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Synchronized state of coupled dynamics on time-varying networks
R. E. Amritkara�

Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India

Chin-Kun Hub�

Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan

�Received 15 September 2005; accepted 23 December 2005; published online 31 March 2006�

We consider synchronization properties of coupled dynamics on time-varying networks and the
corresponding time-average network. We find that if the different Laplacians corresponding to the
time-varying networks commute with each other then the stability of the synchronized state for both
the time-varying and the time-average topologies are approximately the same. On the other hand for
noncommuting Laplacians the stability of the synchronized state for the time-varying topology is in
general better than the time-average topology. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2168395�
Synchronization is an important property of dynamical
systems. Several diverse systems such as chemical reac-
tions, electronic circuits, array of Josephson junctions,
neurons, different body functions like heart rate and res-
piration, flapping of wings by the birds are known to
show synchronization in some form. Roughly synchroni-
zation corresponds to the coherent evolution of different
coupled dynamical systems. It is clearly of interest to
study synchronization on different networks. The net-
work represents the underlying geometrical structure of
entities (nodes) and links (edges) in a given system. Re-
cent investigations of several systems in different fields
ranging from physical, biological and chemical systems to
social and economic systems has shown that networks are
ubiquitous in nature. Networks are often associated with
dynamical variables evolving with time and it is possible
to show that they show synchronization. However, natu-
ral networks are not static in time and the structure of
nodes and links changes with time. In this paper we in-
vestigate the synchronization properties of networks with
time-varying structure and compare it with the synchro-
nization in static time-average networks. Network struc-
ture can be represented by the adjacency matrix whose
elements are unity if the corresponding nodes are con-
nected and zero otherwise. We can construct the Laplac-
ian matrix from the adjacency matrix by subtracting the
diagonal matrix of the degrees of different nodes. We find
that if the Laplacians of the different time-varying net-
works commute with each other then the synchronization
properties of the time-varying and time-average net-
works are approximately similar. On the other hand,
if the Laplacians do not commute then the synchroniza-
tion property of the time-varying network is more
stable then that of the time-average network. We demon-
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strate the effect using an example of coupled Rössler
systems.

I. INTRODUCTION

Several networks in the real world consist of dynamical
elements interacting with each other and the interactions can
be used to define the links of the network. Several of these
networks have a large number of degrees of freedom and it is
important to understand their dynamical behavior.1 One of
the important dynamical property of the coupled networks is
the synchronization of the dynamical variables associated
with individual nodes. The earlier studies of synchronization
in networks concentrated on regular networks such as lattices
with nearest neighbor or short range couplings or globally
coupled networks.2–7 Recently, it has been recognized that
several complex systems have underlying structures that are
described by networks or graphs which are not regular but
have some random element and may have some universal
properties such as small-world length scales or scale free
degree distribution.1,8 This has led to the study of synchro-
nization properties of different networks.9–15 In particular, it
was shown that a state with several synchronized clusters is
possible. Two main types of clusters can be identified,
namely driven clusters that have mostly intercluster cou-
plings and self-organized clusters that have mostly intraclus-
ter couplings.14

In spite of several studies of synchronization on net-
works, most of the studies have concentrated on static net-
works where the nodes and edges �couplings� are constant in
time. However, in several naturally occurring networks the
topology of the networks changes with time. Both the num-
ber of nodes and the edges connecting the nodes can vary
with time. Such a time-varying topology can occur in social
networks, computer networks, WWW, biological systems,
spread of epidemics, etc. Recently, there have been studies of
dynamics of time-varying network topologies.16,17 It is
shown that if the topology switches sufficiently fast between

different networks, then the synchronized state can become
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stable even when the individual networks do not support the
synchronized state. In this paper we investigate the synchro-
nization properties of time-varying networks. We find that
such time-varying networks cannot only stabilize the syn-
chronized state but also can lead to better stability in some
situations.

II. COUPLED DYNAMICS ON NETWORKS

A. Static network

We introduce the notation by first considering a model of
static network. Consider a network of N nodes �oscillators�.
Let xi�t��Rm be the m-dimensional variable of the ith node.
Let the uncoupled dynamics of each node be defined by the
function f�xi�t�� and the coupling by the function h :Rm

→Rm. Let G be the N�N adjacency matrix of the network
such that Gij =1 if an edge connects the nodes i and j and
Gij =0 otherwise. The Laplacian L of the network is given by

L = diag�d� − G , �1�

where ith element of d�RN is the degree of node i. Thus, the
dynamics of the ith node is given by

ẋi�t� = f�xi�t�� + ��
j

Lijh�x j�t�� , �2�

where � is the coupling strength. Let x= �x1 ,x2 , . . . ,xN�,
f�x�= �f�x1� , f�x2� , . . . , f�xN��, h�x�= �h�x1� ,h�x2� , . . . ,
h�xN��. The complete dynamics can be expresses as

ẋ�t� = f�x�t�� + ��L � Im�h�x�t�� , �3�

where � is the direct product.
Let x0=x1=x2= ¯ =xN be the synchronized state. Lin-

earizing each oscillator �2� about the synchronized trajectory
x0�t� gives

ż�t� = �IN � F�t� + �L � H�z�t� = J�t�z�t� , �4�

where z= �z1 ,z2 , . . . ,zN�, zi=xi−x0, and F�t�=Df evaluated
at x0, H=Dh. Henceforth, we take the coupling function h to
be linear and hence H becomes a constant m�m matrix. The
Jacobian J=IN � F+�L � H is an mN�mN matrix. A formal
solution of Eq. �4� can be written as

z�t + �� = �L�t + �,t�z�t�

= exp��
t

t+�

IN � F�t��dt� + �L � H��z�t�

= exp��
t

t+�

J�t��dt��z�t� . �5�

We can also simplify the linearized equation �4� by not-
ing that the transformation which diagonalizes L does not
affect the first term in the equation since it is already block
diagonal with identical blocks of size m�m. Thus the lin-
earized equation �4� can be block diagonalized with each
block �m�m� having the form

żk�t� = �F�t� + ��kH�zk�t� , �6�

where �k is an eigenvalue of L, k=0,1 , . . . ,N−1. The largest

eigenvalue �0=0 and corresponds to the eigenvector
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�1,1,¼,1�. This eigenvector defines the synchronization
manifold and the rest of the eigenvalues and the correspond-
ing eigenvectors define the transverse manifold. Using Eq.
�6� we can define the master stability function and the asso-
ciated master stability function determines the stability of the
synchronized state.18 For the stability of the synchronized
state the system must be stable along the transverse mani-
fold. We can also write a formal solution for Eq. �6� as

zk�t + �� = �k�t + �,t�zk�t�

= exp	�
t

t+�

F�t��dt� + ��kH�
zk�t� . �7�

B. Time-varying networks

We now consider the time-varying topology where the
network periodically switches between graph Laplacians
L1 ,L2 , . . . ,Lg with periods �1 ,�2 , . . . ,�g, respectively, and the
total period T=�i�i. Thus,

L�t� = �
i=1

g

Li��ti−1,ti�
, �8�

where ��ti−1,ti�
is the indicator function with support �ti−1 , ti�

and ti= ti−1+�i. The time averaged L�t� is

L̄ =
1

T
�

0

T

L�t�dt =
1

T
�
i=1

g

Li�i. �9�

In Ref. 17 it is shown that if the network synchronizes for the

static time average of the topology, i.e., with L̄, then the
network will synchronize with the time-varying topology if
the time variation is done sufficiently fast.

We will refer to the dynamics obtained using time-
varying topology as t-varying case and the dynamics using
static time-average topology as t-average case. Using Eq. �5�
we can write a formal solution for the t-varying case as

z�t + T� = �L�t0 + T,t0�z�t0�

= T��
i=1

g

exp	�
ti−1

ti

Ji�t��dt�
�z�t0� , �10�

where T�¯� represents a suitable time ordering and z�t0� is
the initial condition. A formal solution for the t-average case
with the same initial condition can be written as

z̄�t + T� = �L̄�t0 + T,t0�z�t0� = exp	�
ti−1

ti

J̄�t��dt�
z�t0� .

�11�

C. Commuting Laplacians

Let us now make the approximation that the total period
T is sufficiently small so that for the evolution from ti−1 to ti

the Jacobian can be approximately treated as independent of
time. Thus we can write Eqs. �10� and �11� as

z�t + T� � T	�
g

exp�Ji�i�
z�t0� , �12a�

i=1
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z̄�t + T� � exp�J̄T�z�t0� . �12b�

From the above equations we see that the t-varying and
t-average cases will have similar evolution for the linearized
equations provided the different Jacobians or the correspond-
ing Laplacians commute with each other, i.e.,

�Li,Lj� = 0 for i, j = 1, . . . ,g . �13�

Thus, when condition �13� is satisfied, the linearized vari-
ables z will have approximately similar dynamics for the
t-varying and t-average cases. Hence the stability conditions
and the range of stability of the synchronized state for these
two cases will be approximately the same.

The above analysis can be made clearer by block diago-
nalizing the Jacobians Ji using the transformations which
diagonalize Li. For commuting Laplacians the same transfor-

mation will diagonalize all of them and also the average L̄.

Thus all the Li and L̄ will have the same eigenvectors, though
different eigenvalues. Hence, using Eq. �7� and the approxi-
mate solutions Eqs. �12a� and �12b� we can write

zk�t + T� � T	�
i=1

g

exp��Fi + ��k
i H��i�
zk�t0� , �14a�

z̄k�t + T� � exp��F + ��̄k�T�zk�t0� . �14b�

We now make a further approximation of replacing F by its

time average value. If �̄kj and �kj
i , j=1, . . . ,m are the

Lyapunov exponents then from Eqs. �14a� and �14b� we can
write to a first approximation

�̄kj �
1

T
�
i=1

g

�kj
i �i. �15�

We thus see that the stability range for the t-varying and
commuting Laplacians should be approximately the same as
that for the average Laplacian.

D. Noncommuting Laplacians

We now consider the case when the different t-varying
Laplacians do not satisfy the condition �13�. In this case the
eigenvectors corresponding to the different Laplacians are in
general not the same. Note that the largest eigenvalue ��0

=0� and the corresponding eigenvector �1,¼,1� which define
the synchronization manifold are the same for all the Lapla-
cians. Let the eigenvectors of different Li be denoted by zk

�i�,
i=1, . . . ,g, k=1, . . . ,N and the corresponding eigenvalues by
�k

i . Let the different sets of eigenvectors be related to each
other by the transformations

z�i� = Rijz�j�. �16�

In general, the transformation Rij relating eigenvectors of Li

and Lj will consist of several sets of rotations. Now we can
express the formal time evolution of different eigenvectors

by the following equation:
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zk
�1��t0 + T� = T��

i=1

g

�
ki=1

g−1

Rki+1ki

i+1i

�exp	�
ti−1

ti

F�t��dt� + ��ki

i �i
�zk1

�1��t0� ,

�17�

where kg+1=k. The action of each graph Laplacian Li is to
cause a rotation and an evolution of the rotated eigenvectors.
We note that this rotation takes place only in the transverse
manifold. The evolution of the synchronization manifold is
unaffected by these rotations and can be expressed as

z0
�1��t0 + T� = T��

i=1

g

exp	�
ti−1

ti

F�t��dt� + ��0
i �i
�z0

�1��t0� .

�18�

To understand the effect of the evolution of Eq. �17� let us
consider a simple case of m=1, g=2, N=3, and �1=�2=�.
We further assume that the period T is sufficiently small and
the exponential in Eq. �17� can be replaced by the time av-
erage value exp��ki

i �i�. We also assume that the two Lapla-
cians have eigenvectors pointing in different directions but
the transverse Lyapunov exponents are the same and they are
denoted by �1 and �2 ��1��2�. Let, the transformation R
=R21 cause a rotation by an angle 	 in the two-dimensional
transverse manifold. Thus the evolution in the transverse
manifold can be expressed as

z�1��t0 + T� = R−1EREz�1��t0� = Mz�1��t0� , �19�

where E is a diagonal matrix diag�exp��1�� , exp��2���. The
eigenvalues of the matrix M are given by


1,2 =
1

2
	e1

2 + e2
2 ± �e1

2 − e2
2�

�
1 − 2s2 e1
2 + e2

2

�e1 + e2�2 + s4 �e1 − e2�4

�e1 + e2�2
 , �20�

where s=sin�	� and ei=exp��i��. By writing 
i=exp��i
r��

we get for small 	 and �,

�1,2
r = 2�1,2 � s2�1 − �2

2
. �21�

Thus, the larger exponent ��1� decreases while the smaller
one ��2� increases. Hence, the effect of periodic switching
between Laplacians appears to reduce the spread of the trans-
verse Lyapunov exponents and in particular the larger expo-
nents will decrease. This should in general enhance the sta-
bility of the synchronized state. In the next section we
demonstrate this by using an example of coupled Rössler
systems.

III. ILLUSTRATION

As an illustration we consider a system of coupled

Rössler oscillators,
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ẋi�t� = − yi�t� − zi�t� − ��
j=1

N

�L�t��ijxj�t� ,

ẏi�t� = xi�t� + ayi�t� , �22�

żi�t� = b + zi�t��xi�t� − c� ,

where L�t� is given by Eq. �8�, i=1, . . . ,N, a=0.2, b=0.2,
c=7.0. We consider several graphs with N=10. Indicating
each edge by a pair of nodes we define the following graphs.
�1� G1= ��i+1, i� � i=1, . . . ,N , &N+1=1�, i.e., graph with
nearest neighbor couplings on a ring. �2� G2= � �,
i.e., graph with zero edges. �3� G3= ��1,2� , �3,4� ,
�5,6� , �7,8� , �9,10��. �4� G4= ��2,3� , �4,5� , �6,7� , �8,9� ,
�10,1��. �5� G5= ��1,2� , �2,3� , �3,4� , �4,5� , �5,6��. �6� G6

= ��6,7� , �7,8� , �8,9� , �9,10� , �10,1��. For simplicity we re-
port here the results for the combination of two graphs
each �g=2�.

�a� The combination �G1 ,G2� represents commuting
Laplacians. Both the t-varying and t-average cases show a
stable synchronized state in the range �� �0.75,2.30�.

�b� The combination �G3 ,G4� represents noncommuting
Laplacians. The t-varying case is stable in the range �
� �0.70,2.30� while the t-average case is stable in the range
�� �0.75,2.30�. Thus the lower limit which corresponds to
the long-wavelength instability18 gets extended for the
t-varying case. We expect the difference between the
t-varying and t-average cases to come from the commutator
of the t-varying Laplacians. Hence, to understand the stabil-
ity of the synchronized state we apply a perturbation of the
type

�Cijxj�t� ,

where C= �L3 ,L4� is the commutator of the two Laplacians
and add it to the first equation of �22�. Note that C is an
antisymmetric matrix with the property � jCij =0 and does
not affect the division of the entire space into a combination
of the synchronization manifold and the transverse manifold.
The range of stability of the synchronized state in the �-�
plane is shown in Fig. 1�a�. The switching time between
different networks used for Fig. 1 is �=0.3.

�c� The combination �G5 ,G6� again represents noncom-
muting Laplacians. The t-varying case is stable in the range
�� �0.75,2.45� while the t-average case is stable in the
range �� �0.75,2.30�. Thus the upper limit which corre-
sponds to the short-wavelength instability gets extended for
the t-varying case. We again consider a perturbation of the
type �Cijxj�t� where now we choose C= �L5 ,L6�. The range
of stability of the synchronized state in the �-� plane is
shown in Fig. 1�b�.

It may be noted that the introduction of perturbation of
the type �Cijxj�t� is equivalent to introducing both the Lapla-
cians at the same time. Hence, as � increases the t-varying
and t-average cases cannot be distinguished on the basis of
the eigenvectors of the Laplacians and we cannot decide the
stability of the synchronized state using the present analysis.
This is seen in Fig. 1�b� where for 1.1
�
1.4 and 0.75

�
1.7 the t-average synchronized state has a slightly bet-

ter stability than the t-varying one.
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IV. CONCLUSION

In this paper we have considered coupled dynamics on
networks with time varying topology. We analyze the linear-
ized equations and consider its approximate solution for suf-
ficiently fast switching between different Laplacians. We find
that for commuting Laplacians the stability of the synchro-
nized state for the t-varying case is mostly unaffected and is
almost same the same as that for the average case. On the
other hand, the noncommuting Laplacians, in general, lead to
better stability of the synchronized state for the t-varying
case than the t-average case.
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