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Quark-lepton complementarity with quasidegenerate Majorana neutrinos
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A basis independent formulation of quark-lepton complementarity is implemented at a high scale
for quasidegenerate Majorana neutrinos. It is shown that even with the renormalization group
evolution in the minimal supersymmetric standard model, the scenario can be consistent with the
data provided a nontrivial role is played by the Majorana phases. Correlated constraints are found
on these phases and the neutrino mass scale using the current data. We also indicate how future
accurate measurements of the mixing angles can serve as tests of this scenario and restrict the values
of the Majorana phases.
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Neutrinos provide a fertile ground for novel and
testable ideas due to the present availability and future
prospects of more precise information [1] on their masses
and mixing angles. We aim to combine three such ideas
in this letter: (a) quark-lepton complementarity (QLC)
[2, 3, 4, 5, 6, 7], (b) quasidegenerate neutrinos (QDN)
[8], and (c) nontrivial Majorana phases. The possibility
of such a combination was mentioned in [3], but we ex-
plicitly demonstrate its feasibility by use of the renormal-
ization group (RG) evolution in a transparently analytic
way.

QLC links the difference between the maximal (45◦)
and the measured (33.8+2.4

−1.8 degrees [1]) value of the
neutrino mixing angle θ12 to the Cabibbo angle θc =
12.6◦ ± 0.1◦ [9]. This can be done by postulating the
relation θ12 + θc = 45◦. However, the various implemen-
tations of this relation in the literature (e.g. in [3]) are
fraught with basis ambiguities [10] and issues of scale [6].
In this letter, we follow a basis independent formulation
of QLC from [3]:

UPMNS = V †
CKMUbimax

ν , (1)

where UPMNS is the Pontecorvo-Maki-Nakagawa-Sakata
matrix unitarily transforming mass eigenstates of neu-
trinos to their flavor eigenstates, VCKM is the Cabibbo-
Kobayashi-Maskawa matrix [9] and Ubimax

ν is the unitary
matrix which diagonalizes the bimaximal form [11] of the
neutrino Majorana mass matrix Mbimax

ν . Eq. (1) yields

θ12 + θc/
√

2 = 45◦ + O(θ2
c ) . (2)

The identification of eq. (1) as a statement of QLC be-
comes more transparent in the basis with Uu = 1, where
Uf represents the unitary (mass → flavor) transforma-
tion of the left chiral components of the f (= u, d, l) type
of charged fermions which diagonalize the Yukawa cou-

pling matrix combination Y †
f Yf [12]. Thus, in this basis,

Y †
u Yu is diagonal in flavor space. It follows that VCKM

(≡ U †
uUd) now equals Ud, so that a comparison between

eq. (1) and the definition of UPMNS (≡ U †
l Uν), with the

assumption of Uν being Ubimax
ν , now yields the quark-

lepton symmetry relation Ud = Ul. Eq. (1), as it stands,
is basis independent, however.

A quark-lepton symmetry relation such as (2) is ex-
pected to be valid at the GUT scale ∼ 1016 GeV. In our
scenario, neutrino masses are generated by an effective
dimension-5 operator (l · h)(l · h)/Λ at the scale Λ and
the mechanism that gives rise to this operator is imma-
terial. The mechanism may include right handed neutri-
nos, in which case we have to assume that the threshold
effects [13] do not spoil the relation till Λ ∼ 1012 GeV,
above which all the right handed neutrinos are expected
to lie. All the other threshold effects are taken to be fla-
vor blind. We thus postulate the relation (2) to hold at a
scale Λ ∼ 1012 GeV. Our results are only logarithmically
sensitive to the exact choice of scale.

Quasidegenerate neutrinos are very much allowed by
present cosmological constraints [14] as well as neutrino-
less double β-decay experiments [15]. From the model
building point of view, the quasidegenerate spectrum
can be obtained rather naturally through type II see-
saw mechanism by invoking discrete symmetries like fla-
vor SO(3) [8]. It can also be produced in models with
Abelian family symmetries [16], or with flavor symme-
tries like Lµ − Lτ [17]. In the minimal supersymmetric
standard model (MSSM), the neutrino masses and mix-
ing angles may evolve significantly from Λ to the SUSY
breaking scale λ via the RG equations [18, 19]. This
evolution can potentially spoil the QLC signatures in the
low energy data [3]. In this letter, we study the evolution
of the QLC equation (1) analytically as well as numer-
ically, including the effect of Majorana phases [19, 20],
and show its consistency with the observed mixing an-
gles in the QDN scenario.

We take the neutrino masses m1,2,3 to be complex in
general and parametrize their absolute values in terms of
three real parameters m0, ρA and ǫS as

|m1| = m0(1 − ρA)(1 − ǫS) ,

|m2| = m0(1 − ρA)(1 + ǫS) ,

|m3| = m0(1 + ρA), (3)

with m0, the parameter setting the neutrino mass scale,
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and ǫS being required to be positive, while a positive
(negative) ρA implies a normal (inverted) neutrino mass
ordering. These parameters may be related to the solar
and atmospheric mass squared differences (δm2

S ∼ 8 ×
10−5 eV2 and |δm2

A| ∼ 2× 10−3 eV2) and the the sum of
the neutrino absolute masses through

δm2
S = |m2|2 − |m1|2 ≈ 4m2

0(1 − ρA)2ǫS ,

|δm2
A| = ||m3|2 − (|m1|/2 + |m2|/2)2| = 4m2

0|ρA| ,

Σi|mi| = 3m0(1 − ρA/3) . (4)

In (4) we have made use of |ǫS| ≪ 1 (for instance, if
m0 ≃ 0.2 eV, one has |ρA| ≃ 1.8×10−2 and ǫS ≃ 5×10−4)
while neglecting terms which are O(ǫ2S).

The RG evolution of the hierarchical charged fermion
masses is known to be small [21], and we neglect it. The
bimaximal neutrino mass matrix emerging at a high scale
Λ gets modified at the low scale λ to yield [12, 22]

Mλ = IK IT
κ Mbimax

ν Iκ , (5)

where IK ≡ exp[−
∫ t(λ)

t(Λ) K(t)dt] is the scalar factor that

arises from the RG evolution due to the gauge couplings
and the fermion-antifermion loops. In MSSM, we have
K(t) = −6g2

2 −2g2
Y +6Tr(Y †

u Yu). Here t(Q) is defined to
be t(Q) ≡ (16π2)−1 ln(Q/Q0) with Q0 an arbitrary scale.

The other factor Iκ in (5) is given by

Iκ ≡ exp[−
∫ t(λ)

t(Λ)

(Y †
l Yl)(t)dt] . (6)

In the basis chosen for our QLC scenario,

Y †
l Yl = VCKM Diag(y2

e , y2
µ, y2

τ ) V †
CKM . (7)

Since y2
e ≪ y2

µ ≪ y2
τ , we can neglect ye and yµ. If, in

addition, we neglect the elements of the CKM matrix
that are of the order of θ2

c or smaller, only the {3–3}
element of Y †

l Yl survives. Then we have

Iκ ≈ Diag(1, 1, e−∆τ ) , (8)

where in the MSSM, one has

∆τ = m2
τ (tan2 β + 1)(16π2v2)−1 ln(Λ/λ) . (9)

Here v ≡
√

v2
u + v2

d where vu and vd are the vevs of
the two neutral Higgs scalars, with tanβ ≡ vu/vd. For
Λ ∼ 1012 GeV, λ ∼ 103 GeV, tan β ∼ 30 and v ∼ 246
GeV, we find that ∆τ ∼ 6 × 10−3. Therefore, unless the
coefficients of ∆τ are O(102) or higher, we can neglect
terms that involve two or more powers of ∆τ . Henceforth,
we keep only the terms linear in ∆τ .

The mass matrix (5) in the flavor basis takes the fol-
lowing form at the low scale:

Mλ =





A B −BX
B C + A/2 (C − A/2)X

−BX (C − A/2)X (C + A/2)Y



 IK (10)

where we have used the notation A ≡ (m1 +m2)/2 , B ≡
(−m1 + m2)/(2

√
2) , C ≡ m3/2 , X ≡ (1 − ∆τ ) , and

Y ≡ (1 − 2∆τ ).
We parametrize the unitary matrix Uλ that diagonal-

izes Mλ by

Uλ ≡ Diag(eiφe∆τ , eiφµ∆τ , eiφτ ∆τ )R23(π/4 + k23∆τ ) ×
Diag(1, 1, eiδ)R13(k13∆τ )Diag(1, 1, e−iδ) ×
R12(π/4 + k12∆τ )Diag(eiα1/2, eiα2/2, eiα3/2) ,(11)

where Rij is the rotation matrix in the ij plane, αi’s are
the Majorana phases, and the phases φe, φµ and φτ are
required to diagonalize a general neutrino mass matrix
[23]. Thus the new mixing angles are

θ12 = π/4 + k12∆τ , θ23 = π/4 + k23∆τ , θ13 = k13∆τ .

For ∆τ = 0, we have Uλ = Ubimax
ν . We approximate

the deviation of Uλ from Ubimax
ν by keeping terms that

are linear in ∆τ . The current allowed ranges of the mix-
ing angles are such that the deviations from QLC values
without RG running are very small. Therefore, the ap-
proximation |kij∆τ | ≪ 1 should be always valid so that
we can neglect the higher order terms in kij∆τ . Further-
more, the Dirac phase δ, which is vanishing at the high
scale and is generated only through the RG evolution, is
retained only to the first order, and consequently plays
no role in our O(∆τ ) analysis.

The values of kij are found to be

k12 =
1

4

|m1 + m2|2
(|m2|2 − |m1|2)

,

k23 =
1

4

[ |m2 + m3|2
(|m3|2 − |m2|2)

+
|m1 + m3|2

(|m3|2 − |m1|2)

]

,

k13 =
1

4

[ |m2 + m3|2
(|m3|2 − |m2|2)

− |m1 + m3|2
(|m3|2 − |m1|2)

]

. (12)

The above expressions are valid as long as the values of
mi’s and δm2

S/A’s are described accurately by the O(∆τ )

terms in their RG evolution. Though this condition al-
ways holds with the mi’s, for ∆τ >∼δm2

S/A/m2
0 the O(∆2

τ )

terms dominate over the O(∆τ ) terms in δm2
S/A [19] and

eqs. (12) are no longer a good approximation. They are
valid only for ∆τ <∼ δm2

S/m2
0, i.e. for m0 tanβ <∼ 3 eV.

Higher ∆τ values also lead to |k12∆τ | ≫ 1, so that the
evolution of θ12 is too large to be naturally accomodated
with the current data.

Equations (12) are consistent with the running of an-
gles computed in the general case [19], though they have
been computed here in a much simpler way for the spe-
cial case of bimaximal neutrino mixing. In terms of the
parameters m0, ρA, ǫS defined in eq. (3), the expressions
(12) become

k12 = [(1 + cosα2) + ǫ2S(1 − cosα2)]/(8 ǫS) ,

k23 =
Γ

8
[2 + cos(α2 − α3) + cosα3] +

ρA

2
+ O(ǫS) ,

k13 = (Γ/8)[cos(α2 − α3) − cosα3] + O(ǫS) , (13)
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FIG. 1: Contours of θ12 =39.8◦ in the m0 (eV)–α2 (radians)
plane shown for tan β = 5 (20) by solid (dashed) lines. The
regions above the contours are excluded by data for that par-
ticular tan β value.

where Γ ≡ (1/ρA) − ρA. One of the three Majorana
phases α1,2,3 can be rotated away and we have chosen
that to be α1.

The following observations can now be made:
• Quasi-degeneracy of the neutrinos (m2

0 ≫ δm2
S/A) is

required for any significant enhancement of all kij ’s: the
magnitude of k12 is enhanced when ǫS = δm2

S/[4m2
0(1 −

ρA)2] ≪ 1, whereas the magnitudes of k23 and k13 are
enhanced for ρAδm2

A/(4m2
0) ≪ 1.

• The values of the Majorana phases are crucial in decid-
ing the values of kij ’s: As α2 → 0 we have k12 ≈ 1/(4ǫS).
When α2 is nonzero, the value of k12 decreases rapidly.
At α2 = π, we have k12 to be nearly as small as ǫS/4.
Both |k23| and |k13| are enhanced when α3 = 0 or
α3 = α2. However, when α2 = 0, the magnitude of
k13 is highly suppressed.
• k12 is independent of m3 as well as α3, and is always
positive. k23 is positive (negative) for the normal (in-
verted) neutrino mass ordering. The sign of k13 depends
on the ordering as well as the Majorana phases.

The net leptonic mixing matrix at the low scale is

VPMNS = V †
CKMUλ with the mixing angles given by θij =

θ0
ij +kij∆τ , where θ0

12 ≈ 35.4◦, θ0
23 ≈ 42.5◦, θ0

13 ≈ 8.9◦ are

their QLC values at the high scale. Whereas θ0
12 and θ0

13

are known to an accuracy of ≈ ±0.1◦, the exact value
of θ0

23 depends on the value of the CP violating phase
δ in the CKM matrix [3], and is currently uncertain by
nearly ±1◦. The “deviations” ∆θij ≡ θij − θ0

ij ≈ kij∆τ

are observable quantities. From the earlier discussions
∆θ12 > 0, so that θ12 > 35.4◦ is a test for our scenario.
Another test is the compulsion of normal (inverted) mass
ordering for θ23 > θ0

23 (θ23 < θ0
23). Regarding θ13, though

the high scale value is θ0
13 = 8.9◦, allowed RG evolution

α 3

α2

r 1=
+

2.
0

r 1=
+

2.
0

r 1
=+

0.
5

r 1
=+

0.
5

π/2 π3π/4 5π/4 3π/2
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π/2

3π/2

2π

0

FIG. 2: The contours of the ratios r1 ≡ ∆θ23/∆θ12 and
r2 ≡ ∆θ13/∆θ12 for normal mass ordering. The line con-
tours are for r1 = 2.0 (solid) and r1 = 0.5 (dashed). The
outer edges of the cyan (light) and magenta (dark) shaded
regions at the centre correspond to r2 = 0.5 (2.0) and those
of the shaded regions at the top and bottom correspond to
r2 = −0.5 (−2.0).

in our scenario can make it anywhere between 0◦ and the
extant upper bound of 13◦.

The 3σ allowed range of θ12 is θ12 ∈ (29.3◦, 39.8◦)
[1]. With ∆θ12∆τ necessarily positive, this implies 0 <
k12∆τ < 4.4◦. Strong constraints then ensue on m0 and
α2, since ∆θ12 is inversely proportional to the small quan-
tity ǫS . In Fig. 1, we show the 3σ allowed values of m0

and α2 for two tanβ values. The figure is obtained by
solving the RG equations numerically with θ0

ij ’s as the
initial conditions at the high scale, and marginalizing
over α3 and δ. The figure may be understood easily with
our analytic expressions (13). At large tanβ, the value
of α2 has to be close to π in order to avoid an excessive
k12 enhancement [3] (even this will not work if m0 is too
large). A nontrivial Majorana phase is thus essential.
For smaller values of tanβ, however, no such tuning is
required (see fig. 1).

The ratios r1 ≡ ∆θ23/∆θ12 and r2 ≡ ∆θ13/∆θ12 can
be used to constrain the Majorana phases α2 and α3. In
the QDN scenario, where ρA ≪ 1 ≪ 1/ρA, these con-
straints are independent of ∆τ , and hence tanβ. We
show in Fig. 2 the contours of constant r1 and r2 in the
α2–α3 plane, for normal hierarchy. With inverted hier-
archy, the signs of r1 and r2 are reversed. Note that
α2 = α3 = 0 necessitates r1 ≈ 2δm2

S/δm2
A ≈ 0.06 and

r2 = 0, which implies θ23 ≈ θ0
23 , θ13 = θ0

13. Any devia-
tion from this prediction will indicate non-zero Majorana
phases. However, for these relations to be practically use-
ful as a test, measurements of these angles accurate to
within a couple of degrees are essential.
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If α2 ≈ π, which would be the case if θ12 is found to
be very close to θ0

12, the ratio r2/r1 ≈ −2 cosα3 gives a
direct measurement of α3, with |r2/r1| < 2 serving as a
weak test of this scenario.

Even without any knowledge of the Majorana phases,
the measurements of the mixing angles can put a
lower bound on ∆τ , and hence on tanβ. With QDN
we have the relations |∆θ12| < ∆τ/(4ǫS) , |∆θ23| <
∆τ/|2ρA| , |∆θ13| < ∆τ/|4ρA| and additionally the com-
binations |∆θ23±∆θ13| < ∆τ/|2ρA| . Once m0 is known,
the best of the above lower bounds on ∆τ may be chosen
to restrict tan β from below via eq. (9).

In conclusion, a basis independent formulation of QLC
at a high scale can be consistent with the data even for
the QDN scenario provided a nontrivial role is played by

the Majorana phases. We have explicitly shown this nu-

merically as well as through transparent analytic approxi-
mations for the RG evolutions of the mixing angles. Our
new results are correlated constraints on the neutrino
mass scale and the Majorana phases, as well as corre-
lations among the neutrino mixing angles which can be
tested by their precise measurements. Specifically, one
of the major predictions of our scenario is θ12 > 35.4◦.
Currently the data is consistent with this prediction to
within 1σ. A further reduction of the error in θ12 [24]
will clarify the situation.
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Planck Institute for Physics and Tata Institute of Fun-
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