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Abstract

We investigate the electronic structure of Nickel sulphide (NiS) in the mil-

lerite phase using electron spectroscopic measurements and band structure as

well as model Hamiltonian calculations. While band structure calculations are

found to be relatively more successful in describing the experimental valence

band spectrum of this highly conducting phase compared to the hexagonal

phase of NiS, cluster calculations including electron correlation effects are

found to be necessary for the description of certain features in the experi-

mental spectra, indicating importance of correlation effects even in a highly

metallic system. The electronic parameter strengths obtained from these cal-

culations confirm that the millerite NiS is a highly covalent pd-metal. The

comparative study of hexagonal and millerite forms of NiS, provides the in-

formation concerning the evolution of the spectral function in a pd-metal as

a function of covalency.
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I. INTRODUCTION

There have been numerous electron spectroscopic investigations of the metastable hexag-

onal phase of nickel monosulphide (NiS), primarily to understand its unusual electronic phase

transition [1,2]. However, no electron spectroscopic studies have been undertaken on the mil-

lerite phase of NiS, which is the stable phase below 600 K. The resistivity measurements on

the system show that it has a high metallic conductivity (∼ 2 × 104 Ohms−1-cm−1 at room

temperature). It has been speculated [3,4] that the millerite phase is diamagnetic with the

observed small magnetic susceptibility attributed to the presence of paramagnetic hexagonal

modification of NiS. Millerite NiS crystallizes in the lower symmetry trigonal space group

(R3m) with lattice parameters a = 9.589 Å and c = 3.165 Å [5]. The crystal structure of

millerite NiS is shown in Fig. 1(a). Here, the Ni atom has five nearest neighbor S atoms,

occupying the corners of a square pyramid. In this pyramidal geometry (see Fig. 1(b)) the

Ni atoms are displaced slightly out of the basal plane, towards the apical sulphur atom.

Though the local coordination of Ni in millerite is very similar to that in another Ni-S

system, BaNiS2, millerite has a three-dimensional structure in contrast to BaNiS2 which is

highly two-dimensional in nature. The Ni-S bond in millerite NiS (shortest dNi−S = 2.25 Å)

is relatively shorter than that in hexagonal NiS (dNi−S = 2.39 Å), NiS2 (dNi−S = 2.40 Å) or

BaNiS2 (shortest dNi−S = 2.32 Å) and leads to stronger hybridization effects in this system.

There have been very few studies to understand the electronic structure of this com-

pound. Band structure calculation performed for the millerite phase of NiS [6] showed the

ground state to be metallic, in agreement with experimental results. However, no compar-

ison between experimental and theoretical results exists and the details of the electronic

structure in terms of the electronic structure parameters are still unknown.

In the present study, we investigate the electronic structure of millerite phase of NiS using

x-ray photoemission (XP) and Ultra-Violet photoemission (UP) measurements in conjunc-

tion with ab inito band structure as well as parameterized many-body calculations. The

present results provide a consistent and quantitative description of the electronic structure
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of the system. By comparing the hexagonal and millerite phases of NiS, we study the

evolution of the spectral function with changing correlation effects in the metallic regime.

II. EXPERIMENTAL

For the preparation of the millerite samples, polycrystalline samples of hexagonal NiS

was prepared first by solid state reaction [1,7]. Hexagonal NiS sample was then sealed in

quartz tube in high vacuum and was maintained at 573 K for about 2-3 weeks and was cooled

slowly to room temperature over a period of 8 hours, to obtain the millerite phase. The x-ray

powder diffraction measurements confirmed the phase purity of the sample. Spectroscopic

measurements were carried out in a combined VSW spectrometer with a base pressure

of 2×10−10 mbar equipped with a monochromatized Al Kα x-ray source and a Helium

discharge lamp. XP spectroscopic measurements were performed on the samples with an

overall instrumental resolution of better than 0.8 eV, while UP measurements for He I and

He II are performed with an instrumental resolution better than 90 meV and 120 meV,

respectively. The sample surface was cleaned in situ periodically during the experiment

by scraping with an alumina file and the surface cleanliness was monitored by recording

the carbon 1s and oxygen 1s XP signal regions. The binding energy was calibrated to the

instrumental Fermi-level which was determined by recording the Fermi-edge region from a

clean silver sample.

III. CALCULATIONS

Scalar relativistic linearized muffin-tin orbital (LMTO) band structure calculations have

been performed within the atomic sphere approximation (ASA) for millerite phase of NiS

with the real crystal structure [5]. Here, the rhombohedral unit cell consisting of 3 formula

units was employed. Sphere radii used for Ni and S were 2.49 and 2.55 a.u., respectively. 17

empty spheres with sphere radii in the range of 0.9 to 1.65 a.u. were also used. Convergence
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was obtained with s, p and d orbitals at Ni and S atomic spheres and s and p for the empty

spheres, with 220 k points in the irreducible part of the Brillouin zone.

Core level and valence band (VB) spectra were calculated for millerite NiS, using a NiS5

cluster as found in the solid (see Fig. 1(b)), within a parameterized many-body model includ-

ing orbital dependent electron-electron (multiplet) interactions. The calculational method

has been described in detail elsewhere [8,9]. The calculations were performed including all

the transition metal 3d and sulphur 3p orbitals. In the VB calculation, Ni 3d and S 3p

contributions to the valence band spectra were calculated within the same model and with

the same parameter values. As the dimension of the Hamiltonian matrix is large, Lanczos

method was used to evaluate the spectral function and the calculated one-electron removal

spectra were appropriately broadened to simulate the experimental spectra. In the Ni 2p

core level calculation, Doniach-S̆unjić line shape function [10] was used for broadening the

discrete energy spectrum of the cluster model, in order to represent the asymmetric line

shape of core levels from these highly metallic compounds; similar asymmetric line shapes

are also found in the other core levels in this system. In the case of VB calculations, energy

dependent Lorentzian function was used for the lifetime broadening. Other broadening ef-

fects such as the resolution broadening and solid state effects were taken into account by

convoluting the spectra with a Gaussian function. The broadening parameters were found to

be consistent with values used for similar systems [8,9,11]. Since the atomic cross-sections

for the Ni 3d and S 3p states are vastly different, it is necessary to calculate a weighted

average of these two contributions to the valence band. The atomic cross-section ratio [12]

between S 3p and Ni 3d states (≈ 0.17) is not appropriate in this context, since solid-state

effects alter this ratio significantly [13]. It was found that S 3p/Ni 3d cross-section ratio of

approximately 5.5 times that obtained from the atomic calculations gives the best result for

the valence band calculations.
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IV. RESULTS & DISCUSSIONS

The total as well as partial Ni d and S p densities of states (DOS) obtained from the

LMTO band structure calculation are shown in Fig. 2. The thick solid line represents the

total DOS, while thin solid line and dashed line show the Ni 3d and S 3p partial DOS, re-

spectively. Our results are in good agreement with that of a previously published calculation

[6]. The overall features of the DOS for millerite phase is similar to that obtained for the

paramagnetic hexagonal phase of NiS [8]. However, in this case, the Fermi-level lies in the

rising part of the DOS, instead of close to a minimum in DOS as in the case of hexagonal

NiS where an instability in the Fermi-surface can open up a gap in certain directions of the

Fermi-surface [1]. This distinction may partially be responsible for the absence of any phase

transition in the millerite phase. The DOS between -3.5 eV and 1.2 eV is dominated by the

Ni 3d contributions. Near the Fermi energy region, there is a substantial contribution from

the S 3p states, due to the strong covalency (Ni d-S p interactions) in the system, forming

the antibonding states. The DOS in the energy range -5.5 eV to -3.5 eV has dominant Ni 3d

and S 3p contributions and represents the bonding states of the system. In the energy range,

-8 eV to -5.5 eV, S 3p contribution is dominant with a smaller contribution from the Ni 3d

states; these non-bonding states of the S 3p are stabilized in energy compared to Ni d-S p

bonding states due to strong S-S interactions, similar to the case of hexagonal NiS and other

sulphides [6]. The peak at ∼ −1.9 eV resulting from the Ni 3d (t2g-like states) is shifted

to a higher energy compared to the t2g states of the hexagonal NiS. This is related to the

formation of the direct Ni-Ni bonds in the millerite phase leading to the stabilization of this

phase compared to the hexagonal phase [6].

The band structure results are compared with the experimental data in Fig. 3. The

partial densities of states of Ni 3d and S 3p are broadened with the experimental XP spec-

troscopic resolution of 0.8 eV and are shown along with valence band spectra taken with

21.2 eV (He I), 40.8 eV (He II) and 1486.6 eV (Al Kα) photon energies. Such a comparison

provides an experimental determination of the orbital characters of the various features in
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the experimental spectra, since the photoemission cross sections for Ni 3d and S 3p vary

significantly with the photon energy. The decrease in the intensity of features B and C in

going from 21.2 eV photon energy to 40.8 eV is explained by the Cooper minimum in the

S 3p photoionization cross section at around 50 eV, indicating the dominance of the S 3p

contributions in these two spectral features, with feature A dominated by the Ni 3d contri-

bution. From band structure results, the feature B has contributions from S 3p as well as

from Ni 3d, while the feature C is dominated by S 3p states. Although the band structure

calculations reproduce the features B and C rather well, the energy position of the feature A

is not correctly reproduced, with the calculated peak appearing at about 0.4 eV higher bind-

ing energy compared to the experiment. This discrepancy between the experimental results

and band structure calculations is attributed to the electron correlation effects within the

Ni 3d levels; thus, it appears that correlation effects continue to have important influence

even for this highly metallic system. This has prompted us to go beyond the band structure

theories and study the electronic structure of this system using a cluster-model, where the

electron correlation effects are explicitly taken into account.

The Ni 2p core level spectrum for the millerite phase of NiS is shown in the inset of Fig. 4

by solid circles. The spectrum consists of spin-orbit split 2p3/2 (852.8 eV binding energy) and

2p1/2 (870.2 eV binding energy) signals with strong satellite features at about 859.5 eV and

876 eV binding energies, corresponding to 2p3/2 and 2p1/2 signals, respectively. The intense

satellite features in the Ni 2p core level spectrum point to the presence of the electron

correlations in the system. The 2p3/2 and 2p1/2 peaks show strong asymmetries, similar to

hexagonal form of NiS [8]. In order to determine the inelastic scattering background, we have

performed electron energy loss spectroscopy (EELS) on these samples, with the same primary

energy as that of the Ni 2p core level peak. Using a procedure that have been previously

employed [8,9], the inelastic background function obtained for millerite NiS is shown in the

inset of Fig. 4 as a solid line. The background function is a highly structured function with

a broad plasmon loss feature around 876 eV, giving rise to an apparently stronger satellite

intensity for the Ni 2p1/2 peak compared to the satellite intensity accompanying the 2p3/2
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signal.

We have performed core and valence band calculations within a single model for a NiS5

cluster. The cluster fragment used for the calculation is shown in Fig. 1(b). Within this

model, we consider only one Ni atom; effects due to the strong Ni-Ni interactions present in

this compound could not be considered due to the prohibitively large basis set involved in

such calculations. For Ni2+, the electron-electron interaction parameters, F 2
dd, F 4

dd, F 2
pd, G1

pd

and G3
pd used were same as that for hexagonal form of NiS [8]. In the main panel of Fig. 4, we

show the calculated core level spectrum (solid line) including the experimentally determined

inelastic scattering background, superimposed on the experimental spectrum (open circles)

for the parameter set S-Ni (pdσ) = -1.8 eV, ∆ = 1.0 eV and Udd = 4.0 eV. The calculated

spectrum without any broadening effect is presented as a stick diagram at the bottom of

the same figure. The calculated spectrum matches reasonably well with the experimental

spectrum. However, there are some differences between the calculated spectrum and the

experimental one; the rising edge of the Ni 2p3/2 at ∼ 852 eV and the satellite energy

region of the 2p1/2 peak are not accurately described by the calculation. Such discrepancies

between the experimental and calculated spectrum may have its origin in the neglect of the

strong metal-metal bonds in the system or due to the slight differences in the background

function generated from the EELS spectrum and the actual background in the photoemission

spectrum.

The (pdσ) values obtained for millerite NiS (-1.8 eV) is considerably larger than that

obtained for other Ni-S systems like, hexagonal NiS [8] ((pdσ) = −1.4 eV), NiS2 [14] ((pdσ) =

−1.5 eV) and BaNiS2 [9] ((pdσ) = −1.5 eV). This significant increase in the (pdσ) for the

millerite case is related to the shorter Ni-S bonds in the system compared to the other

nickel sulphides, as mentioned earlier, leading to a high degree of covalency. The value of

the charge transfer energy (∆ = 1 eV) obtained for the millerite NiS is smaller than the

hexagonal form of NiS [8] (2.5 eV) and NiS2 [14] (2.0 eV). However, a similar value of ∆ has

been observed in another Ni-S system, BaNiS2 [9] (∆ = 1.0 eV); significantly, BaNiS2 has

the same local geometry around Ni atoms as that in the millerite NiS with NiS5 cluster in a
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pyramidal arrangement. It has been observed in the case of divalent nickel oxides [11] that as

the dimensionality of the Ni-O connectivity decreases, the charge transfer energy decreases,

via a change in the Madelung potential. Thus, the decrease in the ∆ for millerite phase

compared to hexagonal NiS is also possibly due to a change in the Madelung potential arising

from the decreased local coordination of Ni atoms. The lower value of ∆ for the millerite

phase compared to the hexagonal phase leads to a higher degree hybridization mixing of

Ni d and S p states in the system, leading to an enhanced covalency. It turns out that the

on-site Coulomb interaction strength, U , is very similar between millerite, hexagonal NiS [8]

and NiS2 [14]. This shows that U is not very sensitive to the local co-ordination or to the

metallic/insulating property within the series of nickel sulphides. According to the ZSA [15]

phase diagram, these parameters (small ∆ and large hopping strength) place the millerite

phase deep inside the pd-metallic regime.

Our calculations suggest that the ground state wavefunction of the millerite phase con-

sists of 52%, 42.6% and 5.4% of d8, d9L and d10L2 configurations with a high-spin S = 1

state. The average d-occupancy (nd) of the system is found to be 8.53, which is substan-

tially larger than that obtained for hexagonal NiS (nd = 8.43). This establishes a strongly

covalent ground state of the millerite phase, compared to other sulphides studied. In order

to understand the origin of various features in the experimental core level spectrum, we

have analyzed the characters of some typical final states, marked 1-10 in the main panel

of Fig. 4, in terms of contributions from various configurations (d8, d9L1 and d10L2) (see

Table I). These features can be grouped into four regions; the main peak region, 852-855 eV

(labelled 1-3 in Fig. 4), the weak satellite region between 856 eV and 858 eV (labelled 4 and

5), intense satellite region between 858 eV and 861 eV (labelled 6-8) and the high energy

satellites beyond 863 eV (labelled 9 and 10). The first, third and fourth group of features

have essentially similar characteristics as those in the hexagonal phase, with dominant d9L1,

significant contributions from all configurations, and dominant d8 configuration, respectively

[8]. However, the second group of features, which is absent in the hexagonal phase of NiS,

have almost 90% of the contributions coming from the well-screened d9L1 configuration. Al-
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most pure charge transfer nature of these states is possibly due to the shorter Ni-S distances

and a lower value of ∆.

Within the same model, we have calculated the XP valence band spectrum of the mil-

lerite phase. The calculated spectrum (solid line) along with Ni 3d (dashed line) and S 3p

(dot-dashed line) contributions for the millerite phase are shown superimposed on the ex-

perimental XP valence band spectrum (open circles) in Fig. 5. The inelastic scattering

background is taken to have an integral energy dependence and is shown as a dotted line.

The Ni 3d contributions to the VB spectrum without any broadening effects are shown as

a stick diagram. The parameter set used for the VB calculation is very similar to that

used for the core level calculation; however, it was found that a (pdσ) of -1.6 eV instead of

-1.8 eV provides a better agreement with the experimental result. The agreement between

the experimental and calculated spectra is reasonably good over the entire energy range.

The features A and B are reproduced rather well, however, the feature C as well as the

region close to the Fermi energy (lower binding energy side of the feature A) could not be

described very accurately. This is however, not very surprising. The feature C is dominated

by states arising from S p-S p interactions, as shown by the band structure results (see

Fig. 3). Since we do not take this interaction in to account, and also due to the intrinsic

limitation of a cluster model to account for such band structure effects, the feature C is

completely absent in the results of the cluster model. It is reasonable to expect the features

close to the EF to be influenced by substantial Ni-Ni nearest-neighbor interactions present

in this compound, explaining the discrepancy between the experiment and the results based

on the cluster model neglecting such metal-metal interactions.

The analysis of the ground state wave function shows that the ground state has 55.2%,

40.4% and 4.4% of d8, d9L1 and d10L2 configurations, respectively yielding an average occu-

pancy of 8.49, with a high-spin configuration. The analysis of the final state configurations

for a selected set (marked 1-10 in Fig. 5) of final states have been carried out and the results

are given in table II. The various features can be grouped into different categories, namely

the main peak region at 1-3 eV binding energy (labelled 1-3, corresponding to feature A),
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region B in the range of 4-7 eV (labelled 4-7) and weaker satellites beyond 7 eV (labelled

8-10 and corresponding to feature D). The first group of features has the dominant contribu-

tion coming from the well screened d8L1 states with a non-negligible contribution from the

poorly screened d7 states and overscreened d9L2 states. These contributions are found to be

similar to those observed in the case of hexagonal NiS [8]. The second group of features are

predominantly contributed by d8L1 and d9L2 states, while in the case of hexagonal phase it

was dominated by d7 states. The third group of features have a high degree of d7 character

along with contributions from d9L2 character, suggesting correlation effects within the Ni d

states. These high energy, weak intensity satellites manifest in the valence band spectrum

as a weak tailing of the spectrum beyond about 7 eV (feature D in Fig. 5). It is to be noted

here that the characters of these weak intensity features are nearly same as that of the fea-

tures appearing between 6 and 8 eV binding energy in the VB spectrum of hexagonal NiS

which have been attributed to the spectral signature of the lower Hubbard band, persisting

in the pd-metallic regime. Hence, the lower Hubbard band features are shifted to higher

binding energies as well as becoming weaker in intensity in going from hexagonal NiS to

millerite NiS, primarily due to an enhanced hopping strength in the millerite phase driving

the system deeper in to the metallic regime.

Although the presence of the Hubbard bands in the metallic regime has been predicted

by the dynamical mean-field theoretical (DMFT) calculations, the evolution of these spectral

features well inside the metallic regime has not been studied in detail as a function of various

electronic interaction strengths. A recent DMFT calculation for the spectral functions of

a charge-transfer insulator near the metal-insulator transition boundary [16] suggests that

within the metallic regime, the spectral signatures of the Hubbard band moves towards the

Fermi-level, collapsing with the coherent states, forming the metallic ground state of the

system with decreasing ∆. On the other hand, our experimental results establish that well

inside the pd-metallic regime, the Hubbard band is further stabilized, moving towards higher

binding energy region with increasing metallicity driven by enhanced hopping interaction

strength between Ni d and S p states. Further experimental and theoretical efforts are
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needed in this direction to have a better understanding of the evolution of the electronic

structure of these systems.

In conclusion, the millerite phase of NiS has been studied by means of electron spectro-

scopic techniques, band structure and model Hamiltonian calculations. The band structure

calculations were found to be more successful in describing the experimental valence band

spectrum in comparison to the case of hexagonal NiS, suggesting a reduced effect of electron

correlation in the millerite phase. This is consistent with the highly conducting ground state

of the millerite phase, in contrast to the antiferromagnetic and poorly conducting ground

state of hexagonal NiS. However, calculations including the electron correlation effects are

found to be necessary for the description of certain features in the experimental spectra,

indicating importance of such interaction effects even for such a highly metallic system.

Thus, it appears that both band structure effects and correlation effects need to be treated

on an equal footing for a complete description of such systems. The various electronic pa-

rameter strengths obtained from these calculations indicate that the millerite phase of NiS

is a highly covalent metal (pd-metal). From the comparative study between hexagonal and

millerite phases of NiS, the evolution of the spectral functions in a pd-metal as a function

of the covalency is discussed.
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FIGURES

FIG. 1. (a) Schematic representation of the crystal structure of the millerite NiS. Dark spheres

represent Ni atoms and grey spheres represent S atoms. (b) The local structural environment of

the Ni atom which is penta-coordinated with S atoms in the millerite NiS.

FIG. 2. The total density of states (thick solid line) as well as partial Ni 3d (thin line) and

S 3p (dashed line) density of states obtained from the LMTO band structure calculations for the

millerite phase of NiS. The zero of the energy scale refers to the Fermi energy.

FIG. 3. Experimental valence band spectra of millerite NiS using 21.2 eV (He I), 40.8 eV

(He II) and 1486.6 eV (XPS) photon energies along with the LMTO band structure partial DOS

for Ni 3d and S 3p, broadened by the experimental XP resolution function. Various features in the

spectra are shown by the vertical lines and are labeled as A, B and C (see text).

FIG. 4. The Ni 2p core level spectrum of the millerite NiS (solid circles) along with the

generated inelastic scattering background function from the EELS spectrum at the same primary

beam energy are shown in the inset. In the main panel, experimental Ni 2p spectrum (open

circles) along with the calculated spectrum (solid line) for millerite NiS obtained from the cluster

calculation are shown. Various final states of the cluster calculation and the corresponding intensity

contributions without any broadening are shown as the stick diagrams.

FIG. 5. The experimental VB spectrum (open circles) along with the calculated spectrum

(solid line), Ni 3d component (dashed line), S 3p component (dot-dashed line) and the integral

background (dotted line) are shown for millerite NiS. The final states of the calculation and the

corresponding intensities without any broadening are shown as the energy stick diagrams.
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TABLES

TABLE I. Contributions from various configurations in the final states of the Ni 2p core level

photoemission in millerite NiS. The peak numberings correspond to the labels indicated in Fig. 4;

the corresponding binding energies (BE) in eV are also shown.

Peak no. 1 2 3 4 5 6 7 8 9 10

BE 852.9 853.7 854.3 857.2 857.4 859.0 859.7 860.7 864.8 866.4

d8 16.48 12.57 10.06 4.77 6.35 26.67 28.96 22.91 60.43 72.18

d9L1 57.35 58.53 56.63 90.58 87.05 44.58 29.89 33.25 30.84 23.81

d10L2 26.17 28.90 33.41 4.65 6.60 28.75 41.15 43.84 8.73 4.01

TABLE II. Contributions from various configurations in the final states of valence band pho-

toemission in millerite NiS. The peak numberings correspond to the labels indicated in Fig. 5; the

corresponding binding energies (BE) in eV are also shown.

Peak no. 1 2 3 4 5 6 7 8 9 10

BE 1.4 1.67 2.18 4.40 4.83 5.12 6.23 7.64 8.33 8.57

d7 16.70 14.64 9.34 0.94 1.69 0.90 4.3 39.66 32.55 26.98

d8L1 53.93 53.70 52.81 66.49 64.14 71.58 59.25 10.12 13.39 17.56

d9L2 26.90 28.96 34.36 31.99 33.37 26.98 35.68 41.44 38.94 41.08

d10L3 2.47 2.70 3.49 0.58 0.80 0.54 0.77 8.78 15.12 14.38
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