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Abstract. I present a short overview of current observational results and theoretical models for a
cosmological constant. The main motivation for invoking a small cosmological constant (or�-term)
at the present epoch has to do with observations of high redshift Type Ia supernovae which suggest
an accelerating universe. A flat accelerating universe is strongly favoured by combining supernovae
observations with observations of CMB anisotropies on degree scales which give the ‘best-fit’ values

� ' 0:7 and
m ' 0:3. A time dependent cosmological�-term can be generated by scalar field
models with exponential and power law potentials. Some of these models can alleviate the ‘fine
tuning’ problem which faces the cosmologicalconstant.
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1. Introduction

Recent observations demonstrating that high redshift supernovae are fainter than expected
in standard FRW cosmology has presented dramatic evidence in favour of an accelerating
universe. As the case for an accelerating universe continues to build, attempts are on to find
a logically compelling theoretical framework within which the acceleration of the universe
can be understood. Currently the most popular scenario invokes a cosmological�-term
whose energy density exceeds that of any other form of matter, luminous or dark. Variants
of this scenario in which the�-term decays with time can also explain most current obser-
vations. In this talk I shall review attempts to understand the accelerating universe at both
observational and theoretical levels.

2. The observational case for an accelerating universe

2.1 Type Ia supernovae and the acceleration of the universe

Type Ia supernovae are widely regarded as explosions arising when a white dwarf star has
accreted enough matter from its binary companion to cross the Chandrasekhar limit. Three
crucial properties of Type Ia supernovae establish them as useful standard candles with
which to probe the curvature and expansion rate of the universe:
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1. Their high absolute luminosity (MB ' �19:5 mag) ensures that they can be seen
out to very large cosmological distances.

2. The dispersion in their luminosity at maximum light is very small (� 0:3 mag).
3. The decline in the luminosity of a Type Ia supernova is strongly correlated with its

intrinsic luminosity: more luminous supernovae fade more slowly than their less
luminous counterparts.

Both (2) and (3) ensure that the scatter in the absolute luminosity of Type Ia supernovae
can be reduced to less than 10%, making them excellent standard candles.

In an expanding homogeneous and isotropic FRW universe the flux of light received
from a source with absolute luminosityL is given by the relation

F =
L

4�d2L
; (1)

wheredL is theluminosity distanceto the object. In a multicomponent universe consisting
of matter and a cosmological term

dL(z) =
(1 + z)cH�1

0

j
total � 1j
1

2

S(�0 � �); (2)

where

�0 � � = j
total � 1j
1

2

Z z

0

dz0

h(z0)
: (3)

The dimensionless Hubble parameterh(z) at a cosmological redshiftz is

h(z) =
H(z)

H0

=
�
(1�
total)(1 + z)2 +
m(1 + z)3 +
�

� 1
2 (4)

andS(x) is defined as follows:S(x) = sin (x) if � = 1 (
total > 1), S(x) = sinh (x)
if � = �1 (
total < 1), S(x) = x if � = 0 (
total = 1). 
m is the dimensionless
energy density of matter
m = 8�G�m=3H

2
0 , and
� is the dimensionless energy density

of a cosmological constant
� = �=3H2
0 . 
total = 
m + 
�. (A cosmological constant

has an equation of stateP = �� = ��=8�G which distinguishes it from normal matter
with non-negative pressure.) It is easy to see that for a given value of the matter density a
positive�-term leads to anincreasein the luminosity distance and hence to a decline in the
observed luminosity of high redshift supernovae. Exactly such an effect has been observed
for several dozen Type Ia highz supernovae (zmax � 0:83) by two teams: the supernova
cosmology project [25] and the high-z supernova search team [28]. The observations of
Perlmutteret al (1999) indicate that the joint probability distribution off
m;
�g is well
fitted by

0:8
m � 0:6
� ' �0:2� 0:1:

The best-fit confidence region shown in figure 1 strongly favours a positive energy den-
sity for the cosmological constant
� > 0.
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Figure 1. Most likely values off
m;
�g from an analysis of Type 1a high redshift
supernovae by Perlmutteret al (1999).

2.2 CMB anisotropies and the value of�

Much tighter constraints on the parameter pairf
m;
�g can be obtained by combining
supernovae observations with those of the cosmic microwave background (CMB) on inter-
mediate angular scales.

In a FRW universe the horizon at last scattering (z ' 1100) subtends an angle� ' 2Æ at
our present location. As a result fluctuations in the CMB on large angular scales� � 2 Æ

probe theprimordial spectrum of density perturbations and gravity waves. Observations
made by the COBE satellite have shown that the primordial spectrum of fluctuations has
an approximately scale invariant formjÆkj2 / kn, n ' 1 which is in good agreement with
predictions made by the inflationary scenario. In addition to fluctuations of primordial
origin, coherent acoustic oscillations existing in the photon-baryon plasma are imprinted
in the CMB at the time of decouping between matter and radiation. (This takes place
roughly at the time of the cosmological recombination of hydrogen.) These oscillations
give rise to ‘Doppler peaks’ in the angular power spectrumC l on intermediateangular
scales� � 1Æ whereCl is defined as follows, the CMB temperature distribution on the
celestial sphere has the form
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T (�; �) = T0

�
1 +

ÆT

T
(�; �)

�
; (5)

T0 is the blackbody temperature,T0 = 2:728� 0:004ÆK. ÆT=T can be written as a multi-
pole expansion

ÆT

T
(�; �) =

1X
l=2

lX
m=�l

almY
m
l (�; �); (6)

where the coefficientsalm are statistically independent and distributed in the manner of a
Gaussian random field with zero mean and variance given by the angular power spectrum

Cl � hjalmj
2
i: (7)

The angle brackets indicate averaging over an ensemble of possible universes. The location
of the first acoustic peak inCl is determined by the angle subtended by the sound horizon at
the time of decoupling which depends upon
baryon;
m and
�. Thus the amplitude and
location of the peak depends sensitively upon both the curvature of the universe as well
as its matter content. Observations made by the 1997 test flight of the BOOMERANG
experiment appear to have measured a doppler peak atl ' 200 [21]. In the standard
gravitational clustering scenario a peak inC l is predicted atlpeak � 200


�1=2
total which,

when combined with the BOOMERANG measurements suggests0:85 � 
total � 1:25 at
the 68% confidence level.

It is extremely fortuitous that CMB and supernovae (Sn) measurements display orthog-
onal degeneracies in the parameters
m;
� (see [32] and references therein). Thus by
combining CMB and Sn observations one gets much better constraints on
m and
� than
by using each set of measurements separately. For instance combining BOOMERANG +
supernovae gives [21]

0:2 � 
m � 0:45; 0:6 � 
� � 0:85: (8)

Current observations therefore appear to favour a flat universe
m + 
� ' 1 in excellent
agreement with predictions of inflationary models made almost two decades ago.

A flat matter dominated universe is constantlydecelerating, its expansion described by
a(t) / t2=3. A cosmological constant dominated universe on the other hand accelerates,
approaching the asymptotic expansion lawa(t) / exp

p
�=3t ast ! 1. The redshift

z� at which deceleration is succeeded by acceleration and the redshiftz ? when the energy
density in the cosmological constant exceeds the density of matter occur respectively at
[26,32]

(1 + z�)
3 = 2


�


m
; (1 + z?)

3 =

�


m
: (9)

Substituting the best-fit values
m ' 0:3;
� ' 0:7 one obtainesz� ' 0:73, z? ' 0:37.
Thus the acceleration of the universe is a relatively recent phenomenon!

The presence of a cosmological�-term has several important astrophysical conse-
quences [32]:

1. � > 0 leads to a longer age for the universe and could resolve the ‘age problem’
which has proved problematic for matter dominated cosmologies with a large value
of the Hubble parameter.
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2. Since the distance to high redshift objects increases, so does the probability that
they will be lensed by massive dense foreground objects such as galaxy clusters.
Gravitational lensing combined with CMB and supernovae is proving to be a very
useful test of the cosmic equation of state [35,36].

3. The presence of� slows down the growth of long wavelength density perturbations
which are still in the linear regime. An associated result is that most clusters and
superclusters of galaxies observed today are expected to have formed by a redshift
of unity in a�CDM universe in sharp contrast to structure formation in standard
CDM cosmology which is expected to be more recent. Observations of clusters at
high redshifts (made, for instance, using the Chandra satellite) are therefore expected
to provide a sensitive probe of�.

3. Theoretical issues associated with a small�-term

The cosmological constant has had a chequered history. Conceived by Einstein in 1917 and
discarded by him soon after, it has made several ‘come-backs’ of which perhaps the most
significant was the recognition by Zeldovich (1968) that the zero-point vacuum energy-
momentum tensor had precisely the form of a cosmological constant i.e.hT ikivac / �gik.
Unfortunately the energy density of the vacuum diverges ashT 00i � k4. Invoking an
ultra-violet cutoff at the Planck scale results in a very large vacuum densityhT 00i � 1076

GeV4, which is 123 orders of magnitude larger than the currently observed value� vac �
10�47 GeV4. This discrepancy is well known as thecosmological constant problem[37].
Attempts to resolve it include invoking supersymmetry [41] since bosons and fermions
contribute towardshT00i with opposite signs. However since supersymmetry is broken
atTCMB � 3Æ K, the cosmological constant is likely to reappear at low temperaturs even
though it might be made to vanish in the early universe. As an example the QCD vacuum is
expected to generate a cosmological constant of the order of� 4

QCD � 10�3 GeV4 which,
though smaller than�Pl, is still several orders of magnitude larger than the observed value
of �vac. It is interesting that in some models the scale of supersymmetry breaking is rather
low and occurs near the electroweak scaleMSUSY ' 103 GeV [2]. The corresponding
value of the vacuum density�SUSY � M4

SUSY ' 1012 GeV4 lies about midway between
�vac � 10�47 GeV4 and�Pl � 1076 GeV4. Therefore a theory in which the effective
energy scale of the vacuum is given by�vac � M4

X whereMX = M2
SUSY=MPl ' 10�3

eV might ‘explain’ the small value of�vac observed today.

3.1 Quantum effects and the value of�

Attempts to generate a small value of� at the present epoch from one-loop quantum effects
in a curved space-time have been considered in [30,23]. For instance Sahni and Habib
(1998) show that vacuum polarization and particle production of non-minimally coupled
massive fields in an expanding universe give rise to a vacuum energy-momentum tensor
hTikivac / �gik and the corresponding dimensionless vacuum energy density is
� '

1=(6j�j)(m=H)2 (the coupling to gravity is assumed to be weakj�j � 1). This treatment
together with [23] suggests that ultra-light fields withm � H � 10�33 eV could give rise
to a small cosmological constant at the present epoch. Such ultra-light fields have been
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discussed in the context of pseudo–Nambu–Goldstone bosons in [16]. (Pseudo-Nambu-
Goldstone bosons can rotate polarized radiation from distant radio sources and therefore
provide the possibility of detection [11].) Hypothetically a small massm may also be
associated with the mass difference implied by solar neutrino oscillations and the Planck
(or GUT) scale:m = �m2

�=MP ' 10�33 eV where�m2
� ' 10�5 eV2.

3.2 A time dependent�-term

As pointed out earlier, the presence of a small cosmologicalconstantat the present epoch
raises a number of problematic issues for cosmology including: (i) a degree of fine tuning
of parameters may be required to explain the exceedingly small numbers� �=�Pl � 10�123

or even��=�EW � 10�53; (ii) for 
m ' 0:3;
� ' 0:7, �m=�� ' 1 at a redshift
z? ' 0:37, which could be interpreted to mean that we are living at a preferred epoch
when the energy densities in matter and� are almost equal. This is sometimes referred to
as the ‘coincidence problem’ [40].

Some of these problems can be alleviated if we consider the energy density in� to
be a function of time, such a model may be called a�-field or ‘quintessence’. (A time
dependent�-term can also arise if the the actual vacuum energy is zero, but the universe
takes a long time in relaxing to that state.) The simplest�-field models borrow heavily
from inflationary model building. It is well known that for a homogeneous, minimally
coupled massive scalar field the energy density and pressure are given by

� =
1

2
_�2 + V (�);

P =
1

2
_�2 � V (�); (10)

and the evolution of the scalar field and expansion of the universe are governed by

H2 =
8�G

3
(�m +

_�2

2
+ V ); �m =

3
0H
2
0

8�G
(
a0

a
)3; (11)

��+ 3H _�+
dV

d�
= 0; (12)

_H = �4�G(�m + _�2): (13)

From (10) we find that the�-term equation of stateP ' �� arises if _�2 � V (�). This
model works very well for potentials encountered in ‘chaotic inflation’ such asV / �� 4

for which the scalar field rolls down its potential very slowly if� � mPl leading to
P ' �� andTik ' V (�)gik . However, precisely for this reason this class of potentials
also runs into problems similar to those encountered by a cosmological constant. The
scalar field eq. (12) is overdamped during radiation and matter dominated epochs causing
V (�) / � to remain unchanged virtually from the Planck epochzPl � 1019 to z � 2
[16]. This leads to an enormous difference in the scalar field energy density and that
of matter/radiation at early times and one runs into the fine tuning problem: the relative
values of�� and�m must be adjusted to very high levels of accuracy in order to ensure
��=�m � 1 at precisely the present epoch [31].

Luckily the fine tuning problem can be substantially reduced for the following class of
potentials:
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1. V1(�) = k=��, � > 1, [22];
2. V2(�) = V0[cosh��=MP � 1]p, p � 1, [31];
3. V3(�) = V0[e

MP =� � 1] [40].

In all three models the density in the�-field decreasesrapidly at early times andslowly
at late times. Therefore the early-time value of�� can be comparable to the density in
radiation and one can conceive of the�-field being produced by mechanisms similar to
those giving rise to�rad (preheating etc.). An interesting feature of potential (ii) is that for
large valuesj��j � 1, V (�) / exp (�p��). As discussed in [22,38,15] the exponential
potential has an interesting property: the energy density of a scalar field rolling down
V (�) scales like the background density of matter driving the expansion of the universe, as
a result the ratio of the scalar field density to the total matter density approaches a constant
value

��

�B + ��
=

3(1 + wB)

p2�2
(14)

(wB = 0; 1=3 is the equation of state for dust, radiation).
Thus at early times when�j�j � 1, �� ‘tracks’ the density in radiation�rad. At late

times whenj��j � 1 the potential approaches a power law formV2(�) / (��)2p. Rapid
oscillations of the scalar field during this stage result in an averaged equation of state
hw�i = hP�i=h��i = p � 1=p + 1. We therefore find that, depending upon the value
of the exponentp, scalar field models based onV2(�) can play the role both of cold dark
matter (p = 1) as well as a negative pressure�-field (p � 1=2). The evolution of the
dimensionless density parameter
� is shown as a function of expansion factora(t) for a
universe consisting of radiation, matter and a�-field in figure 2. It is interesting to see that

� remains virtually unchanged even though both
 r and
m change substantially as the
universe expands.
�-field (quintessence) models have been discussed in the context of supersymmetric

theories and supergravity [7,20,9,10], extra dimensions [3,5,6], string/M -theory [1,13],
spinodal instabilities [14] and as solutions to the non-perturbative renormalization group
equations [8].

An accelerating universe can also arise in topological defect models. For instance a tan-
gled network of random non-intercommuting cosmic strings possesses an averaged equa-
tion of stateP = ��=3, the mean energy density of a string network dominated by straight
strings decreases as� / a�2 leading to the linear expansion lawa / t (in the absence of
other forms of matter). SimilarlyP = �2�=3 for a network of walls resulting in� / a�1

and an accelerating expansion ratea / t2. Cosmological defect models and their observa-
tional consequences have been extensively discussed in [34,4].

3.3 Reconstructing� from observations

It is perhaps fair to say that although several promising models of a time dependent�-term
exist, none is singled out uniquely on the basis of a fundamental theory of particle physics
such as supergravity orM -theory and the situation in many ways resembles that faced
by the inflationary scenario. It is therefore important that one canreconstructthe�-field
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Figure 2. The evolution of the dimensionless density parameter for the quintessence
field
� (solid line) is shown for the potentialV (�) = V0[cosh ��=MP�1]0:2. Matter
(dashed line) and radiation densities (dotted line) are also shown. At early times the
energy in the�-field is subdominant, but at later timesz <

�
2 scalar field oscillations

commence and the density in the�-field rapidly dominates the mass density of the
universe leading to
� � 0:7 today (from Sahni and Wang (1999)).

potential solely on the basis of observational data and hence test the ‘quintessence’ hypoth-
esis in a model independent manner as demonstrated in [33,17,29]. (A similar exercise for
the inflationary potential is reviewed in [19].)

One begins by noting that in a flat universe the Hubble parameter can be uniquely defined
through the luminosity distance by the relation (2) which can be rewritten as

H(z) �
_a

a
=

�
d

dz

�
dL(z)

1 + z

��
�1

: (15)

In order to determine the�-field potential we simply rewrite the Einstein equations as

8�G

3H2
0

V (x) =
H2

H2
0

�
x

6H2
0

dH2

dx
�

1

2

m x3; (16)

8�G

3H2
0

�
d�

dx

�2
=

2

3H2
0x

d lnH

dx
�


mx

H2
; (17)

wherex � 1 + z. The corresponding equation of state of the�-field is

w�(x) �
p

�
=

(2x=3)d lnH=dx� 1

1� (H2
0=H

2) 
mx3
: (18)

Thus knowingdL we can determineH(x) anddH=dx and hence reconstruct both the form
of V (�) and the cosmic equation of statew�(x). This reconstruction method depends cru-
cially upon the ansatz used for determining the luminosity distancedL. Sainiet al (1999)
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Figure 3. The reconstructedmodel independentequation of state of the�-field is
shown as a function of cosmological redshift. The solid line corresponds to the best-fit
values of parameters in the ansatz fordL. The shaded area covers the range of 68%
errors. A small evolution inw� is supported by observations, however a cosmological
constant also agrees with the data. The hatched region corresponds tow� < �1 which
is unphysical for a minimally coupled scalar field (from Sainiet al (1999)).

suggest a three parameter ansatz which has been shown to be extremely accurate. The
resulting form of the cosmic equation of state is shown in figure 3. We find that although
there is evidence for some evolution in the equation of state between the present epoch
and the redshiftz = 0:83 (the redshift of the most distant supernova in the sample) an
unevolving cosmological constant withw = �1 is also consistent with current supernovae
data.

4. Conclusions

The supernova inventory is growing rapidly with up to� 50 new Type Ia events being
added every year. Coupled to this is the expectation that the MAP and PLANCK missions
will pinpoint the location and amplitude of the first Doppler peak in the CMB to within
an accuracy of a few per cent. Thus, provided systematics is properly understood, the issue
of whether or not we live in a�-dominated universe should be resolved within the next
few years. It will then be up to theorists to explain the ‘riddle of�’: if it exists then why is
it so small, and if it does not then which physical principles set the value of� to precisely
zero!
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