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Quantum bound states for a derivative nonlinear Schrödinger model

and number theory
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A derivative nonlinear Schrödinger model is shown to support localized N-body bound states
for several ranges (called bands) of the coupling constant η. The ranges of η within each band can
be completely determined using number theoretic concepts such as Farey sequences and continued
fractions. For N ≥ 3, the N-body bound states can have both positive and negative momentum.
For η > 0, bound states with positive momentum have positive binding energy, while states with
negative momentum have negative binding energy.
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Integrable quantum models in 1+1 dimensions which support bound states have been studied extensively for many
years [1–8]. For an integrable Hamiltonian, the coordinate Bethe ansatz can yield the exact eigenfunctions. If an
eigenfunction decays exponentially fast when any of the interparticle distances tends towards infinity (keeping the
center of mass coordinate fixed), we call such a localized square-integrable eigenfunction a bound state. Bound states
of quantum integrable models are usually found to have positive binding energy [1–5].

In this paper, we will study the quantum bound states of an integrable derivative nonlinear Schrödinger (DNLS)
model [6,7]. Classical and quantum versions of the DNLS model have found applications in many areas of physics
like circularly polarized nonlinear Alfven waves in a plasma [9], quantum properties of solitons in optical fibers [10],
and some chiral Luttinger liquids [11]. The classical DNLS model is known to have solitons with momenta in only
one direction [12,13].

Using the coordinate Bethe ansatz, it had been found earlier that quantum N -body bound states exist for the DNLS
model provided that the interaction parameter η (defined in Eq. (1) below) lies in the range 0 < |η| < tan(π/N). It
was also observed that, similar to the classical case, such N -body bound states can have only positive values of P/η,
where P is the momentum [6]. However, it was found recently that bound states can exist with P/η < 0 provided
that tan(π/N) < |η| < tan[π/(N − 1)], and that these states have negative binding energy [8]. This naturally leads
one to ask: are there other ranges of values of η for which quantum bound states exist, and, if they exist, what are
their momenta and binding energies?

In this paper, we will solve the problem of determining the complete ranges of values of η for which quantum
N -body bound states exist in the DNLS model, for all values of N . After presenting the conditions which are required
for a quantum N -body bound state to exist, we will use the idea of Farey sequences in number theory to show that
there are certain ranges of η, called bands, in which bound states exist. We find that the bound states appearing
within each band can have both positive and negative values of P/η; these have positive and negative binding energies
respectively. We will then use another concept from number theory, that of continued fractions, to address the inverse
problem of finding the values of N for which N -body bound states exist for a given value of η.

For N particles, the Hamiltonian of the DNLS model is given by

HN = − h̄2
N

∑

j=1

∂2

∂x2
j

+ i2h̄2η
∑

l<m

δ(xl − xm)
( ∂

∂xl

+
∂

∂xm

)

, (1)

where we have set the particle mass m = 1/2. HN commutes with the momentum operator PN = −ih̄
∑N

j=1 ∂/∂xj.
We note that HN remains invariant while PN changes sign if we change the sign of η and transform all the xi → −xi
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at the same time; we call this the parity transformation. Hence it is sufficient to study the model for one particular
sign of η, say, η > 0. The eigenfunctions for η < 0 can then be obtained by changing xi → −xi.

Next, the coordinate space RN ≡ {x1, x2, · · ·xN} is divided into various N -dimensional sectors defined through
inequalities like xω(1) < xω(2) < · · · < xω(N), where ω(1), ω(2), · · · , ω(N) represents a permutation of the integers
1, 2, · · · , N . Given the wave function in the fundamental sector, defined as x1 < x2 < · · · < xN , the wave functions
in all the other sectors can be found by Bose symmetry. In the fundamental sector, the Bethe ansatz wave function
takes the form

ψ =
∑

ω

Cω exp {i(kω(1)x1 + · · · + kω(N)xN )}, (2)

where kn’s are all distinct wave numbers, the sum is over all permutations ω of the integers 1, 2, · · · , N , and Cω are
appropriate coefficients. The momentum and energy of this eigenfunction are given by

P = h̄

N
∑

j=1

kj , and E = h̄2
N

∑

j=1

k2
j . (3)

In Ref. [6], it was shown that a localized bound state has a wave function consisting of only one plane wave in
each sector. Namely, in the fundamental sector, the coefficients Cω in (2) vanish for all ω’s except for the identity
permutation. Further, the momenta kn’s satisfy the following conditions:

kn − kn+1 + i η (kn + kn+1) = 0 , (4)

for n = 1, 2, · · · , N − 1,

N
∑

j=1

qj = 0 , (5)

where qj denotes the imaginary part of kj , and

q1 < 0 , q1 + q2 < 0 , · · · ,

N−1
∑

j=1

qj < 0 . (6)

Eqs. (5-6) imply that the wave function ψ is square-integrable if one holds the center of mass coordinateX =
∑

i xi/N
fixed, and integrates over the relative coordinates yr = xr+1 − xr, where r = 1, 2, · · · , N − 1. In the fundamental
sector, the integrals over the yr’s all run from 0 to ∞, and they are independent of each other. Using Eq. (5-6), one
can express the probability density as

|ψ|2 ∼ exp[

N−1
∑

r=1

(

r
∑

j=1

qj) yr ] , (7)

which is independent of X . Due to the conditions in (6), integration of this probability density over the yr’s gives a
finite result.

The conditions (4) and (5) imply that the kn’s must be complex numbers of the form

kn = χ e−i(N+1−2n)φ , (8)

where χ is a real parameter, and φ ≡ tan−1 η. Since 0 < |η| <∞, we assume that 0 < |φ| < π/2. Using Eqs. (3) and
(8), the momentum and energy of this state are found to be

P = h̄χ
sin(Nφ)

sinφ
, and E =

h̄2χ2 sin(2Nφ)

sin(2φ)
. (9)

If we define the mass of this state by the relation E = P 2/(2M), we find that

M =
tan(Nφ)

2 tan(φ)
. (10)

We now impose the conditions (6) on the kn’s. We find that all the following inequalities must be satisfied,
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χ
sin(lφ)

sinφ
sin[(N − l)φ] > 0 (11)

for l = 1, 2, · · · , N − 1. For N = 2, (11) is satisfied when φ lies in the range 0 < φ < π/2 (−π/2 < φ < 0) if χ > 0
(χ < 0). Thus any nonzero value of φ allows a 2-body bound state. From (9), we see that the ratio P/φ > 0.

We now consider the more interesting case with N ≥ 3. Due to the parity symmetry of (1), we will henceforth
assume that φ > 0 (i.e. η > 0). Eq. (11) can then be rewritten as

χ sin(lφ) sin[(N − l)φ] > 0 (12)

for l = 1, 2, · · · , N − 1. For χ > 0, Eq. (12) implies

cos[(N − 2l)φ] > cos(Nφ) (13)

for l = 1, 2, · · · , N − 1. Let us now consider a value of φ of the form

φN,n ≡
πn

N
, (14)

where n is an integer satisfying 1 ≤ n < N/2. If n is odd, cos(NφN,n) = −1. We then find that all the inequalities
in (13) are satisfied provided that N and n are relatively prime, i.e., if the greatest common divisor of N and n is 1.
Similarly, for χ < 0, Eq. (12) takes the form

cos[(N − 2l)φ] < cos(Nφ) (15)

for l = 1, 2, · · · , N − 1. We find that all these inequalities are satisfied if n is even, and N and n are relatively prime.
In short, all the inequalities in (12) are satisfied for φ = φN,n, if and only if N and n are relatively prime (with n

odd for χ > 0, and n even for χ < 0). By continuity, it follows that all the inequalities will hold in a neighborhood of
φN,n extending from a value φN,n,− to a value φN,n,+. The region φN,n,− < φ < φN,n,+ will be called the band BN,n.

For a given value of N , the number of bands in which bound states exist is equal to the number of integers n which
are relatively prime to N and satisfy 1 ≤ n < N/2. This is equal to half the number of integers which are relatively
prime to N and satisfy 1 ≤ n < N . The latter number is called Euler’s φ-function Φ(N) [14]. The number of bands
is therefore equal to Φ(N)/2 for η > 0.

We now have to determine the end points φN,n,− and φN,n,+ of the band BN,n. One or more of the inequalities in
(12) will be violated at the end points φN,n,± if

φN,n,± =
πj±
l±

, (16)

where j± and l± are integers satisfying

1 ≤ l± < N , and j± <
l±
2

(17)

(since φ < π/2). Thus the end points of the band BN,n are given by two rational numbers of the form j±/l± which
lie closest to (and on either side of) the point φN,n/π = n/N . These can be found using the idea of Farey sequences
[14].

For a positive integer N , the Farey sequence FN is defined to be the set of all the fractions a/b in increasing order
such that (i) 0 ≤ a ≤ b ≤ N , and (ii) a and b are relatively prime. For N ≥ 2, if n/N is a fraction appearing
somewhere in the sequence FN , then it is known that the fractions a1/b1 and a2/b2 appearing immediately to the left
and to the right respectively of n/N satisfy

a1 , a2 ≤ n , and a1 + a2 = n ,

b1 , b2 < N , and b1 + b2 = N ,

nb1 − Na1 = 1 , and nb2 − Na2 = − 1 , (18)

and n, b1, b2 are relatively prime to N .
Using Eqs. (16) and (17), we now see that the end points of the band BN,n are given by

φN,n,− =
πa1

b1
, and φN,n,+ =

πa2

b2
, (19)
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FIG. 1. The values of φ/π for which N-body bound states exist for various values of N .

where a1/b1 and a2/b2 are the fractions lying to the left and right of n/N in the Farey sequence FN .
For N ≥ 3, the lowest band is given by n = 1; by using Eq. (18), the range of this band is obtained as 0 < φ/π <

1/(N − 1). For higher values of n, the end points of the band BN,n (i.e., the integers ai and bi) can be determined
numerically by using the properties given in Eq. (18). Fig. 1 shows the ranges of values of φ for which bound states
exist for N = 2 to 20.

Eq. (18) implies that the width of the right side of the band BN,n from φN,n to φN,n,+ is π/(Nb2), while the width
of the left side from φN,n,− to φN,n is π/(Nb1). For later use, we note that each of these widths is larger than π/N2,
since b1, b2 < N .

We now calculate the momentum and binding energy for the N -body bound states in a particular band BN,n using
Eq. (9). The form of the end points given in Eq. (19) shows that sin(Nφ) = 0 at only one point in the band BN,n,
namely, at φ = φN,n. In the right part of the band (i.e., from φN,n to φN,n,+), the sign of sin(Nφ) is (−1)n. In the left
part of the band (i.e., from φN,n,− to φN,n), the sign of sin(Nφ) is (−1)n+1. Since χ has the same sign as (−1)n+1,
the momentum given in Eq. (9) is positive in the left part of the band, negative in the right part of the band, and
zero at φ = φN,n.

To calculate the binding energy, we consider a reference state in which the momentum P of the N -body bound
state is equally distributed among N single-particle scattering states. From Eqs. (3) and (9), the wave number
associated with each of these single-particle states is found to be k0 = χ sin(Nφ)/(N sinφ). The total energy for the
N single-particle scattering state is therefore given by

Es = h̄2Nk2
0 =

h̄2χ2 sin2(Nφ)

N sin2 φ
. (20)

Subtracting E in (9) from Es in (20), we obtain the binding energy of the N -body bound state as

EB(φ,N) =
h̄2χ2 sin(Nφ)

sinφ

{sin(Nφ)

N sinφ
−

cos(Nφ)

cosφ

}

. (21)

Substituting N = 2 in Eq. (21), we obtain EB(φ, 2) = 2h̄2χ2 sin2 φ. Thus EB(φ, 2) > 0 for any nonzero value of φ.
Let us now consider the case N ≥ 3. We can rewrite Eq. (21) in the form
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FIG. 2. The binding energy EB of the N-body bound state as a function of φ/π for three different values of N .

EB(φ,N) =
h̄2χ sin(Nφ)

N sin2 φ cosφ
f(φ,N) ,

f(φ,N) = χ [sin(Nφ) cosφ − N cos(Nφ) sinφ]. (22)

On adding up all the inequalities given in (13) or (15), and using the identity
∑N−1

l=1 cos[(N−2l)φ] = sin[(N−1)φ]/ sinφ,
we find that f(φ,N) is positive in all the bands BN,n for all values of N and n. Hence, EB given in (22) has the same
sign as χ sin(Nφ). Following arguments similar to that of the momentum, we find that the binding energy is positive
in the left part of each band, negative in the right part, and zero at the point φ = φN,n.

We thus see that for φ > 0, the momentum and the binding energy are both positive in the left part of each
band, and they are both negative in the right part. [If φ < 0, we can similarly show that bound states with positive
(negative) values of P/φ have positive (negative) binding energy]. In Fig. 2, we show the binding energy EB as a
function of φ/π for three different values of N . (We have set h̄2χ2 = 1 in the figure). We see that EB is indeed
positive (negative) in the left (right) part of each band.

We will now use the technique of continued fractions to study the inverse problem of determining the values of
N for which N -body bound states exist for a given value of φ. Any positive real number x has a simple continued
fraction expansion of the form [14]

x = n0 +
1

n1 + 1
n2 + ···

, (23)

where the ni’s are integers satisfying n0 ≥ 0, and ni ≥ 1 for i ≥ 1. The expansion ends at a finite stage with a last
integer nk if x is rational, and does not end if x is irrational. Given a number x, the integers ni can be found as
follows. We define x0 = x. Then n0 = [x0], where [y] denotes the integer part of a non-negative number y. We then
recursively define xi+1 = 1/(xi−ni), and obtain ni+1 = [xi+1] for i = 0, 1, 2, · · ·. If we stop at the kth stage, we obtain
a rational number rk =< n0, n1, n2, · · · , nk > which is an approximation to the number x. If we write rk = pk/qk,
where pk and qk are relatively prime, then it is known that

| x −
pk

qk
| <

1

q2k
, (24)
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for all values of k ≥ 1 [14].
Now suppose that we know the expansion

φ

π
= < 0, n1, n2, · · · > . (25)

If we stop at the kth stage in this expansion, we obtain pk/qk =< 0, n1, n2, · · · , nk >. Eq. (24) then implies that

|
φ

π
−

pk

qk
| <

1

q2k
. (26)

We now recall the comment that both the right and the left part of the band Bqk,pk
have widths which are larger than

1/q2k. Hence Eq. (26) implies that φ/π must lie within the band Bqk,pk
. We have thus found a value of N = qk for

which an N -body bound state exists for the given value of φ. We can generate several such values of N by stopping
at different stages k in the expansion given in (25). If φ/π is rational, the continued fraction expansion stops at a
finite stage, so we only obtain a finite number of values of N in this way. This can also be seen directly from Eq.
(12). If φ/π = p/q is rational, then at least one of the inequalities in (12) will be violated if N > q. We thus conclude
that if φ/π is rational, there is only a finite number of values of N for which a N -body bound state exists. If φ/π is
irrational, then the expansion in (25) does not end, and we can use the procedure described above to find an infinite
number of possible values of N for which a N -body bound state exists.

To conclude, we have used the ideas of Farey sequences and continued fractions to determine all the allowed ranges
(bands) of η for which quantum N -body bound states exist in the DNLS model. For N ≥ 3, we find that the N -body
bound states can have both positive and negative momentum. Bound states with positive (negative) values of P/η
have positive (negative) binding energy. Our work brings the analysis of the quantum bound states in the DNLS
model to the same level of completion as that of the usual nonlinear Schrödinger model (where bound states are
known to exist for all negative values of the coupling constant and all values of N ≥ 2).

Bound states with negative binding energy are unusual in the field of integrable quantum models. However, such
states are known to exist in other areas of quantum physics, such as antibonding states in molecules (see [15] for
instance). The negative binding energy states that we have found in the DNLS are stable because the model is
integrable. Presumably, these states would decay if one were to add terms to the Hamiltonian which destroy the
integrability; any real system would probably have such terms anyway, so it is not clear at the moment if such states
can be observed experimentally.

The quantum bound states which exist in the lowest band and have positive binding energy can be related in several
ways to the solitons which appear in the classical version of the DNLS model which is integrable. A general method
for relating quantum bound states and classical solitons is described in Ref. [4]. For the case of DNLS model, the
classical solitons are localized solutions of the equation

ih̄
∂ψ

∂t
= − h̄2 ∂2ψ

∂x2
+ i4h̄η ψ∗ψ

∂ψ

∂x
, (27)

with
∫ ∞

−∞
dxψ∗ψ = h̄N . These solitons are known to exist only if 0 < |η| < π/N [6,13], and they can be obtained by

taking the h̄→ 0 , N → ∞ limit of the quantum bound states [6]. Another way of relating the classical solitons and
quantum bound states of DNLS model is indicated in the first paper in Ref. [11]. There it is argued that the classical
soliton mass, with one-loop quantum corrections, is given by

Mcl =
1

2
[ N +

η2

3
(N3 −N) ] . (28)

Comparing this to the mass of the N -body bound state in Eq. (10), we see that the two agree up to order η2 for
small η. An interesting problem for future study may be to see if there is a classical version of the bound states in
the higher bands which we have found in this paper. Since the ranges of values of η for which these bound states
exist depend sensitively on N , going to the limit N → ∞ with a fixed value of η may turn out to be a rather subtle
problem.
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