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INTRODUCT ION

The properties of products of local operators on the light cone have
evoked considerable current interest because of recent experimental results
and new theoretical ideas. The regularities ! observed in deep inelastic
eN scattering at SLAC suggest *) that the commutator of two electromagnetic
current densities, separated by lightlike distances, has the definite struc—
ture 2> implied by simple models such as free quark field theory. This
demonstrates the fruitfulness of the abstraction of general features of
products of currents on the light cone from simple models without commitment
to the specifics of such schemes. With this approach and motivated by free

3)

quark field theory, Fritzsch and Gell-Mann have extended the well-known

equal time algebra of currents into a light cone algebra. Subsequently, it
has been ;hown 4) on the basis of canonical field theoretic manipulations

that the leading light cone structure of this algebra is preserved even in
the presence of vector, scalar or pseudoscalar gluons interacting with the

quarks.

The new operators, introduced by Fritzsch and Gell-Mann to describe the
egtended algebra, are the SU(B)xSU(B) bilocal currents %& (x,y) and
J;_5(X,y) which are defined near the 1;ght cone (x—y)2==0. In the free quark

model these operators can be written in terms of the quark field q(x) as

q(x) b;( Al/2)a(y) ana T(x) YP ¥s( Ai/2)a(y), respectively ). ma
canonical quark vector gluon theory with an interaction ga ‘;qB , %“

being the gluon field, it is necessary to have for each current the additional
multiplicative factor 4) exp(—ingdZF'B"(z)) where dz’. is lightlike.

It will be convenient to introduce furthermore the symmetric and antisymmetric

combinations of bilocal currents :

K K 3 K K X
=L ) ) . M) = L ) ,
S,.,(x,'j)- ) 33’“ ‘J)-I»Jl,,w M.S ) S/»g(x Y) Lil;(; ’H‘Isw(?)

K K K K k k
=4 =L
A, 9= -{i.‘l,(m)- J;,t-g,x)}, A gwﬁ)- 3 %%‘m)-%ﬁ.x)}

Now the connected part of the commutator of two currents on the light cone is

postulated in Ref. 3) to be :

*) Scaling implies that the leading operators in each term of the infinite
expansion for the light cone commutator satisfy the rule 4 = J+2 (d
being the dimension of the operator and its spin) which can be ob-
tained by formal manipulations of specific field theories. The near-
vanishing of the total longitudinal cross—section for highly wvirtual
photons suggests that the fundamental fields carry spin %. See Ref. 2).

*¥%)  Our metric and conventions are those of Bjorken and Drell.
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Furthermore, Frltzsch and Gell-=Mann have postulated the following closed

algebraic system for the bilocal currents :
[ Lo 3 ~J" Tinwn] 2Dty -8 (S
/SR 9‘3"")]‘-' (x,u.), v i) 29 De-v)(s e~ )( :"“)+
+1E - (j,u))'l"a b(u-j)(gf- k)(s Jonr)-‘tf J(nr))

[J ooy, J nj.-.r)] [J x,w), lg,qr)] =¥ D(K V)(IF‘)K d‘)u)(S" ‘J (g,u)-r
+i¢! J (5,.;.)) +9, Deu-y) (2 Gut )K )(S’ J;b_(x,o')—te th, )

where xsu,y,v are points on a lightlike ray. In a formal quark vector gluon
theory 4 the last condition is necessary and sufficient for the validity of

this bilocal algebra.

Most ot the immediate experimental consequences of light cone current
algebra involve the deep inelastic structure functions. Relations of this
type appearing in Ref. 5) and additional ones discovered more recently 5)
follow from Eq. (2). The experimental verification of these results will
confirm the basic idea of a free field type of behaviour in light cone current .
commutators and the spin 4 nature of the constituent fields. They will not,
however, test the algebra of the bilocal operators themselves. Since Egs. (2)
do not constitute a closed algebraic system, the demonstration of their
validity = while interesting in its own right — will not be a satisfactory
experimental check on light cone current algebra. In order to test the
completeness of the elegant hypothesis of Fritzsch and Gell~Mann, we thus need
to have predictions based on Egs. (3). To satisfy the condition of the rele—
vant currents acting on a lightlike ray, these will necessarily involve

reactions whose amplitudes contain at least two currents — each carrying a

high virtual mass (real or imaginary).
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It was pointed out in Ref. 3) that realistic predictions (i.e., those
requiring experiments feasible in the near future) testing Egs. (3) cannot be
obtained by being confined strictly to commutators. One has to consider the
generalization of the algebra to a set of relations for physical ordered
products 6) of currents. Now Fritzsch and Gell=Mann have suggested such a
generalization for the connected part of the bilocal algebra based on the
ig prescription of free field theory. It may be worth while to mention
here that the recently proposed 7) tests of this generalized bilocal algebra
in terms of experiments with colliding e+e— and e e  beams involve the
disconnected part of a commutator of two bilocal currents; for this part the
above=mentioned generalization is surmised by the authors of Ref. 3) to be
less reliable x . On the other hand, the tests of the connected part proposed

8)

carries a high virtual mass; hence in the squared matrix element not all

3)

so far consider two~current amplitudes in which only one of the currents

currents act on a lightlike ray. Fritzsch and Gell-Mann have recommended
the study of the reaction e-p-ée_/uf/b—-kanything at large electronic
momentum transfers and with a high mass M pair. The Compton terms in this
reaction are = under the said conditions = theoretically ideal for such a test.
Unfortunately, the Bethe~Heitler terms - which interfere coherently with the
Compton terms - create a formidgble technical obstacle against formulating

the test in terms of experimentally measured quantities.

In view of the above discussion, it will be correct to say that so far
there has not been any reliable, well=defined and experimentally feasible
theoretical proposal to test the connected part of the generalized bilocal
algebra. Such a proposal is precisely what the present paper contains. We
consider the reaction zN—*ﬂwi-+anything at large negative values of the
leptonic momentum transfer squared —Q2. Here 4 can be e or Yl Wi
are the vector mediators of weak forces (with mass MW > 3 GeV) and are
assumed to be decoupled ***> from strong interactions. Since both Q2 and
M; are large, each of the two virtual currents in the amplitude carries a

high mass. We shall show (Section 3) that the applicability of the generalized

*¥) By this we mean the time ordered product together with necessary non-
covariant "seagull™ type terms that make up the full amplitude.

¥*¥) This is because the disconnected part, being more singular than the
connected part, consists of products of distributions in configuration
space for which the 1ié& prescription is ill-defined.

*¥%)  If the wt have strong interactions, there will be a new fundamental
length in the theory, namely Mﬁ1, which will destroy asymptotic scale
invariance.
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bilocal algebra is now ensured in this case provided the momentum transfer
squared t Dbetween the virtual photon and the W 1is also given a large
negative value. Using the algebra in the said kinematic region one can then
obtain an explicit expression for the differential cross—section in terms of

the deep inelastic neutrino structure functions.

In Section 2 we consider the kinematics of the process and write the
differential cross—section in terms of two structure functions 'V/n and
m(é which in turn are related to four more basic structure functions V1, V2,
V3 and V4. Section 3 presents the light cone analysis according to which
all the currents act on a lightlike ray provided the virtual photon is highly
spacelike and the square of the momentum transfer between the X' and the W
is large in magnitude. In Section 4 we explain the equivalence between the
direct application of light cone algebra and the use of a parton analogy; we
then use this analogy to obtain explicit expressions for V1, V2, V3 and V4
in terms of the deep inelastic neutrino structure functions. Section 5 con-
tains a discussion of the feasibility of studying this reaction experimentally

at the National Accelerator Laboratory.

NOTATION AND KINEMATICS

Figure 1 illustrates the two possible diagrams for the reaction
ﬂN->£Wi4-anything (n) in the lowest orders of the electromagnetic and semi-
weak coupling constants e and g = (GM%)/J? respectively. The four momenta
of the various particles are introduced in the figure. The black dot in
Fig. 1a represents the interaction of the virtual photon via the hadronic
electromagnetic current; the cross in either diagram stands for the inter—
action of the W via the hadronic weak (Cabibbo) current. Throughout this
paper we shall ignore the Cabibbo angle for simplicity so that these two

currents have the form

JE:‘,— 1 ()\3 1o ¥\
»= %% ‘S )% = 1% A%

W - v ad - (4)
.= 38.0-%) 1 (A1iN)§=F L 0N, 4

in the free quark model. The S matrix can be written in the lab. frame as

“+

b 1
S =(-1—)me‘lM 3¢ . Acw 3 «
b — v(11)'S (pag k- ! .
an ek T (P+q-K ?.‘)W&u;,uta)e m .
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In Eq. (5) E and E! are the lab energies of the initial and the final
lepton, respectively, M is the mass of the proton, Eﬁ is the polarization of
the W Dboson and 171,n* is the invariant amplitude containing the normaliza-

o
tion factors of the state n :

%, nt -1 sk
% o . R Iw
(30 V€M =2 (e > <n\'m NP

Al >
: v I;N <n\.)‘,, u>>; m ” (6)
k-%) (k-
o= fx-1)09, 9 -9 K k() A 3,;\,)}%%-‘ e
Here T* stands for the covariant T produot and W is the anomalous

magnetic moment of the W. We now introduce two functions (to be specified
later from dynamical considerations) 'V(y’z(Q2,s,t,u) via the following

definition :

T 4
WG BN LG TR L 9,)afterms ""ti?f»")'

-ZW‘ ecx.)S(n-n..)Su (k-ﬂ)")g(“- u-w’xm)x (7)
« S tprq-k-R) TN ( gf, Kk W K

Here s=(p+a)2, t=(k=q)°, u=(k—p)2, Q2=—q2 and My is the mass of
the W ©boson. The initial proton is spin averaged. Now the differential

cross—=section can be written as :

Jnit &s
dois dtdu ATEHG E[w" """w =) ©

where GL is the lepton scattering angle in the lab.

We also introduce four functions (Q2,s,t,u) as follows :

V1,2,3,4

Zczu) S(pﬂ—k-l’a)'m- 7'5.* Fa )
=W -4 “")+V,,(r = ‘l,.)("v--.g-%) * (9)

+ 0k, - &%,)+vf§<\;.-%\,)(kv-%m+

-G '%%r)(?v‘ %wh torms Owdisgm . in po,0 0
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From Egs. (7) and (9), in the asymptotic region (see next Seotion), one

obtains :

'Wt r v"“ 2 WA\ (M- (s4w) 2 -Vsi
o [ e iy

S+Q* Q"-ts S+Q* h
3 Y :
Wy - M i_\é‘. D { Grwisaad +r (W06
s+ Q" i‘ ($+Q > (10)
N Vs i& )z 5(s+u)(M..—u)Q" 6% (Mu-w)* -
(s +Q%)* s+Q* (s+Q%)*
—amigtl].

Our theoretical considerations will be able to relate these Vi functions -
in appropriate asymptotic regions =~ to the deep inelastic leptonic structure

functions.

LIGHT CONE ANATYSTIS

For the purpose of the coming discussion, it will be convenient to
+
rewrite T ") by substituting Eq. (5) into Eq. (9). Introducing the four—

vectors r=q+k/2, s::k—q, we then have :

SURR ey ARk tW
T J—( %-r )(9.!) fo (P\dedull ¢ e e [TJ{"(}_’_._S_),(
» #w 1 -\A "
nV('#."i) TV(*")J("*‘ 16( Y ‘\:) g_ gds x
RE w, v » EM

xe [T.;('-S)V(:_)J(-l)] "
x.Z(-*—i)] &..ASA‘: "n[ (2) ,3,(-45)]\»- (1)

(M2_g)*
Here T* 1is the physical ordered product, Jiw (VEM> refers to the W
boson (electromagnetic) current and photon-W-photon vertex E:d is given by

/'“"P 3 (zk-p,_—ﬁ (k-q) - 3‘;P+X( 3*,}#)

We record here two observations on Eq. (71) which will be useful later :

+ + + -
1) T,,(q,k)*:—ﬂ: (=q,=k,dT=37);

i/b
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2) since in going from Eq. (7) to Eq. (8) only terms symmetric in /b Y.
survive, we need consider only the (/~ 2 ) ) symmetric part in the

right-hand side of Eq. (11).

Let us now consider the asymptotic region where Q2, s=® and t—-o-®
in such a way that the ratios Qz/s, t/Q2 are fixed. Since MW is very
large, we shall assume that k2/Q2, k2/s and k2/t are finite. In this
region clearly |r2|, ISZI and ,r-sl—+a> in such a way that the ratio
between any two of them is finite. Then, because of the Riemann-Lebesgue
lemma, the integrals in each right-hand side term of Eq. (11) are dominated 2)
by the singularities in the regions 22:=O(1/|s2,)—90, y2==0(1/]r2l)-*0,

and X2:=O(1/|r21)-40. Now, following Ref. 3), we write

rk ueP P

us m-ew"

where eP is a lightlike vector and aP ’ v are fixed timelike vectors.

In our asymptotic region lul, lvl—*a) in such a way that u/v is fixed.

The requirement that the phase sz=ve*z+bez be bounded *) in this limit
requires that =z Dbe either proportional to or orthogonal to e. The choice
=(1,0,0,1) in a particular frame immediately shows the latter possibility

to be consistent only with a spacelike 2z 1in contradiction with the above
requirement that z2 tend to zero. Hence, in this limit, 2z 1is proportional
to e. Similarly, by considering the boundedness of the phases rex and r.y
it is easy to see that x and y also have to be proportional to e in this
situation. Hence the points O0,x,y,z are effectively on a lightlike ray.
Since in each term of the right-hand side of Eq. (11), the currents involved

4) for

are acting on a lightlike ray relative to each other, the condition
the applicability of the generalized bilocal algebra of Fritzsch and Gell-=Mann

is established.

PARTON ANATOGY AND CALCULATION IN MOMENTUM SPACE

In the previous section we have validated the application of the
generalized bilocal algebra to the right-—hand side of Eq. (11) in the asymptotic
regions of present interest. In these limits it is legitimate to treat the
currents there as free quark-currents and to carry out Wick contractions on

their products till only bilocal currents remain between the spin averaged

*) This argument is similar to that given in Section III of the first
paper quoted in Ref. 7).
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‘forward nucleon states. This explicit substitution of Egs. (3) and their
generalized versions into Eq. (11) is possible but involves lengthy manipula-
tions of Green's functions under Fourier integrals in configuration space.
It is simpler " to treat the problem in momentum space using an analogy with

parton calculations. This is elaborated below.

Let us consider the deep inelastic scattering of a vector current %:;
off a spin averaged proton (Fig} 2a). We can define the structure functions

ij .
Wylo as: R i

Wg k) Yo (5,- 21 q (- B4,

=1 %.(u) Abs. 1 So\'& e*q'»\T J;m J,‘to)\P> .

In the Bj 1limit when q2—>—co, pea—~® with W= (2p-q)/—q2 fixed, the
quark parton calculation takes the Born diagram (Fig. 2b) for forward current
scattering off massless *x partons with 5:: ufﬂp as the parton momentum
and substitutes the corresponding expression in the right~hand side of the

above equation after smearing it with a distribution function f(UD). The

result is 9) : - -
E.“cﬂ.r)=2 0 'hu» <1i Y X\Q>=
[ -F(m) -r; m)d A(t“k 19)= (12)
H) i Fc-Q,p)
where |g> is a one-parton state, F, is the Bjorken function

2
F.= ’*'“ —fW,. ’ ’}w)*?c-w) §w)=-$<—w)

and f(m) f (w)+fA(u>) If we now define A (w) and S (ld) by means
of the relations :

-w2.p
Aw);;. B o)’ (dezpre <9\A (oD P,

S'wp -%(m) SJ(!-P)c 4?\ ¢:.:>)\P>/ o)

Zax-Y
we see that Eq. (12) is equivalent to the expression calculated by the direct
use of light cone current algebra [Ref. 3), Bq. (A.12)], provided we make the

identification :

*) This idea is due to H. Fritzsch, private communication.

*%) Terms involving the parton mass correspond t0 non-leading singularities
on the light cone )



s ®
X 2 ‘Gl“)(‘}\%W);

%>
K (14)
Atw) = %ﬁuxnl‘; &>

This equivalence being that of Born term calculations in configuration space
and in momentum space is of general validity. It extends to amplitudes with
two highly virtual currents (such as the one presently under consideration)

whose cross—=sections involve commutators of bilocal currents.

We here employ the identification of Eq. (14) in using a parton analogy
to rewrite the right-hand side of Eq. (11) in terms of sk(uﬂ) and Ak(u>).
This is strictly for simplicity of calculation and does not negate the fact
that our final results really follow from Egs. (2) and (3) generalized to
include physical ordered products. The parton calculation of T;y in
momentum space is related to the expression in the right-hand side of Eq. (11)
in the same way.as the Feynman rules for Born diagrams are related to the
corresponding terms in the perturbation series for the U matrix written as
integrals in configuration space. In the parton analogy we have to consider
here the sum of the three Born diagrams illustrated in Fige. 3. In each case
a quark parton of four-momentum 5::1‘p‘ is scattered by virtual photon of
momentum ¢ into another quark and a W carrying the momentum k. The

parton invariant amplitude can be written as

o= 2 k-
Ea e amhao oo F2X v o F-X_
. {:: ) %ﬁ}sl’ ©rr §-28} * (15)
€ Bue

A n-Yojup,
A TYrn S ]

Here the mass of the quark parton has been ignored

*)

bution. Since the weak current is effectively conserved on the light cone,

in the leading contri-

iaea, 6 *w
(k-%) —b O
¥ JP e -
we have replaced the {—W—f vertex tensor ';"‘ﬁ by C‘"P where

r;‘ﬁ-.- 3*p(“-‘}*(“w“‘3r; ‘rx%-tr)' (16)

Now we can write -‘;: of Eq. (9) - for a proton target — as :

*) See footnote *) on p.8.
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+ A &(Ti) e 5%
T 3,“"‘"“""**]““’? B B, 1
» (-9

where : g
-k-kr_&_** ¥,_(4-Y, ——'f— -V,
et UL x’(f %) S
= A= r‘mu- Per
and T H:-tx 0-¥%) (17)
—i -
B =AY A2 ) ¢ T-X_ -
meddeh LE v, e )3
| 3 As ‘}f:tYr(i -¥5).
Finally, if we define w
- - t
= 2p.(q-k) s+usfnd’ e
we have :
af o g
<} - $em) -r,[/? 4{3 '}(—‘h%)
HM \2peg-k)| ” ot (19)

with 5=~Lp. In Eq. (19) f('L)sz('rl)+fA('rL) ana £ (£4) multiplies
that part of the trace that is symmetric (antisymmetrio) under the trans-—

formation gq =2 -4, k =2 -k and AL = A_-

By explicit calculation, we see — in comparison with Eq. (9) ~ that

for a proton target
y 8 S A :
} "H‘llzp‘q—n\i A 7-”: e )l“)g;"l ¢ } i

s A
+ et E% M s fele, ], co

+ +
where j runs from 1 to 4 and vy and V., are explicit functions of

(§+q)2, (F—q)z, t and Q2, i.e., of s,t,u,Q2 and 1 which are given

below Substituting Eq. (14) into Eq. (20), and rewriting SO E 88 and
A A3 8 in terms of the deep inelastic lepton structure functions following

Ref. 3), i.e., the relations



°
4

T B F w]=u[VEA
f-; m)+F ) = -'l[\f-*—- Stn+ = St
[T~ )= 5,

vp 5 3
Bmy-F Tmy= 4Am),

we have :

* 5 P +
V= 1 -1 _vp % f s
Y MY lapy- u)lh Fu)-Fy "‘”g R E("’} n |

-

(21)
9""(\:? .4 -k)\\ %’l R ok, S )}

3

Similarly, for a neutron target, we obtain (with S and A3 now changing

sign) :

* ’?
V‘= ‘ -1 ) ]
3“”\\!?&\—&» i1 R ‘:3"‘)& = %’l E‘ﬂ)*ﬁm} V2
- (22)
- -1 9? vf
Vi= 2+ F ) ]
! ﬂ'\n\z? -k~ k>\‘- % " n } sl"l |"““l) ¢n)'§
In order to display the functions v# -~ with j=1,2,3,4 and k=1,2 -

jk
explicitly in terms of our primary variables s,t,u,Q2 and n it will be

convenient to introduce some intermediate quantities. We define the secondary

+ +
Ak.’ Bk’ Xk’

+ . . i
, k, Tfk and ZK (k=1,2) in Table II. Then, by direct calculation

quantltles g ya,b, 6, @ 1in Table I and the tertiary quantities

of the trace in Eq. (19), we obtain :

T
14: =ar ("\‘:‘ ) * —- (be- o.y) 5 (5+Q {)A - §Bt+zn-ﬂ\':.1w:
W "” "‘*‘]V L MOk oL et

+ T, - 2] "Q (X y)+"'QA N (m)} (22)
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U X
)

w28 - L r-a Xt 2 che-ana] Lo Rt "Q’* ~2de

In
V= d-(2 Q“*‘)[ag.s‘- 2 (\»xk-ah)--ar-ar)nwn
e -7: I+ 1€t qv .1 e‘(zAk-‘i—)}

Equations (21), (22) and (23) and Tables I and II in conjunction with

Egs. (8) and (10) of Section 2, constitute our final result. We remark that,
as mentioned in Section 3, only the part of Ed:v that is symmetric in pe ,»
has been considered. Moreover, the property T’»(q,k) —-T (-q,—k) is
manifest if we remember that S(ﬂz) and A(‘z) are even and odd functions
of ﬂl respectively.

DISCUSSION OF EXPERIMENTAL FEASIBILITY

If the W has a mass in the range between 3 and 15 GeV, this experiment
will be feasible at the National Accelerator Laboratory. There are now several
NAL proposals to search for an intermediate vector boson in this mass range 10).
The reaction considered by us is not the best process for finding a W. However,
once such an intermediate vector boson is found, it is an appropriate reaction
to test the Fritzsch-Gell-~Mann bilocal algebra in its generalized version, given
the availability of sufficient knowledge about the deep inelastic neutrino
structure functions. The relevant differential cross—sections can be expected
to be measurably large on the basis of the following argument. The use of the
bilocal algebra in the reaction under consideration is equivalent to a parton-

9)

description of the process in the kinematic region specified above. An
elaboration of this equivalence has been given in Section 4. Suffice it to
focus here on the consequent implication that the cross—section for inelastic
electro— or muoproduction of Wi in this region should be of the order of

that for the corresponding "elastic" production ZN-*ZWiN' from bare pointlike
nucleons. The latter was considered in the detailed investigation of the
reaction LN—*LWiN' by Fearing, Pratap and Smith 11). They estimated, [;f.,
Fig.6 of Ref. 11)] a®/dQ°~10"2%cn?/6ev® for Q°~10(GeV/c)?, with an
incident lepton beam - energy ~200 GeV and for a W of mass 5 GeV. Judging
from the model dependent parton calculations by Mikaelian 12) on the inelastic
photoproduction of W bosons, we may justifiably expect the cross—-section for
our reaction to be in fact several times bigger than the numbers given in

Ref. 11). The rather sharp forward W peak, obtained in the model calculations

of Mikaelian may broaden considerably when Q2 o~ 1O(GeV/c)2.
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Large additional enhancement factors for the cross—section may be
secured by the use of targets of heavy nuclei if the scattering from the
different nucleons can be shown to be incoherent. Thus we see that the diffe-
rential cross-—sections of present interest ought to be measurable at NAL if
the existence of the W in the mass range mentioned earlier is established.
At any rate, it would be very worth while for experimentalists to consider
such a measurement in order to test the connected part of the generaligzed

bilocal algebra of Fritzsch and Gell-Mann.

We thank W. Bardeen, H. PFritzsch, R. Gastmans and B. Lautrup for their

remarks, and Professor J. Prentki for a critical reading of the manuscript.
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TABLE I : SECONDARY QUANTITIES

= %"\S - u-\)Q"}Xqu + (1-m) M:,}'r Q’"M:}

0= "[(S* Qz)

b=m(Mi-u)-Q= MY

o t=YM(My-w
M, (M2 -%)
fm tanlnese@H-@-ME]

MN(H:} -t)
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TABLE II : TERTIARY QUANTITIES

A y 2 mnc)pl 5 304%)
"‘(S‘?Qz) G’- M-t ":‘”l(u,:"*) . M,’; Y )
A‘i=§ - 3(\+‘&)'§X y 30w
mes+6H)-Q M2 MM‘ ) Mu-t
B2 __ 4
M} ~nMt-w) Mls+QY)-@d '
Blg “' - "
Mi-nMg-w) mesedd)-@
Xf _3 N6+ @nat amnd-w)
T Wi
= -3 2'.‘.‘.:9_’_*3_*_ = 4nlHd-w)
Wt R e
: Ml t,02 (s+@5-g% M2
Y, = -3 M )+ rat+Q Y 7S+ Q —Q-Mw'
M2 -t \ nes+Q4)-Q2
\jz-= -3 Mu(\—’v\)mu-rz{-»é? t2 "')(S-t’()}z)-ﬂ’:.M.,,z
My -t M(s+QY)-Q*
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FIGURE CAPTTIONS

- Pigure 1 Diagrams for inelastic electro= or muoproduction of

W ©bosons off a nucleon.

Figure 2 : Absorptive part of ‘forward virtual Compton scattering :
a) from a proton,

b) from a parton.

Pigure : Parton diagrams for the reaction ¥ (virtual) + parton —

= W+ parton.
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