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The Kosterlitz-Thouless transition and vortex dynamics
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Abstract. The physics of the Kosterlitz-Thouless vortex-unbinding transition in two-
dimensional superfluids is discussed, and the N x N Josephson junction array is considered
as a prototype system. Dynamical behaviour is considered in two cases: (a) the complex
impedance shows structure at a frequency-dependent transition temperature, similar to the
dynamic susceptibility of a spin glass; (b) with a perpendicular non-uniform magnetic field,
of a particular ‘self-similar’ hierarchical pattern, a scaling argument gives non-exponential
relaxational dynamics of a prepared non-equilibrium vortex distribution.
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1. Introduction

Extended defects are familiar in the context of crystalline solids. In particular, edge
and screw dislocations are line defects, that cause strain fields falling off as 1/r
throughout the crystal. In superfluids, the complex order parameter V() =yl
exp [i0(r)] can also exhibit a screw dislocation or ‘vortex’, with a jump of 0 (r) by 2nn
on moving around the vortex line, where n=+1, £2 ... denoting the vorticity
(analogous to a Burgers vector). Since there is an energy cost per unit length, and the
- lines can only terminate on boundaries, these line defects in 3D are created by
external rotation in superfluids and by external magnetic fields for superconductors.
In 2D, however, with superfluid/superconductor films of small thickness compared
to a coherence length, thermal energies kT are sufficient to create pairs of £1 vortex
‘points’ (line segments along the thickness). These have a (logarithmic) effective
interaction, can participate in the novel type of Berezinskii-Kosterlitz-Thouless
phase transition, and play an important role in the dynamic response of superfluids,
superconductors and Josephson junction arrays.

In this paper we consider the vortex defect dynamics of Josephson arrays, that
exhibit a Kosterlitz-Thouless transition (Rice 1965; Mermin 1967; Berezinskii 1972;
Kosterlitz and Thouless 1973; Kosterlitz 1974).

2. The Kosterlitz-Thouless transition ‘

2.1 Statics

For a planar ferromagnet with d<d, =2, a lower critical dimension, there is no long-
range-order (LRO) in the spin-spin correlation function (Rice 1965; Mermin 1967)
<exp {i[0()—0(0)]}>=C(r). A phase transition occurs at T<Txr by the
unbinding of pairs of vortex excitations of opposite vorticity. This is the Kosterlitz-
Thouless transition (Berezinskii 1972; Kosterlitz and Thouless 1973; Kosterlitz 1974).

The vortex pairs are + 1 charges that interact via a In r interaction, and the 2D
planar ferromagnet (XY model) is thus mapped onto a 2D Coulomb gas, The
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transition shows up as a discontinuity in the inverse dielectric constant (Nelsonvga;@.:
Kosterlitz 1977) at T= Ty where the dielectric to ‘plasma’ transition takes place
The Coulomb gas partition function onto which the original 2D XY model

is mapped to:

{m;}
Configurations

Z,= Z J(’J?mil exXp [“Ko Z m,m; In ("kz‘/ao)]- 3
ksl

The lattice scale a, is the minimum scale and all separations r,;> a,. Here Z;m, -«
and K, enters the coupling between the (dual lattice) vortex charges m;= :': 1, th,
interact logarithmically. y2= exp (— 12K ,) is the fugacity for thermally creating a x
air.

g The vortices bind in + pairs, but are nested within each other, '1.'ather than bex
widely separated ‘molecules’. Thus a scaling procedure (Berezinslfu 1972; Kosi‘crf:r
and Thouless 1972; Kosterlitz 1973) iteratively integrating out pairs 'of separatlgirz .
a+da is needed. One gets scale-dependent couplings and fugacities, K (a)= &

y(@=y; I=In(a/a,) and a set of scaling equations due to Kosterlitz (Kosterlitz az:
Thouless 1972; Kosterlitz 1973):

dK,/dl= — 47 K?y2

1

dy/dl= —(nK,~2)y,
The force, at large distances between test charges is

lim (27K (r)/r)

and this goes to 2z K _ /r in the dielectric phase for 7 K (T)~2>01ie. T< Txr. Fo

T> Tyr or 1K (T)—2<0, there are free vortices to provide plasma screening
27 K (r)/r—0 as r— 0. Here K=lim K(r).

The dielectric constant, that has a discontinuity at Ty, is K /K, =1/e.

2.2  Dynamics

Helium films, with hamiltonians BH=K [d?r(V 6(r))?
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diffusion constant and is a fitted parameter. In the microscopic calculation described
later, one obtains similar results, with microscopic quantities only. .

For T> Tyr, &, (T) is the length scale separating bound pairs (of separation <& )
from free vortices (> &,). Here

¢4 (T)=aq exp [const (T— Tyr) ™ *]

and T, is defined by, when the free vortices first enter the observation window,
ro=CE4 (To); 50 T,> Tgr, but T~ Ty as w—0.

The Josephson junction arrays (JJA) in 2D (Lobb 1984) are grains of supercon-
ducting material below their grain transition temperature, placed in an N X N array
connected by oxide (or normal metal) junctions (figure 1). The hamiltonian is of the
XY form

BH=—K, Y. cos(6;—0))
<ijp
and therefore, this system has a KT transition. Here K, =%I,/2eK T where I, is the
maximum Josephson current of a single junction. )

The JJA system (currently prepared in 1000 x 1000 arrays by photolithographic
techniques) is more than just a physical realization of the 2D XY model. Magnetic
fields perpendicular to the array enter in minimally coupled form through a vector
potential A4;;: '

<>
i, j on a 2D lattice (figure 1). .
The analogue of the torsional oscillator experiment is the electromagnetic

response of the array to an oscillating transverse vector potential. The response
function is the dynamic conductivity ¢ (w, T).

3. The dynamic response of a 2D Josephson juhction array.

The dynamic conductivity ¢(w, T)=0,+io, for an array has been calculated
(Shenoy 1985) and an experimental measurement has been performed (Leeman et al
1986). As predicted, the real part of the conductivity o, the peaks, and the imaginary
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Figure 1. Josephson junction array and lattice model.
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part o, has a roll-off, at a frequency-dependent temperature,

To= Txr+ const/(In (I'y/w))?
where the phase relaxation rate I'y=2el, R
normal shunt resistance R..

Since details have been published elsewhere (Shenoy 1985), onl}{ an o'utlinf: will be
given here. The starting point is the total current through a bond i.e. a junction, asa
sum of super —normal —and fluctuation terms (6;;=6,—0))

s/h is proportional to the single-junction

K i R
Jjiy=K, sin (aij—A,.j)+ﬁ‘)’(0,.j~ Ay) +1,; @), 0)

Here the (Johnson) noise current terms are delta-correlated, {f};(7)f}, (0))=2
(Ko/T'0) (8,6 717 0405) 3 (t). The procedure is as follows:

(@) A Langevin equation for ¢ i 1s derived from (3) by imposing current conservation,

4
Z Jiji+2 =0.
=1

An equivalent Fokker-Planck (FP) equation P=
P({6;;— A;;},t) is linearized in A;t)=4
of an inverse FP operator. This enables
current-current correlation g ~ (sin§
the inverse FP operator (Fp—iw)~ L,

(b) Standard dual transformation (José et gl 1977; Savit 1980) techniques are
invoked to extract the important vortex contribution to the current-currenf corre-
lation. The remaining part depends on spin waves only and a gaussian spin wave
truncation makes the FP operator %, tractable; so the spin waves can Now l?e
integrated out. One obtains the 035, dynamic current correlation in terms of a ratio

—%,P for the probability
ij(@)exp (—icwr) and solved formally, in terms
the dynamic conductivity, essentially a super
i8I0 6y, to be formally written out, in terms of

Zv ({mR + iXR(w) })/Zx,({mR })

The numerator is just the vortex partition function, with frequency-dependent test

charges at four points, R=1, J, K, L. The denominator is the pure static vortex
partition function.

(c) Standard Kosterlitz scaling methods
1973; Kosterlitz 1974) for th
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Here the scaling o,={(cos0;;>/dKoR,, and the variables are p,=(S; (T)/r.)%
l,=In (r,/a0), |, =In(¢,/ay), K, is the static scaled coupling at a separation
I=In (r/a,), obtained from (2).

4. A glass prototype: Josephson array in a hierarchical field

Nonexponential decays (‘power law’ ~t ¢ or ‘stretched exponential’ ~ exp(—1#) are
standard in glassy systems (Mezei 1983). Hierarchical (Palmer et al 1984; Huberman
and Kerszberg 1985; Kumar and Shenoy 1986) nested-cluster models of relaxation
have been developed to explain the slow decays: the cluster generations relax
sequentially with longer time scales for larger sizes, and so the cumulative decay
envelope decays slowly e.g. ~1/t7 in time (‘cooler=slower’, as temperature T
decreases).

The 2D Josephson array in a particular spatially varying perpendicular magnetic
field is a useful prototype model for glasses. It is modelled by the hamiltonian
BH=—K, Zcos(f;;— A;;). Dual transforms (José et al 1977; Savit 1980) as in the
zero-field case give a Coulomb gas partition function but with a flux background
{®,} fixed in space, determined by the external magnetic field. The partition function
is as in (1) but with m;—m,;+®,, {I} on a dual lattice.

If the transverse array size is small enough compared to an effective array
magnetic screening length (Berezinskii 1972; Kosterlitz and Thouless 1973;
Kosterlitz 1974) A, ocA7e/d, A;; can be taken as the external magnetic field only. Here
the flux variable ®; is per unlt cell, 2n®, =13, 4,, with the ﬁ, sum round-a loop
joining grain centres, and centred at a point I at the grain corners. (4; is the single-
junction Josephson length, d is the grain thickness).

The model then reduces to one of mobile +1 charges floating in a fixed back-
ground of {®,} frustration points, with a logarithmic interaction between all
elements, for all separations, for T< Tgy. (For T> Tky there is screening beyond
separations > ¢, (T)). There is overall neutrality, X,(m;+®;)=0. We choose
(Shenoy 1987) a non-uniform, neutral, flux £, ®,=0, with ®,= + ® (P <3) at various
sites I in a particular pattern. Then £,m,;=0 separately and since vortex pair
creation is activated, the equilibrium vortex population tends to zero. We consider
the time decay of prepared excess vortex populations, placed on the {®;}
background.

The +1 charges, when placed F O frustration sites separated by ro>ag, the
minimum scale, will annihilate by jumping over the In (r/a,) barrier under the action
of a thermal random force, with a typical time tocexp(2nK,ln(re/a,)). The
annihilation time scale depends on the frustration separation. Since we have overall
%, ®,;=0, the most obvious distribution is to put down +®, —®, +@ . . . alternating
sign background, all of separation r,. However vortices —1, +1, —1 ... placed on
these, would all face one single ~ Inr, barrier and hence one single time scale —the
annihilation would be conventional.

The next best thing is triplets, rather than +®, — ® pairs, each of which is non-
neutral, but clusters of which are ‘as neutral as possible’ or quasineutral, in a way
now described, in 1D. The pattern generated is non-unique, and is just the simplest of
possibly some larger class of such hierarchically self-similar + @ patterns.

(1) start with a seed clusters +®, +®, — ®. Mirror reflects to the right and generates
another cluster — @, +®, +®.
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(ii) Translate this generated cluster to the right and charge-conjugate it, +®, —®,
-
(iif) Repeat, using the 9-member cluster as a seed. Note that the excess charge for any
3" cluster n=1, 2, 3 is unity i.e. the excess charge density ~ 37" scales to zero.

This procedure generates the @ background as shown in figure 2. An extra overall
neutralizing @ can be placed somewhere in the system (the inset shows a 2D version).

- The sequential annihilation of mobile + 1 charges on this background is illustrated:

the same pattern repeats itself on a larger scale. Since barriers depend on separation,
this means a (sequentially) larger set of time scales. :

One can write down (Shenoy 1987) a kinetic equation for the probability P, of
finding a charge in a cell « using a chemical reaction-rate analogy P, will depend on
the rate of annihilation times the product of the annihilating probabilities.

5 o Qa/} 4)
P, ; 0 P, P,. , (
(#a)

Here the annihilation time depends on the charge separation, ©=1(r,p), anfi
projection factors Quﬂ=%qaq,, (9.95— 1) are non-zero only for opposite-sign annihi-
lating charges. Defining a course-grained probability by P=X ¢ P,/% q,, where ‘the
sum runs over charges within a cluster, one can write a scaled set of annihilation
equations just as in the previous case, provided the smallest times are now for the
next generation (larger) separations, r§)=3"r,.

The net result is that the survival probability or charge density envelope varies as

1T
p(t)~m; —Y-f =27|®|K 4 /d, (5)
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where d is the dimensionality. Thus if a non-equilibrium (opposite-sign) vortex
population is placed on a hierarchical, self-similar frustration background, it will
annihilate in a slow, non-exponential manner. '

Simple kinetic equations, incorporating an effective decay rate k(t)= —p(t)/p (®)
can be used to model the accumulation of vortices under a temperature-time cooling
ramp. The non-equilibrium trapped fraction accumulates appreciably, below a ‘glass
transition temperature’ Tg(T)~ Ty -+ const/(In (IT)))? |T'|=cooling rate.

Finally a separate point; this basic approach of focussing on topological ‘disorder’
variables, is also useful for the 3D XY model (where one has vortex loops) (Gupte
and Shenoy 1986), and related ‘lattice superconductor’ models (Dasgupta and
Halperin 1981; Bartholomew 1983; Shenoy S R and Gupte N, submitted) where
fluctuations of the gauge field are included.

In summary, the frequency response and relaxational behaviour of 2D Josephson
junction arrays can be usefully described in terms of the motion of disorder variables
or vortices, i:€: in terms of the dynamics of extended defects.
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