13| are enhanced when a3 = 0 or
a3 = «ag. However, when as = 0, the magnitude of
k13 is highly suppressed.

e k1o is independent of mg as well as a3, and is always
positive. kog is positive (negative) for the normal (in-
verted) neutrino mass ordering. The sign of k13 depends
on the ordering as well as the Majorana phases.

The net leptonic mixing matrix at the low scale is
VpMNS = VCTKM U, with the mixing angles given by 6;; =
09 +kijAr, where 67, ~ 35.4°,09; ~ 42.5°,67; ~ 8.9° are
their QLC values at the high scale. Whereas 69, and 69,
are known to an accuracy of =~ +0.1°, the exact value
of 635 depends on the value of the C'P violating phase
0 in the CKM matrix B], and is currently uncertain by
nearly +£1°. The “deviations” Af;; = 6,; — G?j ~ ki As
are observable quantities. From the earlier discussions
Af15 > 0, so that 015 > 35.4° is a test for our scenario.
Another test is the compulsion of normal (inverted) mass
ordering for a3 > 095 (f23 < 693). Regarding 0,3, though
the high scale value is #9; = 8.9°, allowed RG evolution
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FIG. 2: The contours of the ratios 71 = Afa3/Af12 and
ro = Ab13/A612 for normal mass ordering. The line con-
tours are for 71 = 2.0 (solid) and r1 = 0.5 (dashed). The
outer edges of the cyan (light) and magenta (dark) shaded
regions at the centre correspond to rz = 0.5 (2.0) and those
of the shaded regions at the top and bottom correspond to
ra = —0.5 (—2.0).

in our scenario can make it anywhere between 0° and the
extant upper bound of 13°.

The 30 allowed range of 612 is 612 € (29.3°,39.8°)
ﬂ] With Af12A; necessarily positive, this implies 0 <
k12, < 4.4°. Strong constraints then ensue on mg and
g, since Af15 is inversely proportional to the small quan-
tity €s. In Fig. [l we show the 30 allowed values of myg
and as for two tan 8 values. The figure is obtained by
solving the RG equations numerically with G?j’s as the
initial conditions at the high scale, and marginalizing
over ag and ¢. The figure may be understood easily with
our analytic expressions ([[J). At large tan 3, the value
of as has to be close to 7w in order to avoid an excessive
k12 enhancement [d] (even this will not work if my is too
large). A nontrivial Majorana phase is thus essential.
For smaller values of tan 3, however, no such tuning is
required (see fig. OI).

The ratios r1 = Afa3/Ab12 and ro = Ab13/A015 can
be used to constrain the Majorana phases as and ag. In
the QDN scenario, where pa < 1 < 1/pa, these con-
straints are independent of A, and hence tan3. We
show in Fig. B the contours of constant r; and ry in the
as—ag3 plane, for normal hierarchy. With inverted hier-
archy, the signs of r; and ry are reversed. Note that
as = ag = 0 necessitates r ~ 26m%/dm?% =~ 0.06 and
r9 = 0, which implies 623 ~ 69; , 613 = 095. Any devia-
tion from this prediction will indicate non-zero Majorana
phases. However, for these relations to be practically use-
ful as a test, measurements of these angles accurate to
within a couple of degrees are essential.



If ag = 7, which would be the case if 615 is found to
be very close to 6,, the ratio ro/r1 ~ —2cosas gives a
direct measurement of «g, with |ro/r1| < 2 serving as a
weak test of this scenario.

Even without any knowledge of the Majorana phases,
the measurements of the mixing angles can put a
lower bound on A, and hence on tan3. With QDN
we have the relations |Af12| < A;/(des) ,|Abss] <
Ar/12p4a] ,|Ab13] < Ar/]4pal and additionally the com-
binations |Afz3 £ Ab13| < A;/|2pa| . Once my is known,
the best of the above lower bounds on A, may be chosen
to restrict tan § from below via eq. ().

In conclusion, a basis independent formulation of QLC
at a high scale can be consistent with the data even for
the QDN scenario provided a nontrivial role is played by
the Majorana phases. We have explicitly shown this nu-

merically as well as through transparent analytic approxi-
mations for the RG evolutions of the mixing angles. Our
new results are correlated constraints on the neutrino
mass scale and the Majorana phases, as well as corre-
lations among the neutrino mixing angles which can be
tested by their precise measurements. Specifically, one
of the major predictions of our scenario is 612 > 35.4°.
Currently the data is consistent with this prediction to
within 1o. A further reduction of the error in 615 [24]
will clarify the situation.
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