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Abstract
In order to provide a quantitatively accurate description of the band gap variation with sizes
in various II-VI semiconductor nanocrystals, we make use of the recently reported tight-binding
parametrization of the corresponding bulk systems. Using the same tight-binding scheme and
parameters, we calculate the electronic structure of II-VI nanocrystals in real space with sizes
ranging between 5 and 80 A in diameter. A comparison with available experimental results from

the literature shows an excellent agreement over the entire range of sizes.
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INTRODUCTION

It is now possible to grow a large variety of semiconductor nanocrystals and also control
their sizes to obtain mono-dispersed particles. [1, 2] A large number of II-VI [3, 4, 5] and
III-V [6, 7, 8] semiconductor nanocrystals have been prepared over the past two decades.
These quantum dots are good candidates for electronic and optical devices [9, 10, 11, 12, 13]
due to their reduced dimensions, enabling one to reduce the size of electronic circuitry.
Also, due to the increased oscillator strengths in these nanocrystals as a result of quantum
confinement, [14] these are expected to have higher quantum efficiencies in applications such
as light emission. This is a direct consequence of a greater overlap between the electron
and the hole wavefunctions upon size reduction. Moreover, one can tune these properties to
suit a specific application by merely changing the size of the nanocrystals. For example, the
band gap of CdSe can be varied from 1.9 eV to 2.7 eV by changing the size of the particle
from 5.5 nm to 2.3 nm. [15] Alongwith the band gap of the particle, the photoluminescence
can also be varied through the red to the blue region of the visible spectrum. [15] This
quantum size effect can be explained qualitatively by considering a particle-in-a-box like
situation where the energy separation between the levels increases as the dimensions of the
box are reduced. Thus, one observes an increase in the band gap of the semiconductor with
a decrease in the particle size

On a more quantitative footing, various different theoretical approaches have been em-
ployed to account for the variation in the electronic structure of nanocrystallites as a function
of its size. The first explanation for the size-dependence of electronic properties in nanocrys-
tals was given by Efros and Efros. [16] It is based on the effective masses of the electron
(m) and the hole (m}). Known as the Effective Mass Approximation (EMA), it is solved by
taking various choices for the electron and hole wavefunctions and solving the effective mass
equation variationally. In most EMA calculations, the confining potentials for the electron
and the hole have been assumed infinite. [14, 16, 17, 18, 19, 20] Therefore, the electron and
the hole wavefunctions vanish at and beyond the surface of the nanocrystal, without the
possibility of any tunnelling. In the strong confinement regime, where R, the nanocrystal
radius, is much smaller than ap, the Bohr exciton radius, Brus proposed [17] the following

expression for the bandgap of the finite sized system
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where, E, is the bulk band gap. The second term is the kinetic energy term containing
the effective masses, m} and m;, of the electron and the hole, respectively. The third term
arises due to the Coulomb attraction between the electron and the hole, and the fourth term
due to the spatial correlation between the electron and the hole which is generally small
compared to the other two terms.

EMA calculations have also been reported where a finite confining potential was used to
account for the passivating agents that coat the surface of the nanocrystals in order to arrest
their growth. Finite potential calculations are shown to improve the description for CdS
nanocrystals to a large extent. [21] Another improvement to the single band EMA is the in-
clusion of multiple bands for describing the hole effective mass. This is prompted by the fact
that the top of the valence band for II-VI semiconductors is comprised of triply degenerate
bands at the I point and thus is better defined using a multi-band theory. To account for
this degeneracy, Einevoll [22] and Nair et al. [23] have used the effective bond-orbital model
for the hole wavefunction, while the electron is described by a single-band EMA. Finite
barrier heights and the electron-hole Coloumb attraction are included in the calculation and
exciton energies are obtained variationally in an iterative Hartree scheme. The multi-band
and finite potential EMA methods explain the experimental results reasonably well, but
lack the predictive capabilities desirable of a theoretical model, since the finite potentials
need to be adjusted to match the experimental results in each specific case. Psuedopotential
calculations have also been carried out to study the variation of electronic structure with the
nanocrystal size. [24, 25, 26] Recently, the semi-empirical pseudopotential method has been
employed to calculate the electronic structure of Si, CdSe [25] and InP [26] nanocrystals.
The atomic pseudopotentials are extracted from first principles LDA calculations on bulk
solids. Thus, the wave functions are LDA-like while the band structures, effective masses,
and deformation potentials are made to match experimental results. This method provides
a reasonable description of the electronic structure of the nanocrystals. However, major
computational efforts and difficulties do not allow one to calculate the properties of large
sized nanocrystals.

The tight-binding (TB) scheme has been employed by a number of researchers over the
past decade. [27, 28, 29, 30, 31, 32, 33, 34] This method enjoys several advantages over
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the other methods discussed above, explaining its popularity. Compared to EMA, both
pseudopotential method and the tight-binding approach provide a substantial improvement
in the accuracy of the results. The tight-binding method has the further advantage of
being significantly less demanding in terms of computational efforts, besides providing a
simple physical picture in terms of the atomic orbitals and hopping interactions defined
over a predetermined range. A detailed analysis of the first-principle electronic structure
calculations can lead to a judicious tight-binding scheme that is minimal in terms of the
dimension of the Hamiltonian matrix and yet is highly accurate due to the use of a physical
and realistic basis. [35] The earliest such TB parametrization was provided by Vogl et al. [36]
who used a TB model with the sp®s* orbital basis in order to describe the electronic structure
of bulk semiconductors. The s* orbital was employed in an ad hoc manner in addition to
the sp® orbital basis in order to improve the TB-fit to the ab — initio band dispersions.
Subsequently, this TB model was used by Lippens and Lannoo [27] to calculate the variations
in the band gap for the corresponding semiconducting nanocrystals as a function of the size.
Though their results are in better agreement compared to the infinite potential EMA, the
sp?s* TB model tends to underestimate the band gap. The main problem with the sp®s*
model appears to be a failure to reproduce even the lowest lying conduction band within
that scheme. [36] Improvements in the nearest neighbor sp*s* model have been carried out
by including the spin-orbit coupling and the electron-hole interaction. [28, 29] However, to
account for the conduction bands, the inclusion of d orbitals becomes necessary. [30, 34]
This has been shown in the case of InP [30] nanocrystals, a III-V semiconductor, that TB
model with the sp3d® orbital basis for the anion and the sp? basis for the cation with next
nearest neighbor interactions, for both the anion and the cation, gives excellent agreement
with the experimental data. In a recent work, we have shown that the sp®d® orbital basis
for both the cation and the anion and the inclusion of the next nearest neighbor interactions
for the anions provide a very good description of the electronic structure of bulk II-VI
semiconductors. [35] This model is shown to describe accurately the band gap and the band
dispersions for both the valence and the conduction bands over the energy range of interest.
Therefore, this improved model and the parametrization should provide a good starting point
for calculating the electronic properties of corresponding nanocrystals, provided the model
and parameters are transferable from the bulk to the cluster limit. Ab initio calculations

for a CdS cluster of about 16 A diameter [37] as well as results of Ref. [24] suggest that the



present scheme is of sufficient accuracy down to about 16 A, though the applicability of this
approach may be limited for still smaller sized clusters. In order to explore the possibility of
utilizing it effectively, we have used this model for calculating the band gap variation over a
wide range of sizes for A'BV! semiconductor nanocrystals, with A = Cd or Zn and B = S,
Se or Te, comparing the calculated results with the experimental data from the literature.

The present results show a good agreement with experimental results, where ever available.

THEORETICAL PROCEDURE

The appropriate minimal TB model for the bulk electronic structure of group II-VI semi-
conductors was developed in Ref. [35] by analyzing the atomic wave-function characters
of the various bands. This established sp3d® basis with the cation-anion and anion-anion
interactions as the suitable model. The tight-binding electronic parameters, namely the
orbital energies and the hopping strengths, were determined by fitting the ab — initio band

dispersions to the band dispersions obtained from the tight-binding Hamiltonian, given by

H = Zell (7. CLleU—F ZZ tl112 lea Ajloo —+ hc) (2)

ilo ij lhilao

where, the electron with spin ¢ is able to hop from the orbitals labelled [; with onsite energies
equal to €, in the 7" unit cell to those labelled I, in the j™ unit cell, with a hopping strength
tﬁ;l27 the summations /; and /5 running over all the orbitals considered on the atoms in a unit
cell, and ¢ and j over all the unit cells in the solid. We use exactly the same model with the
parameter strengths given in Ref. [35] to calculate the electronic structure of corresponding
nanocrystals as a function of the size.

We build the cluster shell by shell, starting from a central atom. For the tetrahedrally
coordinated compounds in the zinc-blende structure, the central atom, say the cation, is
surrounded by a shell of four anions. In turn each of these anions is coordinated by four
cations, one of them being the central cation. The other three cations form a part of the next

shell. The clusters are generated in this manner by successive addition of shells. Assuming

a spherical shape of the cluster, the diameter, d, is given by
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where, a is the lattice constant and N the number of atoms present in the nanocrystal. Ta-
ble I lists the number of atoms present upto a given shell and the diameter of the nanocrystal
for various A"BYT compounds. The Hamiltonian matrix for any given sized cluster is ob-
tained from Eq. 2 with the same atomic orbital basis and electronic parameter strengths
as given in Ref. [35] and is diagonalized to obtain the eigenvalue spectra for the nanocrys-
tal. Direct diagonalization methods are practical only for cluster sizes containing less than
~1500 atoms. For larger clusters, we use the Lanczos iterative method. [38]

The Lanczos algorithm uses a starting basis function | ¢y > which can be a linear com-

bination of the atomic orbitals, ¢;’s, i.e.
(o> = > cilgi>
Once the starting basis function has been generated, a new basis function | ¢; > is generated

by applying the Hamiltonian and then making the resulting function orthogonal to | ¢¢ >.

< ¢olH | ¢o >
< o | o >

Then onwards the subsequent basis functions can be generated by using the recursion formula

| pr> = H|do>

| o >

| 1> = H|pp> — an| > — V2| dp1 > n = 0,1,2..

<¢7L‘H‘¢7L> b2 — <¢n|¢n>

where, a, = <onltn> ' n T o 1n1>

with by = 0 and | ¢_; > = 0. By construction, each basis function is orthogonal to the
previously generated basis functions. Here the a,’s are the diagonal elements, while b,’s
are the off-diagonal terms of the Hamiltonian matrix. Diagonalization of this tridiagonal
matrix is less time consuming and gives the eigenvalue spectrum for the clusters. We choose
the starting seed vector to be a particular orbital of an atom. The eigen spectrum thus
obtained is composed of only those orbitals that couple with the seed vector. Thus, taking
each orbital of every atom in the cluster we obtain the entire density of states. Due to the
underlying symmetry in the nanocrystal we need not perform calculations for all atomic
orbitals as seed vectors, but only those with distinct symmetries.

The band gap for a particular sized nanocrystal is then calculated by subtracting the

energy of the top of the valence band (TVB) from that of the bottom of the conduction



band (BCB). However, the determinations of the TVB and the BCB become ambiguous
due to the presence of dangling bonds at the surface of the nanocrystals. These non-bonded
states lie in the band gap region of the nanocrystals. These surface states need to be either
selectively disposed off [27] or passivated [31, 32] in order to remove the midgap states. Once
the surface states are passivated, the band gap can be easily determined. In the present
work, we have passivated the surfaces of the nanocrystals in order to remove the mid-gap

states from the calculations.

RESULTS AND DISCUSSION

The various steps involved in the calculations for the variation of the band gap with size
are quite similar for the different AYBY! compounds studied here. We therefore use the
case of CdS as an example to illustrate all the steps and various considerations, prior to
presenting comprehensive results for all the systems together at the end.

Fig. 1la shows the first-principle results for the density of states (DOS) for CdS bulk
obtained from the linearized muffin-tin orbital (LMTO) method with the atomic sphere
approximation (ASA). It should be noted that the parameters appearing in the TB Hamil-
tonian (Eq. 1) were determined [35] by a least-squared-error approach in order to obtain
dispersions at high symmetry points and a few other k-points along the symmetry direc-
tions in the Brillouin zone. Since we are eventually interested in the density of states which
involves an integration over the entire momentum space, we have explicitly verified in each
case that the DOS calculated within the TB approach is very similar to the one obtained
from the LMTO-ASA method. We illustrate this point with the help of DOS calculated
within the TB model for CdS with parameter strengths from Ref. [35]; this TB DOS is
shown in Fig. 1b with the same energy scale as in Fig. 1a. We notice an excellent agreement
of the TB DOS with the LMTO DOS over the entire range of the energy considered.

While the electronic structure of small sized nanocrystals is known to be pronouncedly
dependent on the size, larger sized nanocrystals are expected to resemble the bulk in terms of
their electronic structures; evidently in the limit of the large size, the electronic structure of
the nanocrystal must smoothly evolve into that of the bulk. It is known that the quantum
confinement effect is generally small for a nanocrystal with typical size larger than the

excitonic radius. The excitonic diameter of CdS is about 58 A. [39] We consider a CdS



cluster of 76 A containing 9527 atoms that is considerably larger than the excitonic diameter.
In Fig. 1¢ we show the DOS for this large CdS cluster. The DOS of the nanocrystal indeed
resembles the bulk DOS closely, as is evident in Fig. 1, apart from the discrete nature of the
DOS arising from the finite size of the nanocrystallite system.

As discussed in the previous section, the dangling orbitals on the surface atoms appear
within the band gap region, complicating the identification of the band gap. Fig. 2a shows
the normally obtained DOS for a 46 A CdS nanocrystal; the corresponding inset shows an
expanded view of the band gap region. As one can clearly see in the expanded view, there
are many states spread out over an energy range appearing between the valence band and
the conduction band due to the aforementioned dangling bonds within the band gap region.
As already discussed, different authors approached the problem of dangling bonds or its
removal from the DOS in different ways. For example, Lippens and Lannoo [27] got rid of
the dangling bonds by removing the unconnected orbitals on the surface atoms in order to
obtain the band gap free of the mid-gap states. In spirit, this approach is similar to the
infinite potential barrier on the surface of the nanocrystal assumed in the infinite potential
EMA. Akin to the finite potential EMA, we choose to passivate the surface with a layer of
atoms, whose electronic parameters are so chosen that the hopping interactions between the
surface atoms and the passivating atoms are stronger compared to those in the bulk of the
nanocrystal. Specifically, we choose only the s orbital basis on the passivating atoms with
the tight-binding hopping parameters about 2-3 times larger than that of A-B interactions.
The corresponding DOS of the passivated nanocrystals of CdS is shown in Fig. 2b. In the
main frame of the figures, the unpassivated case in the upper panel and the passivated case
in the lower panel appear almost identical, suggesting that the intrinsic electronic structure
of the nanocrystals remain largely unaffected by the passivation. In order to illustrate the
effect of passivation on the midgap states, we show an expanded view of the band gap region
between the TVB and the BCB in the inset to Fig. 2b. This inset shows that the surface
passivation is indeed effective in removing the midgap states, present in the inset to Fig. 2a,
illustrating the unpassivated case.

Most often, the total band gap variation as a function of the size of the nanocrystal is
reported in the literature. [40] This is primarily motivated by the fact that this quantity,
AE,, is easily determined by experimental UV-visible absorption spectroscopy, that is a

routine characterization tool. However, it is to be noted that the total change in the band



gap of any material is simultaneously contributed by shifts of the valence and the conduction
band edges away from each other. In general, the shift of the top of the valence band is not
the same as that of the bottom of the conduction band. Moreover, there are recent studies,
though few in number [41, 42, 43, 44] that report the individual shifts in TVB and BCB
as a function of the size employing various forms of high energy spectroscopies, such as the
photoemission and the x-ray absorption spectroscopies. Thus, it is desirable to compute
these shifts of the individual band edges with the size of the nanocrystallite. The variation
of TVB (circles) and the BCB (squares) with respect to the bulk values are calculated for
different sized passivated nanocrystals and shown in Fig. 3. As expected, the shifts of the
band edges decrease smoothly to zero for large sized nanocrystals in every case. We find
that the shift in the BCB is in general much larger compared to the shift in the TVB for
any given size of the nanocrystal; this indicates that the shifts in the total band gap as a
function of the nanocrystal size are always dominated by the shifts of the conduction band
edge in these systems. A larger shift for the BCB is indeed expected in view of the fact that
the band edge shifts are related inversely to the corresponding effective masses (see Eq. 1)
and the effective mass of the electron is always much smaller than that of the hole in these
II-VI semiconductors. For example, m? and m; in CdS are 0.18 and 0.53, respectively.

In the spirit of EMA, one can attempt to describe the shifts in the conduction and valence

band edges, as

edge Q;
AESY® = = (4)
where AE{** is the variation in the band edge with diameter d; i = h for TVB and

i = e for BCB. Comparing with the EMA (Eq. 1), one expects the fitting parameter a;
to be inversely proportional to the electron (for BCB, i = e€) or hole (for TVB, i = h)
effective mass and b; to equal 2. We have fitted the shifts in BCB and TVB as a function
of d with Eq. 4 by varying the parameters a; and b; within a least-squared-error approach;
the resulting best fits are shown in Fig. 3 by the solid lines overlapping the calculated data
points. We find that the fits are reasonable, though not very good, in most cases. More
importantly, these fits suggest a gross deviation from the EMA predictions; for example, the
variations in TVB and BCB shown in Fig. 3 are far from the EMA-like d~2? dependence and
instead the best exponent for d is in the range of 1.13-1.27 for TVB and 0.65-1.05 for BCB,
as shown in Table II.

Fig. 4 shows the variation of the shift in the band gap (AE,) for the A"BY! semiconductor

9



nanocrystals with A=Z7n, Cd and B=S, Se and Te as a function of the nanocrystal size. AE,
is calculated in the present model after subtracting the Coulomb term (third term of Eq. 1)
from the calculated difference between the TVB and the BCB to account for the excitonic
binding energy, since the experimental data obtained from the UV-absorption include the
contribution from the excitonic binding energy. The solid line passing through the calculated
data points (small solid circles) is the best fit to the calculations. The best fit is obtained
by using simple exponential functions relating AE, to the diameter of the nanocrystallites
as

AE, = aj e 4 qye b (5)

While this expression is entirely phenomenological, it has the correct limiting behavior at
large d. The advantage of such a best fit is that the AE, for any given system can be
readily calculated for any size of the nanocrystallites with the knowledge of the parameter
values ai, by, as and by, which are tabulated in Table III for all the systems investigated
here. For comparison, we also show in the same panels the results obtained from the sp3s*
nearest neighbor TB model (dashed line) [45] and the results from the EMA equation (dotted
line) [46]. Experimental results available in the literature are also plotted as scattered points
with different symbols for comparison with the calculated results. [4, 5, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62] There is a plethora of experimental data for ZnS,
CdS, CdSe and CdTe and we see that the present approach provides a better description of
the experimental data in all these cases. The case of ZnSe, where the experimental results
are limited, also exhibits good agreement between the experiment and the theory. In the
case of ZnTe, the present as well as the earlier calculations give almost similar descriptions;
unfortunately, the experimental data are limited and there are large uncertainties in the
data, so it is difficult to compare the experimental results with our calculations. For most of
the cases, the sp®d® model with the next nearest neighbor interactions is in better agreement
with the experiments compared to the nearest-neighbor-only sp3s* model. This is due to
the fact that the sole s* orbital does not account well for the unoccupied states. These
can only be described by the inclusion of the empty anionic d orbitals and the anion-anion

interactions which are of significance in the description of the bulk electronic structure. [35]
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CONCLUSIONS

We have calculated the electronic structure as a function of the nanocrystallite size for
ATBVT semiconductors with A=7n and Cd and B=S, Se and Te, using the tight binding
method with the sp3d® orbital basis set including the A-B and B-B interactions. It is shown
that the shift in the top of the valence band as well as that in the bottom of the conduction
band are different from the predictions based on the effective mass approximation, not only
in quantitative terms, but also qualitatively. The calculated variations in the band gaps
over a wide range of sizes are compared with all experimental data published so far in the
literature. This comparison shows a very good agreement in every case, suggesting the

reliability and the predictive ability of the present approach.
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TABLE I: The unit cell edge length for zinc blende phase (a), number of shells (ny), number of

atoms (N) in ng, and the average diameter, d, for various AYBV! semiconductors studied.

ZnS ZnSe ZnTe CdS CdSe CdTe

a (A) 5.41 5.67 6.10 5.82 6.05 6.48
N N d(A)

3 17 8.63 9.04 9.73 9.28 9.65 10.34

4 41 11.57 12.13 13.05  12.45 12.94 13.86

83 14.64 15.34 16.51 15.75 16.37 17.53
147 17.71 18.56 19.97 19.05 19.81 21.22
239 20.83 21.83 23.48 22.41 23.29 24.95
363 23.94 25.09 26.99 25.76 26.77 28.68

© o0 N o ot

525 27.07 28.38 30.53 29.13 30.28 32.43
10 729 30.20 31.66 34.06 32.49 33.78 36.18
11 981 33.35 34.95 37.60 35.87 37.29 39.94
12 1285 36.49 38.24 41.14 39.25 40.80 43.70
13 1647 39.63 41.54 44.69 42.64 44.32 47.47
14 2071 42.78 44.83 48.23 46.02 47.84 51.24
15 2563 45.93 48.14 51.79 49.41 51.36 55.01
16 3127 49.08 51.44 95.34 52.80 54.88 58.78
17 3769 52.23 04.74 58.89 56.19 58.41 62.56
18 4493 55.38 58.04 62.44 59.58 61.93 66.33
19 5305 58.53 61.35 66.00 62.97 65.46 70.11
20 6209 61.68 64.65 69.55 66.36 68.98 73.88
21 7211 64.84 67.95 73.11 69.75 72.51 77.66
22 8315 67.99 71.26 76.66 73.14 76.03 81.44
23 9527 71.15 74.57 80.22 76.54 79.56 85.22
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TABLE II: The values of the parameters a and b and used in Eq. 4 for all the ATBVT semiconductors

studied.

ZnS ZnSe ZnTe CdSs CdSe CdTe

e 15.72 13.71 8.23 24.47 24.43 16.38
be 1.01 0.91 0.65 1.05 1.05 0.92
ap -14.93 -13.31 -20.47 -7.76 -19.49 -19.03
by, 1.18 1.15 1.13 1.27 1.19 1.13

TABLE III: The values of the parameters a and b and used in Eq. 5 for all the ATBV! semiconductors

studied.

ZnS ZnSe ZnTe CdS CdSe CdTe

ax 7.44 2.65 5.10 2.83 7.62 D.77
b1 2.35 7.61 10.35 8.22 6.63 8.45
as 3.04 1.90 1.05 1.96 2.07 1.33

bo 15.30 23.50 97.93 18.07 28.88 43.73
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FIG. 1: Comparison of (a) LMTO DOS, (b) TB DOS, and (c) DOS of a 76.5 A CdS nanocrystals.

FIG. 2: The DOS for 46 A (a) unpassivated and (b) passivated CdS nanocrystals. The inset shows
the expanded region encompassing the top of the valence band and the bottom of the conduction

band, showing the removal of the midgap states when the nanocrystal is passivated.
FIG. 3: The variation of the TVB and the BCB with size for II-VI nanocrystals.

FIG. 4: The sp®d® TB model with the cation-anion and anion-anion interactions (Ref. [35], filled
circles) compared with the sp3s* TB nearest neighbor model (Ref. [45], dashed line) and the
experimental data points: (a) ZnS: O Ref. [47], A Ref. [48], V Ref. [49], ¢ Ref. [50], * Ref. [5]; (b)
ZnSe: O Ref. [51], A Ref. [52]; (c¢) ZnTe: O Ref. [53]. (d) CdS: o Ref. [4], A Ref. [54], = Ref. [55],
O Ref. [56]; (e) CdSe: O Ref. [57], A Ref. [58], * Ref. [59]; (f) CdTe: O Ref. [60], A Ref. [61], *
Ref. [62]. The solid line passing through the calculated filled circles is the best fit to the calculated

points obtained using Eq. 5.
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