PRAMANA © Indian Academy of Sciences Vol. 55, Nos 1 & 2
— journal of July & August 2000

physics pp. 43-52

The case for the cosmological constant

VARUN SAHNI
Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411 007,

India

Abstract. | present a short overview of current observational results and theoretical models for a
cosmological constant. The main motivation for invoking a small cosmological constantéom)

at the present epoch has to do with observations of high redshift Type la supernovae which suggest
an accelerating universe. A flat accelerating universe is strongly favoured by combining supernovae
observations with observations of CMB anisotropies on degree scales which give the ‘best-fit’ values
Qa ~ 0.7 andQ,,, ~ 0.3. A time dependent cosmologicAtterm can be generated by scalar field
models with exponential and power law potentials. Some of these models can alleviate the ‘fine
tuning’ problem which faces the cosmologicahstant
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1. Introduction

Recent observations demonstrating that high redshift supernovae are fainter than expected
in standard FRW cosmology has presented dramatic evidence in favour of an accelerating
universe. As the case for an accelerating universe continues to build, attempts are on to find
a logically compelling theoretical framework within which the acceleration of the universe
can be understood. Currently the most popular scenario invokes a cosmologgcat

whose energy density exceeds that of any other form of matter, luminous or dark. Variants
of this scenario in which th&-term decays with time can also explain most current obser-
vations. In this talk | shall review attempts to understand the accelerating universe at both
observational and theoretical levels.

2. The observational case for an accelerating universe
2.1 Type la supernovae and the acceleration of the universe

Type la supernovae are widely regarded as explosions arising when a white dwarf star has
accreted enough matter from its binary companion to cross the Chandrasekhar limit. Three
crucial properties of Type la supernovae establish them as useful standard candles with
which to probe the curvature and expansion rate of the universe:
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1. Their high absolute luminosity{ 5 ~ —19.5 mag) ensures that they can be seen
out to very large cosmological distances.

2. The dispersion in their luminosity at maximum light is very small)(3 mag).

3. The decline in the luminosity of a Type la supernova is strongly correlated with its
intrinsic luminosity: more luminous supernovae fade more slowly than their less
luminous counterparts.

Both (2) and (3) ensure that the scatter in the absolute luminosity of Type la supernovae
can be reduced to less than 10%, making them excellent standard candles.

In an expanding homogeneous and isotropic FRW universe the flux of light received
from a source with absolute luminosifyis given by the relation

L

F=-—"_
Ard?

(1)

wheredy, is theluminosity distancéo the object. In a multicomponent universe consisting
of matter and a cosmological term

14 2)eH !
dp(z2) = %S(no -n), 2)
|Qt0ta1 _1|2
where
1 z dZ’
-—n= Qoa -1z - 3
no — 1 = |Qtotar — 1] ) (3)

The dimensionless Hubble parametét) at a cosmological redshittis

h(z) = %j) = [(1 = Qo) (1 + 2)* + Qi (1 + 2)° + Qa2 (4)
andS(z) is defined as followsS(z) = sin (z) if &K = 1 (Qtotar > 1), S(z) = sinh (z)

if £ = —1 (Qota < 1), S(x) =z if Kk =0 (Qota = 1). Qy, is the dimensionless
energy density of matté?,, = 87Gp,,/3HE, andQ, is the dimensionless energy density

of a cosmological constafty = A/3HZ. Qiotal = Qi + Q4. (A cosmological constant

has an equation of stafé = —p = —A /87 G which distinguishes it from normal matter

with non-negative pressure.) It is easy to see that for a given value of the matter density a
positiveA-term leads to aimcreasdn the luminosity distance and hence to a decline in the
observed luminosity of high redshift supernovae. Exactly such an effect has been observed
for several dozen Type la highsupernovaez(,.. < 0.83) by two teams: the supernova
cosmology project [25] and the highsupernova search team [28]. The observations of
Perlmutteret al (1999) indicate that the joint probability distribution{® ,,,, 24 } is well

fitted by

0.8Q, — 0.6y ~ —0.2£0.1.

The best-fit confidence region shown in figure 1 strongly favours a positive energy den-
sity for the cosmological constafity > 0.
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Figure 1. Most likely values ofQ,,, 24} from an analysis of Type 1a high redshift
supernovae by Perlmuttet al (1999).

2.2 CMB anisotropies and the value 4&f

Much tighter constraints on the parameter délr,,,, 25 } can be obtained by combining
supernovae observations with those of the cosmic microwave background (CMB) on inter-
mediate angular scales.

In a FRW universe the horizon at last scattering<(1100) subtends an angte~ 2° at
our present location. As a result fluctuations in the CMB on large angular scate8 ©
probe theprimordial spectrum of density perturbations and gravity waves. Observations
made by the COBE satellite have shown that the primordial spectrum of fluctuations has
an approximately scale invariant fof,|?> oc £, n ~ 1 which is in good agreement with
predictions made by the inflationary scenario. In addition to fluctuations of primordial
origin, coherent acoustic oscillations existing in the photon-baryon plasma are imprinted
in the CMB at the time of decouping between matter and radiation. (This takes place
roughly at the time of the cosmological recombination of hydrogen.) These oscillations
give rise to ‘Doppler peaks’ in the angular power specti@imon intermediateangular
scales? ~ 1° where(; is defined as follows, the CMB temperature distribution on the
celestial sphere has the form
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oT
70,6) =T [1+ 5L 0.0)]. ©
To is the blackbody temperaturBy = 2.728 + 0.004°K. §7'/T can be written as a multi-
pole expansion

0T 2 "
?(G’é) = Z Z (lle; (9,¢), (6)

=2 m=-—1

where the coefficients;,,, are statistically independent and distributed in the manner of a
Gaussian random field with zero mean and variance given by the angular power spectrum

Cl = (|alm|2). (7)

The angle brackets indicate averaging over an ensemble of possible universes. The location
of the first acoustic peak ifi; is determined by the angle subtended by the sound horizon at
the time of decoupling which depends ug®fhryon, 2, andQ . Thus the amplitude and
location of the peak depends sensitively upon both the curvature of the universe as well
as its matter content. Observations made by the 1997 test flight of the BOOMERANG
experiment appear to have measured a doppler pedk-a00 [21]. In the standard

gravitational clustering scenario a peakdf is predicted aipeax ~ 200(2[01412 which,
when combined with the BOOMERANG measurements sug@esis< Qa1 < 1.25 at
the 68% confidence level.

It is extremely fortuitous that CMB and supernovae (Sn) measurements display orthog-
onal degeneracies in the paramet@rs, 2 (see [32] and references therein). Thus by
combining CMB and Sn observations one gets much better constraiiits @amd(2, than
by using each set of measurements separately. For instance combining BOOMERANG +

supernovae gives [21]
0.2<Q, <045, 0.6 <0p <0.85. (8)

Current observations therefore appear to favour a flat univegse- Q4 ~ 1 in excellent
agreement with predictions of inflationary models made almost two decades ago.

A flat matter dominated universe is constamtgceleratingits expansion described by
a(t) o< t*/3. A cosmological constant dominated universe on the other hand accelerates,
approaching the asymptotic expansion laft) o exp \/A/3t ast — oco. The redshift
z, at which deceleration is succeeded by acceleration and the redshiften the energy
density in the cosmological constant exceeds the density of matter occur respectively at
[26,32]

Qa Qa
1+z)=2-">, (1 3= —, 9
Substituting the best-fit valugs,, ~ 0.3, 25 ~ 0.7 one obtaines, ~ 0.73, z, ~ 0.37.
Thus the acceleration of the universe is a relatively recent phenomenon!
The presence of a cosmologicalterm has several important astrophysical conse-
qguences [32]:

1. A > 0 leads to a longer age for the universe and could resolve the ‘age problem’
which has proved problematic for matter dominated cosmologies with a large value
of the Hubble parameter.
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2. Since the distance to high redshift objects increases, so does the probability that
they will be lensed by massive dense foreground objects such as galaxy clusters.
Gravitational lensing combined with CMB and supernovae is proving to be a very
useful test of the cosmic equation of state [35,36].

3. The presence df slows down the growth of long wavelength density perturbations
which are still in the linear regime. An associated result is that most clusters and
superclusters of galaxies observed today are expected to have formed by a redshift
of unity in a ACDM universe in sharp contrast to structure formation in standard
CDM cosmology which is expected to be more recent. Observations of clusters at
high redshifts (made, for instance, using the Chandra satellite) are therefore expected
to provide a sensitive probe af

3. Theoretical issues associated with a small-term

The cosmological constant has had a chequered history. Conceived by Einsteinin 1917 and
discarded by him soon after, it has made several ‘come-backs’ of which perhaps the most
significant was the recognition by Zeldovich (1968) that the zero-point vacuum energy-
momentum tensor had precisely the form of a cosmological consta(if'i4€vac x Agix.
Unfortunately the energy density of the vacuum divergeélas) ~ k*. Invoking an
ultra-violet cutoff at the Planck scale results in a very large vacuum defigjgy ~ 1076

GeV*, which is 123 orders of magnitude larger than the currently observed palue~

10—%7 GeV*. This discrepancy is well known as thesmological constant problefa7].
Attempts to resolve it include invoking supersymmetry [41] since bosons and fermions
contribute towardgTyo) with opposite signs. However since supersymmetry is broken
atTcump ~ 3° K, the cosmological constant is likely to reappear at low temperaturs even
though it might be made to vanish in the early universe. As an example the QCD vacuum s
expected to generate a cosmological constant of the ordb&@f) ~ 1073 GeV* which,
though smaller thapp, is still several orders of magnitude larger than the observed value
of pyac. It is interesting that in some models the scale of supersymmetry breaking is rather
low and occurs near the electroweak sclifgysy ~ 10® GeV [2]. The corresponding
value of the vacuum densipsusy ~ Mgy =~ 10'? GeV* lies about midway between

pvac ~ 10747 GeV* andpp; ~ 107% GeV*. Therefore a theory in which the effective
energy scale of the vacuum is given oy ~ M% whereMy = M2qy/Mp; ~ 103

eV might ‘explain’ the small value gf .. observed today.

3.1 Quantum effects and the value/of

Attempts to generate a small value/oét the present epoch from one-loop quantum effects

in a curved space-time have been considered in [30,23]. For instance Sahni and Habib
(1998) show that vacuum polarization and particleduction of non-minimally coupled
massive fields in an expanding universe give rise to a vacuum energy-momentum tensor
(Tik)vac < Agix and the corresponding dimensionless vacuum energy dens$lty is
1/(6|¢[)(m/H)? (the coupling to gravity is assumed to be wegk< 1). This treatment
together with [23] suggests that ultra-light fields with~ H ~ 1033 eV could give rise

to a small cosmological constant at the present epoch. Such ultra-light fields have been
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discussed in the context of pseudo—Nambu—-Goldstone bosons in [16]. (Pseudo-Nambu-
Goldstone bosons can rotate polarized radiation from distant radio sources and therefore
provide the possibility of detection [11].) Hypothetically a small massnay also be
associated with the mass difference implied by solar neutrino oscillations and the Planck
(or GUT) scalem = Am?2/Mp ~ 1032 eV whereAm?2 ~ 1075 eV2.

3.2 Atime dependent-term

As pointed out earlier, the presence of a small cosmologmadtantat the present epoch
raises a number of problematic issues for cosmology including: (i) a degree of fine tuning
of parameters may be required to explain the exceedingly small numbgps, ~ 10123
or evenpy /pew ~ 10753; (i) for Q,, ~ 0.3,Qx ~ 0.7, p/pa ~ 1 at a redshift
zx ~ 0.37, which could be interpreted to mean that we are living at a preferred epoch
when the energy densities in matter andre almost equal. This is sometimes referred to
as the ‘coincidence problem’ [40].

Some of these problems can be alleviated if we consider the energy deniitjoin
be a function of time, such a model may be called-field or ‘quintessence’. (A time
dependeni-term can also arise if the the actual vacuum energy is zero, but the universe
takes a long time in relaxing to that state.) The simplesield models borrow heavily
from inflationary model building. It is well known that for a homogeneous, minimally
coupled massive scalar field the energy density and pressure are given by

1.
1.
P =24 = V(9), (10)
and the evolution of the scalar field and expansion of the universe are governed by
. &G (2)2 3QOH2 ap
2 _ v — 0 (7U\3
- . dV
H = 12
¢+ 3H$+ 3 =0, (12)
H = —47G(pm + ¢°). (13)

From (10) we find that thd-term equation of stat&® ~ —p arises if$> < V(¢). This
model works very well for potentials encountered in ‘chaotic inflation’ such as \¢ *
for which the scalar field rolls down its potential very slowlydif > mp, leading to
P ~ —pandT;, ~ V(¢4)gir. However, precisely for this reason this class of potentials
also runs into problems similar to those encountered by a cosmological constant. The
scalar field eq. (12) is overdamped during radiation and matter dominated epochs causing
V(¢) o A to remain unchanged virtually from the Planck epoegh ~ 10 to 2 ~ 2
[16]. This leads to an enormous difference in the scalar field energy density and that
of matter/radiation at early times and one runs into the fine tuning problem: the relative
values ofpg andp,, must be adjusted to very high levels of accuracy in order to ensure
ps/pm ~ 1 at precisely the present epoch [31].

Luckily the fine tuning problem can be substantially reduced for the following class of
potentials:
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1. Vi(¢) = k/¢%, a > 1,[22];
2. Va(¢) = Vo[cosh A¢/Mp — 1]7, p < 1, [31];
3. Vs(¢) = VoleMr/? — 1] [40].

In all three models the density in tigefield decreasemapidly at early times anglowly
at late times. Therefore the early-time valuepgf can be comparable to the density in
radiation and one can conceive of thdield being produced by mechanisms similar to
those giving rise t@,,q4 (preheating etc.). An interesting feature of potential (ii) is that for
large valuegi¢| > 1, V(¢) x exp (—pA¢). As discussed in [22,38,15] the exponential
potential has an interesting property: the energy density of a scalar field rolling down
V (¢) scales like the background density of matter driving the expansion of the universe, as
a result the ratio of the scalar field density to the total matter density approaches a constant
value

Po _ 3(1+ws)
PB + ¢ p*A?

(14)

(wp =0, 1/3is the equation of state for dust, radiation).

Thus at early times wheh|¢| > 1, py4 ‘tracks’ the density in radiatiop,,q. At late
times when\¢| < 1 the potential approaches a power law fdria{¢) o (A¢)?*. Rapid
oscillations of the scalar field during this stage result in an averaged equation of state
(we) = (Py)/(ps) = p — 1/p+ 1. We therefore find that, depending upon the value
of the exponenp, scalar field models based dh(¢) can play the role both of cold dark
matter p = 1) as well as a negative pressutefield (p < 1/2). The evolution of the
dimensionless density parametgy is shown as a function of expansion facigt) for a
universe consisting of radiation, matter ang-ield in figure 2. It is interesting to see that
2, remains virtually unchanged even though dthand(?2,,, change substantially as the
universe expands.

A-field (quintessence) models have been discussed in the context of supersymmetric
theories and supergravity [7,20,9,10], extra dimensions [3,5,6], stfirteory [1,13],
spinodal instabilities [14] and as solutions to the non-perturbative renormalization group
equations [8].

An accelerating universe can also arise in topological defect models. For instance a tan-
gled network of random non-intercommuting cosmic strings possesses an averaged equa-
tion of stateP = —p/3, the mean energy density of a string network dominated by straight
strings decreases asx a~2 leading to the linear expansion lawx ¢ (in the absence of
other forms of matter). Similarly> = —2p/3 for a network of walls resulting ip oc a ~*
and an accelerating expansion rat& ¢2. Cosmological defect models and their observa-
tional consequences have been extensively discussed in [34,4].

3.3 Reconstructing\ from observations

Itis perhaps fair to say that although several promising models of a time depdntbznt

exist, none is singled out uniquely on the basis of a fundamental theory of particle physics
such as supergravity av/-theory and the situation in many ways resembles that faced
by the inflationary scenario. It is therefore important that onereaanstructhe A-field
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Figure 2. The evolution of the dimensionless density parameter for the quintessence
field Q4 (solid line) is shown for the potenti&l (¢) = Vo[cosh A/ Mp —1]°2. Matter
(dashed line) and radiation densities (dotted line) are also shown. At early times the
energy in thep-field is subdominant, but at later times< 2 scalar field oscillations
commence and the density in thefield rapidly dominates the mass density of the
universe leading t€, ~ 0.7 today (from Sahni and Wang (1999)).

potential solely on the basis of observational data and hence test the ‘quintessence’ hypoth-
esis in a model independent manner as demonstrated in [33,17,29]. (A similar exercise for
the inflationary potential is reviewed in [19].)

One begins by noting that in a flat universe the Hubble parameter can be uniquely defined
through the luminosity distance by the relation (2) which can be rewritten as

O A=)

In order to determine thé&-field potential we simply rewrite the Einstein equations as

—1

(15)

871G H? z dH? 1

> = - _ -0, 1

sz’ ) T e a2 (16)
87G (dg\”® 2 dlnH Qua an
3H2 \dz)  3H2z dx H?2’

wherex = 1 + z. The corresponding equation of state of théeld is
2x/3)dIn H/dx — 1

wo(z) = £ = e/DdInH) (18)

p 11— (HJH2) Qpa®

Thus knowingl;, we can determin& (z) andd H/dx and hence reconstruct both the form
of V(¢) and the cosmic equation of staig («). This reconstruction method depends cru-
cially upon the ansatz used for determining the luminosity distdaceSainiet al (1999)
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Figure 3. The reconstructednodel independentquation of state of thé-field is
shown as a function of cosmological redshift. The solid line corresponds to the best-fit
values of parameters in the ansatz dgr The shaded area covers the range of 68%
errors. A small evolution invy is supported by observations, however a cosmological
constant also agrees with the data. The hatched region correspangdscte-1 which

is unphysical for a minimally coupled scalar field (from Sa&ihal (1999)).

suggest a three parameter ansatz which has been shown to be extremely accurate. The
resulting form of the cosmic equation of state is shown in figure 3. We find that although
there is evidence for some evolution in the equation of state between the present epoch
and the redshift = 0.83 (the redshift of the most distant supernova in the sample) an
unevolving cosmological constant with= —1 is also consistent with current supernovae

data.

4. Conclusions

The supernova inventory is growing rapidly with up~050 new Type la events being
added every year. Coupled to this is the expectation that the MAP and PLANCK missions
will pinpoint the location and amplitude of the first Doppler peak in the CMB to within

an accuracy of a few per cent. Thus, provided systematics is properly understood, the issue
of whether or not we live in &-dominated universe should be resolved within the next
few years. It will then be up to theorists to explain the ‘riddIe\afif it exists then why is

it so small, and if it does not then which physical principles set the valdetofprecisely

zero!
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