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1 Introduction

The appearance of boson-fermion duality in lower dimensional quantum field theoretical
models and many-particle systems has attracted a lot of attention in recent years [1-
8]. The equivalence of bosonic sine-Gordon model with fermionic massive Thirring
model is a classic example of boson-fermion duality in the context of one-dimensional
field theoretical models [1]. Such a duality is a consequence of the fact that spin
and statistics become essentially irrelevant notions in one spatial dimension, and thus
the bosonic and fermionic theories can be related to each other through a duality
transformation. In the context of many-particle systems in one dimension, it has been
found that a bosonic and a fermionic model, with distinct point interactions and related
by coupling constant inversion, share the same spectrum [2,3]. The signature of boson-
fermion duality has also been observed in the setting of quantum many-body systems
like the Tomonaga-Luttinger liquid theory of one-dimensional systems of interacting
fermions, where the low-lying excitations are describable through bosonic degrees of
freedom [4-6]. Recently, an exact bosonization method has been applied to study this
problem in the non-interacting case even beyond the regime of validity of the low-energy
approximation [7].

Duality relation has also been explored in the context of supersymmetric quantum
integrable spin models, where bosonic and fermionic spin degrees of freedom appear
simultaneously. It may be noted that, such exactly solvable one dimensional quantum
spin chains have a close relation with correlated systems in condensed matter physics,
where holes moving in the dynamical background of spins behave as bosons and spin—%
electrons behave as fermions [9,10]. Recent studies also reveal some interesting connec-
tion of these supersymmetric spin chains with loop models [11]. The Haldane-Shastry
(HS) spin chain and the Polychronakos spin chain are two well known examples of
quantum integrable models with long range interaction, for which the exact spectra
can be computed analytically even for finite number of lattice sites [12-16]. Supersym-
metric extensions of these spin chains and related exactly solvable models have also
been studied intensively [17-24]. In particular, by using the freezing trick [13,19], the
exact partition function of the SU(m|n) supersymmetric Polychronakos spin chain has
been derived in a simple form [21,22]. Furthermore, it has been shown analytically
that, the partition function of this supersymmetric Polychronakos spin chain satisfies
a duality transformation under the exchange of bosonic and fermionic spin degrees of
freedom. So it is natural to enquire whether a similar boson-fermion duality relation

exists in the case of the SU(m|n) supersymmetric HS spin chain.



The Hamiltonian of the SU(m|n) HS model, with N number of lattice sites uni-
formly distributed on a circle, is given by

H(m|n)
Fmin) _ % 3 A+ F ) il Pﬂi ) (1.1)
1<jh<n (&5 — &)
where &; = jn/N, and pj(,?'") is the supersymmetric exchange operator (its definition
is given in Section 2) which interchanges the ‘spins’ on the j-th and k-th lattice sites.
In analogy with the nonsupersymmetric case [25], the exact partition function of the
SU(m|n) HS spin chain (1.1) has been computed recently by applying the freezing
trick [23]. It has also been conjectured that this partition function, which is denoted

by Z](Vm|")(q), satisfies a duality relation of the form

251 g) = " T 25 (12)
where ¢ = e_’CB;T. With the help of a symbolic software package like Mathematica, one
can easily check the validity of this conjecture for a wide range of values of m, n and
N. However, an analytical proof of this conjecture for all possible values of m, n and
N has been lacking till now. The boson-fermion duality for the supersymmetric HS
spin chain can also be studied at the level of the corresponding spectrum. Comparing
the coefficients of the same powers of ¢ on the two sides of Eqn. (1.2), one finds that
the spectrum of H™™ (1.1) is related to that of H™™ through an inversion and an
overall shift of all energy levels. Such a relation between the spectra of the SU(m|n)
and SU(n|m) HS spin chains was first empirically observed by Haldane on the basis of
results obtained by numerical diagonalization [17].

In this article, we aim to provide an analytical proof for the duality relation (1.2). To
this end, it may be noted that the SU(m|n) supersymmetric spin Calogero-Sutherland
(CS) model has a Y(gl(m|n)) super Yangian symmetry [26]. Since the SU(m|n) HS
spin chain can be obtained by taking the freezing limit of the SU(m|n) spin CS model,
the Hamiltonian (1.1) also exhibits the Y (gl(m|n)) super Yangian symmetry [17]. It
is well known that, a family of irreducible representations of this Y (gl(m|n)) quantum
group can be labeled by some super skew Young diagrams and the corresponding Schur
polynomials. Interestingly, such super Schur polynomials obey a duality relation under
the exchange of bosonic and fermionic variables [27,28]. This duality relation will play
a key role in our approach for proving the boson-fermion duality relation in the case
of the SU(m|n) HS spin chain. In Sec. 2 of this article, we briefly review the super
Yangian symmetry for the SU(m|n) HS spin chain and also give a simple alternative

proof of the duality relation satisfied by the super Schur polynomials. In Sec. 3, we
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find a novel combinatorial formula for these super Schur polynomials, which allows
us to establish a connection between these polynomials and the partition function of
the SU(m|n) HS spin chain. By exploiting the above mentioned connection, we give
an analytical proof of the boson-fermion duality relation (1.2) in Sec. 4. In Sec. 5,
we explore the possibility of constructing a class of quantum integrable as well as
nonintegrable spin chains which would satisfy the boson-fermion duality relation. Sec.

6 is the concluding section.

2 Y(gl(m|n)) super Yangian symmetry of SU(m|n)
HS spin chain

For the purpose of defining the super exchange operator in the Hamiltonian (1.1) of the
SU(m|n) HS spin chain, let us consider a set of operators like C}a(Cja) which creates
(annihilates) a particle of species a on the j-th lattice site. These creation (annihila-
tion) operators are assumed to be bosonic when a € {1,2,....,m} and fermionic when
a€{m+1,m+2,..,m+n}. Thus, the parity of C’;a(Cj ) is defined as

p(Cja) = p(C’}a) =0 forae{l,2,....m},
p(Cja) :P(C;a) =1forae{m+1,m+2,...m+n}.

These operators satisfy (anti-) commutation relations like

[Clas Crple =0, [C]

joo

C]Zﬁ]j: =0, [Cja, C}ig]ﬂ: = 0jrdag (2.1)

where [A, B]y = AB — (—1)P™PB) BA. Next, we focus our attention on a subspace of

the related Fock space, for which the total number of particles per site is always one:

m-+n

Z C]Tacja =1, (2.2)
a=1

for all j. On the above mentioned subspace, one can define the supersymmetric ex-

change operators as
m—+n

Pyt = 3" 0f,0fCisCha (2.3)
a,8=1
where 1 < j < k < N. Inserting these exchange operators in (1.1), one obtains the
Hamiltonian of the SU(m|n) HS spin chain.
Next, we shall briefly review the super Yangian symmetry of this SU(m|n) HS spin

chain. Let V be an (m + n)-dimensional auxiliary graded vector space, through which
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the graded Yang-Baxter equation will be defined. We set B = B, LI B_, where

B, ={e1,....em}, B_ ={emnt1, s €min}- (2.4)

The generators E*® of the gl(m|n) Lie algebra satisfy (anti-)commutation relations
given by

[Eozﬁ7 Ew]i — PR _ (_1)(p(a)+1>(6))(:v('v)+p(5))5a5E'yﬁ7
where p(a) = 0 (resp. p(a) = 1) if ¢, € B, (resp. €, € B_). With these generators,
we define the graded permutation operator as

m-+n
P=> (-1))PE’RE™. (2.5)
a,B=1

Let {e*} be a set of basis vectors of the auxiliary vector space V. The generators
E*% and the graded permutation operator P act on such basis vectors and their direct

products as

E®er = §87e 7

Pe®® el = (—1)P@rB)ehf g e
We have the rational solution of the graded Yang-Baxter equation given by

where u is the spectral parameter. The Y (gl(m|n)) super Yangian [29] is associated to
this R-matrix. Namely,

R(u — v) T(u) T(v) = T(v) T(u) R(u — v), (2.7)

1 2
where T'(u) = T(u) ® 1, T(v) = 1® T(v) and T(u) is defined as

m+n

T(u)= Y (—1)"@ T u)E".

avﬁzl

Computing the tensor products through the rule
(a1 ®by) (a2 @ by) = (—1)p(a2)p(b1) ay az @ by by,
one can express Eqn. (2.7) as

[T (u), T7°(v)]
h

_ (_1)p(a)p(ﬁ)+p(“f)p(6)+p(a)p('v) (T”ﬁ(u) Taé(v) _ T“’ﬁ(v) T“5(u)) L (2.8)
U —v

+




The Yangian currents 7%’ (u) may be expanded in powers of the spectral parameter as

af
Tn
untl ’

T%(u) = 6% + h Y _(=1)" (2.9)
n=0
and the Y'(gl(m|n)) algebra (2.8) can also be expressed in a spectral parameter inde-
pendent way through the generators T,
The Y (gl(m|n)) super Yangian symmetry has been realized explicitly in the case of
the SU(m|n) HS spin chain [17,30]. Suitable combinations of the generators 75 and

TP yield conserved quantities of the Hamiltonian (1.1) in the form

N

o 1
7= (CJTaCjﬁ b n5aﬁ) > (2.10a)
j=1
m—+n .
oh — EZ > cot UL e el Chs - (2.10b)
2 g N ja~ky~37

It is well known that the Y (gl(m|n)) Yangian algebra is effectively generated by the
lowest two generators Ty 7 and " s, Consequently, by using the commutation relations
among conserved quantities like Q37 and QS one can obtain the complete Y (gl(m|n))
Yangian symmetry of the SU(m|n) HS spin chain.

Next, we shall prepare the super Schur polynomials (see e.g. [31]) which are closely
related to a class of irreducible representations of Y (gl(m|n)) Yangian algebra. For B,
we set a usual ordering as

€1 <€y <" < €Epyn -

The Young tableaux 7' is obtained by filling the numbers 1,2,...,m + n in a given
Young diagram A by the rules:

e Entries in each row are increasing, allowing the repetition of elements in {ile; €

B, }, but not permitting the repetition of elements in {ile; € B_},

e Entries in each column are increasing, allowing the repetition of elements in

{ile; € B_}, but not permitting the repetition of elements in {i|¢; € B, }.

The super Schur polynomial corresponding to the Young diagram A is then defined as

Sx(z,y) = Z eV U™ (2.11)

tableaux T of shape A

Here the weight wt(7") of the Young tableaux T is given by

wt(T') = Z Me €a s
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where m,, denotes the number of « in 7', and we use the notations
x; =e“fore € By, yi = e Fifor €, € B_|

along with = = {xy,.. ..z}, y ={v1,. .., Un}-

A skew Young diagram A/p is obtained by removing a smaller Young diagram
p from a larger one A that contains it [32]. The super Schur polynomial Sy, (z,y)
corresponding to such skew Young diagram A/u can also be defined combinatorially as
in (2.11). Let X" denote the conjugate of the Young diagram A (the conjugate of a Young
diagram is obtained by flipping it over its main diagonal). It is evident that the rows
of a conjugate diagram are mapped to the columns of the original diagram and vice
versa. It is worth noting that the rule for filling up a row of a super Young tableaux, as
stated before Eqn. (2.11), is transformed to the rule for filling up a column of a super
Young tableaux (and vice versa) provided we substitute the elements {il¢; € B;} in
place of elements {ile¢; € B_} (and vice versa). Due to such a duality of the rules for

filling numbers in the case of a skew Young tableaux, we easily obtain

S)\/;L(Ia y) = S)\’/,u’(yv ZE') . (212)

This duality relation between two super Schur polynomials associated with a skew
Young diagram and its conjugate diagram has also been found earlier through a differ-
ent approach [27,28].

Hereafter we shall consider only connected super skew Young diagrams which do

not contain any 2 x 2 square box. Such a skew Young diagram is also called a ‘border
strip” and may be denoted by (mq, ms, ..., m,):
These border strips will play a key role for our purpose due to their connection with
‘motifs’ [30,32,33], which represent irreducible representations of Yangian algebra and
span the Fock space of Yangian invariant spin systems. The motif ¢ for an N-site
super spin chain is given by an N — 1 sequence of 0’s and 1’s, § = (d1,02,...,0n_1)
with §; € {0,1}. There exists a one-to-one map from a motif § to the border strip
(my,ma, ..., m,); we read a motif 6 = (d1,d,...) from the left, and add a box under
(resp. left) the box when we encounter 6; = 1 (resp. J; = 0). For example, the motif
(10110) leads to the border strip (2,3, 1). The inverse mapping from a border strip to
a motif can also be defined in a straightforward way.

Finally we discuss a convenient way of expressing the super Schur polynomials
associated with border strips through the supersymmetric elementary functions. Let
us assume that the polynomial e;(x) represents the sum of all monomials z;, x;, - - - z;

£

for all strictly increasing sequences 1 < i1 < 15 < --- < iy < m, while the polynomial
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Figure 1: Shape of the border strip (my, ma, ..., m,)

he(y) represents the sum of all distinct monomials of degree ¢ in the variables y. We

have the following generating functions for polynomials e,(z) and h(y):

n

[Ta+te) =@ II; —1ty,- =3 hiy)t. (2.134, b)

i=1 £=0 i=1 =

o

The supersymmetric elementary function Ej(z,y) (= Spsj(z,y)) may be written
through the polynomials e,(z) and hy(y) as [22,34]
J
Ej(z,y) = Zeé(i’f) hi—o(y) . (2.14)

=0
By using these supersymmetric elementary functions, one can express the super Schur
polynomial corresponding to the border strip (m,ms, ..., m,) in the form of a deter-

minant given by [22,32]

Emr' Emr"f‘mrfl e “e e Emr'+"'+m1
1 Emrfl Emrfl‘*‘mr% s Emr71+---+m1
Stmimo,... mr>(x7 y)=|0 1 E., . . (2.15)
0 . 0 1 Ep,

Expansion of the above determinant along its first row yields a recursion relation for

the super Schur polynomials as

T

Stmamae, mr>(x7y) = Z(_1)S+1Emr+m7“71+“'+mrfs+l('I7y>'S<mlym2 ----- mrfs>(x7 y), (2.16)

s=1



where Sy (z,y) = 1. This recursion relation will play an important role in our analysis

in the next section.

3 Partition function of SU(m|n) HS spin chain and
super Schur polynomials

Here our aim is to make a connection between the partition function of the SU(m|n)
supersymmetric HS spin chain and the super Schur polynomials associated with the
border strips. The partition function for the Hamiltonian (1.1) of the SU(m|n) HS
spin chain is found to be [23]

2@ =3 > (TT4) Fomasm.(a). (3.1)

r=1 {mi,ma,...my}€Pn(r) =1

where ¢ = e~ V/ksT g™ ig given by

min(m;, m)
dg =S opemete, 52)
k=0
with C" = #lk),, Fry mo...m,(q) is a polynomial of ¢ which is defined in the fol-

lowing, and Py(r) denotes the set of all partitions (taking care of ordering) of N with
length r. For example, the set P4(2) is given by {{3,1}, {1,3},{2,2}}. Let us introduce

the partial sums corresponding to the partition {my, ma,...,m,} € Py(r) as

J
My =Y "m, (3.3)
=1

where j € {1,2,...,r}. It may be noted that, 1 < M; < My < -+ < M,_; <
N — 1 and M, = N. The complementary partial sums corresponding to the partition
{mi,mq,...,m,} are denoted by M; with j € {r+1,r+2,..., N}, and they are defined
through the relation

{Mr-i-l)MT-i—Za .. .,MN} = {1,2, .. ,N} — {Ml,Mg, .. .,MT}. (34)

In contrast to the case of partial sums, there exists no natural ordering among these
complementary partial sums and they can be ordered in an arbitrary way. The ‘energy

function’ corresponding to a partial sum or complementary partial sum is defined as

E(M;) = M;(N — M), (3.5)



where 7 € {1,2,...,N}. The polynomial F,, m,

.....

through these energy functions as
2o E(Mj) _
Py gy, () = 7 IT @ —q¢). (3.6)

It should be noted that Z](vm‘")(q) in Eqn. (3.1) does not depend on the parameters
m) (%, y) in Eqn. (2.15). So,

for making a connection with the super Schur polynomials, we introduce a ‘generalized’

x and y, which are present in the expression of Sy, m,

.....

partition function for the SU(m|n) HS spin chain:

IO SRS (HEmlxy) (@), (37)

r=1 {m1,ma,...;m,}EPN(r) i=1

E., (z,y) being a supersymmetric elementary function which is defined in Eqn. (2.14).
Setting all z;’s and y;’s equal to 1, and then equating the coefficients of the same powers
of t from both sides of Eqn. (2.13a) or Eqn. (2.13b), we find that

. —k+n— 1
- ml k

ex(x)|  =CF  hm—i(y)

y=1
Substituting these relations in Eqn. (2.14) and comparing it with Eqn. (3.2), it is easy

to see that
= dmin), (3.8)

my;

z=1,y=1
Consequently, by inserting x = y = 1 in Eqn. (3.7) and comparing it with Eqn. (3.1),
we find that

23" (g5 2,) = Z{"(q). (3.9)

rz=1,y=1

Next, we note that Fi,, m,. . .m.(¢) in Eqn. (3.6) can be explicitly written in the

.....

form of a polynomial as

N
ZfM S oo 3 aif(My)
Prpimpeeam (@) = 07 Z Z Z yir g T (3.10)

ar+1=0 ap42=0 an=0

The lowest power of ¢ in this polynomial is given by ZT LE(M ;), which is obtained by
choosing o, 11 = @19 = = ay = 0 in the r.h.s. of the above equation. On the other
hand, for the choice a; = 1 when i € {ly,ls,...,l;} (where {l1,lo, ..., [z} C{r+ 1,7+
2,...,N})and a; =0 when i ¢ {l1,l5,...,l;}, a term with a higher power of ¢ given by
Z; i E(M;) + ZZ L E(M;,) will appear in this polynomial. It is easy to check that this

higher power of ¢ coincides with the lowest power of ¢ appearing in another polynomial
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Eont oy, (@) associated with the partition {m},mj,...,m; .} € Py(r + k), for

which the partial sums form a set given by
{My, Ms, ..., M,_y, M, } U{M,,, M,,, ..., M, }.

In this way, any higher power of ¢ appearing in the polynomial F},, ... m, (¢) would co-
incide with the lowest power of ¢ appearing in some other polynomial F,;; ny  nr " (q).
Consequently, the lowest order terms of all possible polynomials like F,, .. m. (¢)
(associated with all possible partitions of N) form a ‘complete set’, through which

Z](vm|n) (¢;z,y) in Eqn. (3.7) can be expressed as a polynomial in ¢ as

N r—1
min > E(M;) -
Z3" (g 2,y) = > > @ Stnymamn) (T, Y), (3.11)

r=1 {my,ma,...m,}€Pn(r)

where S<m1,m2,...,mr>(1’, y) are some unknown functions of x and y, which will be deter-
mined in the following.
Comparing the r.h.s. of Eqns. (3.7) and (3.11), and also using (3.10), we find that

N TSE(M )
I j R
: : E q]zl S(m17m2,...7mr> ("Ij7 y)

r=1 {m1,ma,...,mr}€PN ()

1

EN - E e & & aeom
- Z <H m; (x,y)) ¢ ’ E (—1)i=r+1 Zqi:kJrl A ’
=1

k=1 {m},mb,...m} }€Pn (k) Q1,0 ,an =0

(3.12)

where M ’s denote the partial sums and complementary sums corresponding to the par-
tition {m}, m}, ..., m}}. Note that corresponding to each partition {m},mj,...,m;} €
Py (k), many terms with different powers of ¢ in general appear in the r.h.s. of the
above equation. Let us first try to find out the necessary condition for which a par-
tition yields at least one 1:erkm1 with the power of ¢ being given by Z;;} E(M;). It
should be observed that ¢=i=1 ) ig the common factor of all terms generated by
the partition {m},m,...,m}} in the r.h.s. of Eqn. (3.12). Consequently, the term
ng;i €(M5) can be generated through the partition {mf,mb,...,m}} only if k£ <r and

the corresponding partial sums satisfy the condition
{M{, M, - My} C{My, My, -, M,}. (3.13)
Hence, we can write these partial sums as
M = My, (3.14)
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where ¢ € {1,2,...,k}, and the indices Ly, Lo, ..., L, satisfy the condition

Let us consider another set of indices like Ly, 1, Lyio,..., L., and define the corre-
sponding set as
{Lk—l—h L]H_g, ey LT} = {1, 2, c ,7’} - {Ll, LQ, ceey Lk} (316)

Using Eqns. (3.14) and (3.16) we obtain

(M, My, ..., MYy — {M,, M}, ..., M} ={My,Ms,..., M} —{M, My, ... M}

={Mp, ..M, ..., M} (3.17)
With the help of the embedding condition {M], My, -+, M.} C {My, My,--- ,M,} C
{1,2,---, N}, the set of complementary partial sums associated with the partition
{m/,mb, ..., m}} can be written as

(M1 Micip, - My}

={1,2,... N} — {M{, M;,..., M}

- ({1,2,,N} —{Ml,Mg,...,MT}) U ({Ml,Mg,...,MT}— {M{,Mé,,Mé})
(3.18)

Using the relation (3.18) along with (3.4) and (3.17), we find that
{Mj M g ..., My} ={M,y1,Myo,..., My} U{Myp, . Mp,,,...., M} (3.19)

Consequently, we can express the complementary partial sums associated with the
partition {m}, m}, ..., m}} as
M]’ = Mp,, (3.20)

where the L,’s are defined through Eqn. (3.16) when j € {k+ 1,k +2,--- ,r} (the
ordering of indices Lj41, Lgto,. .., L, is not important for our purpose), and L; = j
when je{r+1,r+2,...,N}.

With the help of Eqns. (3.17) and (3.20) we find that, for the choice of summation
variables like g1 = o = -+ = a, = 1 and a,41 = Q40 = -+ = ay = 0, one

T

term with the power of ¢ given by Zj;}g (M;) is generated through the partition
{m/,m},...,m}} in the r.h.s. of Eqn. (3.12). Moreover, the coefficient of g=i=1 EOV3)

in the above mentioned term is obtained as

k k
C{m’l,m’2 ..... mi} = (_1)7“—]9 HEm;(x>y) = (_l)r_k HEMZ-’—MLI(Q%?J) ) (321)
i=1

i=1
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where it is assumed that M) = 0. Using Eqn. (3.14), these coefficients can also be

written as

k
Clmt ity = (=1 [ Barg,=na, (2,9). (3.22)
i=1
where the indices Ly, Lo, ..., L satisfy the condition (3.15) and it is assumed that
My, = 0.

From the above discussion it is evident that, Eqn. (3.13) represents not only the
necessary but also the sufficient condition for which the partition {mf,ms, ..., m}}
yields one term with the power of ¢ being given by Z;;ié’ (M;). By summing up
T E(M;)
=1 J

the coefficients of qu associated with all such partitions, we can determine

§<m17m27m,mr>(:ﬁ,y) appearing in Eqn. (3.12). Thus, by using Eqn. (3.22), we find that

r k
S<m1,m27---7mr> (l’, y) = Z Z (_I)T—k H EMLi_MLi—l (l’, y) . (323)
k=1 1<Li<--<Lp=r i=1

Since the L;’s appearing in the above equation satisfy the condition (3.15), they can

be written as '
Li=) (, (3.24)
s=1

where the ¢,’s are k number of positive integers such that {¢,0,...,0.} € P.(k).

Consequently, S, m....m,)(T,y) in Eqn. (3.23) can also be expressed in the form

r k
S(m17m2,---7mr'> (z,y) = Z Z (_l)r_k H EIMLZ-—MLZ-,1 (@, y), (3.25)
k=1 {£1,62,....0, }EP; (k) i=1
where the L;’s are related to the ¢4’s through Eqn. (3.24).
Next, we find that §<m17m27___,mr>(x,y) given by Eqn. (3.25) satisfies the following
recursion relation:

T

St mzeme) (T, Y) = Z(_1)s+1Emr+mr71+”'+mr-fs+1(':C7 y>'§<m17m27~~~7mr'7s>(x7 y), (3.26)
s=1
where §<0> (z,y) = 1. The derivation of this recursion relation is presented in Appendix
A. Tt is interesting to observe that, the above recursion relation is exactly the same in
form as the recursion relation (2.16), which is satisfied by the super Schur polynomials
associated with the border strips. Consequently, the function §<m1,m2,m7mr>(z, y) coin-
cides with the super Schur polynomial S, ms,...m.) (@, y). Thus, Eqn. (3.25) gives us a
novel combinatorial formula for the super Schur polynomial corresponding to the bor-

der strip (my, ma, ..., m,), which is usually defined through Eqn. (2.15). Substituting
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§<m17m27___,mr>(:c, Y) by Sty ma,..my (T, y) in Eqn. (3.11), we can express the generalized
partition function of the SU(m|n) HS spin through the super Schur polynomials as

N r—1
min Z g(Mj)
ZVM (g y) = > @' Stmyma,m) (T,Y) - (3.27)
r=1 {mi,ma,....m,}EPn (1)
In the limit x = y = 1, this generalized partition function clearly reduces to the

standard partition function Z{"™ (¢) given in Eqn. (3.1).

It should be noted that, the partition function of the Polychronakos model can
also written in a form similar to (3.27) by using the corresponding energy function
[32,22]. This is due to the fact that both models, the HS model and the Polychronakos
model, share the same Yangian symmetry. See Ref. 35 for the conformal field theoretic

construction of conserved quantities leading to the Yangian symmetry.

4 Duality relation for supersymmetric HS spin chain

In this section, our aim is to give an analytical proof for the duality relation (1.2)
involving the partition functions of the SU(m|n) and SU(n|m) HS spin chains. A
central role in this proof will be played by the duality relation (2.12) for the super
Schur polynomials. Let us assume that A/u in (2.12) represents a border strip: A/u =
(my,ma,...,m,), where {my,ms,...,m,} € Py(r), and denote the conjugate of this
border strip as (mq, ma, ..., m,). Applying the rule for obtaining a conjugate diagram
to Fig. 1, we find that

S~ Myp_o —
— My —

— m, —

(my,ma,...,m,) | ‘

Figure 2: Shape of the border strip conjugate to (my, ma,...,m,)

It may be observed that, the vertical length of the border strip (my,ma, ..., m,)
drawn in Fig. 1 is given by (N —r + 1). Since this vertical length coincides with the
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horizontal length of the conjugate border strip (m, ms, ..., m,)" (as drawn in Fig. 2),

it can also be expressed as

/

<m1,m2, s amr> = <m/1>m,27 s ?mlN—r—i-1>’

where m/’s are some functions of m;’s and {m},my,...,miy_, .} € PN(N —r+1). A
relation between m;’s and m}’s will be established in the following by exploiting the
motif representations corresponding to the border strips.
Using the rule for mapping a motif to a border strip as discussed in Sec. 2, and
observing Fig. 1, it is easy to check that
(1,...,1,0,1,...,1,0,...... ,0,1,...,1) = (mq,ma,...,m,). (4.1)
—— —— ——

mi1—1 mo—1 my—1

Let us denote the set formed by the positions of 0’s (resp. 1’s) in the motif associated
with the border strip (mi,ma,...,m;) as Qunims,..m)(0) (resp. Qunyms,...m.y(1)).
For example, since the motif (10110) leads to the border strip (2,3,1), Q2,31)(0) =
{2,5} and Q231y(1) = {1,3,4}. Observing the Lh.s. of (4.1) we find that, the set
Q(m1,ms,...m,)(0) can be expressed through the partial sums corresponding to the par-

tition {mq, mo, ..., m,} as
Qm,maeimi) (0) = { My, Mo, -+, M1} (4.2)
Using (4.2) along with the relation
Qimymayme) (1) ={1,2,- -+, N = 1} = Qi ma,...;m,) (0)

it is easy to express the set Q(mn, ms,,.m,)(1) through the complementary partial sums

corresponding to the partition {mq, ms,...,m,} as

Q<m17m27---7mr>(1) = {MT+17 MT+27 Tty MN} . (43)

Applying the rule for mapping a motif to a border strip and observing Fig. 2, it is easy
to check that

(0,...,0,1,0,...,0,1,...... J1,0,...,0) = (ml,mb, ..., my_ 1) (4.4)
my—1 my_1—1 mi1—1

Comparing the Lh.s. of (4.1) and (4.4) we find interestingly that the conjugate motif

can be obtained from the original motif by applying the following two rules:

e Replacing 0’s with 1’s and vice versa,
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e Rewriting all binary digits in the reverse order.

For example, the conjugate of the motif (10110) is obtained as (10110) — (01001) —
(10010). Using the above mentioned rules along with Eqn. (4.3), it is found that

Q! miy...., m9v7r+1>(0> ={N—-M,;1,N—M,5,--- N — My}. (4.5)

On the other hand, using Eqn. (4.2) for the case of border strip (m},m5, ..., my_.),
we obtain

Q(M'l,m'z ----- mlN,T+1>(0> = {M{7 Mév ) M]/V—T} ) (46)

where M]’s denote the first (N — r) number of partial sums corresponding to the

partition {m/,mj,...,miy_,,,}. Comparing the r.h.s. of (4.5) with (4.6) we find that
{M], My, ,My_,.} ={N—M,y1,N— M, 9,--- ,N — My}. (4.7)

This relation between the partial sums associated with the conjugate border strip
(mf,my,...,m)y_,.,) and complementary partial sums associated with the border strip
(my,mg,...,m,) will be used shortly for proving the duality relation (1.2).

With the help of Eqn. (2.12), we express the generalized partition function (3.27)

as

r—1
min 2o E(Mj)
Z( ) q7ll§' y Z Z qj:l S(m’l,m’2 ..... m’N7T+1>(y7x) . (48)

r=1 {mi,ma,....,m,}€PN(7)

Due to Eqn. (3.4), it follows that {M;, Ms,..., My} ={1,2,... N}. So we obtain

_ N(N?*-1)
ZS Z] =——%

Using this relation along with the fact that £(M,) = 0, one can rewrite Eqn. (4.8) as

N
m N(N2-1) - X &(My)
Z( I )(q7 x y =q 6 Z Z q g=rt S(mi,m’2 ..... m’]\,if,+1>(y> $) :

r=1 {m1,maz,...,m;}€Pn (1)

From the definition of £(M;) in Eqn. (3.5), it is evident that
E(M;) = E(N — Mj).

Applying this relation along with Eqn. (4.7), we obtain

ST e = Y EWN - M) = S £,

]:7”—‘,—1 ]:T-‘rl
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Using the above relation and rearranging the summation variables, Z](Vm‘")(q; z,y) in

Eqn. (4.9) may be written as

=z

N-—r
mln N(N2-1) - > &(My)
Z](V | )(qw,y) =q 6 Z Z qg =t S(m’l,m’Q,...,m’IV7T+1>(yax)

r=1 {m1,ma2,...m, ePn ()

=
7

N(N2—1) - > E(My)
=q 3 Z q =1 ¢ S(m/17m,2,,mls>(y7x)7 (410)

s=1 {m}mb...m,}Pn(s)
where we have used the notation s = N — r 4+ 1. With the help of (3.27), Eqn. (4.10)
is finally expressed as

N(N2-1)

Zy" N Gwy) =a 5 Zy " (¢ y ). (4.11)

Thus we are able to prove a duality relation between the generalized partition functions
of the SU(m|n) and SU(n|m) HS spin chains under the exchange of bosonic and
fermionic degrees of freedom. In the limit x = y = 1, this duality relation reduces to

the duality relation (1.2) for the partition functions of supersymmetric HS spin chains.

5 Duality in spin models with global SU(m|n) sym-
metry

The super Yangian symmetry of the SU(m|n) HS spin chain has clearly played a key
role in the previous section for establishing the duality relation (1.2). However, such a
Yangian symmetry is found to exist only in very few quantum integrable spin chains. So
it is natural to ask whether nonintegrable spin models can also exhibit duality relation
under the exchange of bosonic and fermionic spin degrees of freedom. In the following,
we shall try to answer this question by using a rather different approach.

Let us consider a Hamiltonian of the form

HOM =+ S wp P, (5.1)

J
1<j<k<N

where wy and wj;,’s are arbitrary constant parameters and P](,T ") is the supersymmetric
exchange operator defined in Eqn. (2.3). Similar to the case of the SU(m|n) supersym-
metric HS spin chain, the action of Hamiltonian (5.1) is restricted to the state vectors

which satisfy the condition (2.2). Due to this condition, the supersymmetric exchange
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operator pj(,?'") becomes equivalent to an ‘anyon like’ representation of the permuta-
tion algebra [20]. The vector space corresponding to this anyon like representation of
the permutation algebra is a direct product of N number of (m + n)-dimensional spin
spaces, and it contains orthonormal basis vectors like |oqag -+~ ON)mn, Where
aj € {1,2,...,m+n}. Let us denote this space as V(). For the sake of convenience,
we assign a ‘parity’ p(c;) to each spin component «;. Moreover, we call o; a ‘bosonic’
spin with p(a;) = 0 when «; € {1,2,...,m} and a ‘fermionic’ spin with p(c;) = 1
when o € {m +1,m +2,...,m + n}. The symbol pf, (f) denotes the total number
of fermionic spins lying in between the j-th and k-th lattice sites for the case of state

vector |aqasg - - SO Qg CON)mn

k—1

EAGERSRICHE (5.2)

(=j+1
If we define an anyon like representation ]5].(;”|n) on the space Vi) as

p(m[n)
ij |a1a2.-.aj.-.ak.-.aN>m7n

_ (_1)P(aj)17(ak)+ {p(ay)+plar)} p§y(f) loa - -y - - - Q- aN>m,n , (5.3)

that will be equivalent to the supersymmetric exchange operator ]5].(;”|n) given in Eqn. (2.3)

[20,23]. The relation (5.3) implies that the exchange of two bosonic (resp. fermionic)
spins produces a phase factor of 1 (resp. — 1) irrespective of the nature of the spins sit-
uated in between the j-th and k-th lattice sites. However, if we exchange one bosonic
spin with one fermionic spin, then the phase factor becomes 1 (resp. — 1) if there exist
even (resp. odd) number of fermionic spins situated in between the j-th and k-th lattice
sites. Due to the above mentioned equivalence between the supersymmetric exchange
operator ]5].(;”'”) and the anyon like representation 15].(,? ") the Hamiltonian H™™ in

Eqn. (5.1) is equivalently expressed as

HOW =wo+ Y wp PR (5.4)
1<j<k<N
Let us now define another set of orthonormal basis vectors for the space Vi, by
multiplying the states like |- -+ ;- - @n)mn through a phase factor, which takes
the value +1 (resp. —1) when the total number of fermionic spins sitting on all odd
numbered lattices sites is even (resp. odd):

N
. IRTICH
‘O(lO(QO@OKN) — (-1)(:1 |a10é2OégOéN>m,n (55)

m,n



By using Eqns. (5.3) and (5.5) we find that the action of P 7" on these new basis

vectors is given by

g (—1)2:1 P]k‘ |ala2...aj...ak...aN>m’n

N
- (_1)e§15p(az)(_l)p(aj)p(ak)-l- {p(aj)+p(ak)} p5 () loag - -y, - - Qe CON)mom
::(__1yxajnmak»+{p«w>+puu»}(pﬁxf>+j+k)‘Oq(yz...O%...<1j...(XN>;1n . (5.6)

Let us now consider the vector space V(;|m), which might be spanned through or-
thonormal basis vectors like [5152--- 3+ BN)nm, Where §; € {1,2,...,m+n}. In
this case, we call ; a ‘bosonic’ spin with p(f;) = 0 when 5; € {1,2,...,n} and a
‘fermionic’ spin with p(3;) = 1 when §; € {n+1,n+2,...,n+ m}. In analogy with

[m)

Eqn. (5.3), we can express the action of }3](,? on the space Vi,m) as

n\m ‘/6162 < B e 6N>nm
— ( 1) (ﬁj)P(IBk)"' {p(B;)+p(Br }pjk |ﬁ1ﬁ2 < ﬁj et /6N>n,m ) (57)

where pf .(f) denotes the total number of fermionic spins lying in between the j-th and
k-th lattice sites in the case of the state vector 81525, Bk BN)nm:

k-1

pfk(f) = Z p(Be) - (5.8)

l=j+1

Let U be a permutation of the set {1,2,...,m + n}, which satisfies the relations

{UM),U2),....,Um)}={n+1,n+2,...,n+m},
{Um+1),Um+2),....,Um+n)}={1,2,...,n}. (5.9)

With the help of this permutation, we define an unitary operator (4) which maps the

vectors of Vi, to the vectors of Vi, as

Ulnag---a;---an)p, = 0102 B ON)nm (5.10)

where 3; = U(w;). If a; represents a bosonic (resp. fermionic) spin in the space Viyjn),
then, due to Eqn. (5.9), ; would represent a fermionic (resp. bosonic) spin in the

space Vinm). Hence we can write

p(Bj) =1 —play). (5.11)
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Using the relations (5.2), (5.8) and (5.11), we also obtain

() = =k =1) = p5(f). (5.12)
With the help of Eqns. (5.10), (5.11) and (5.12), one can easily express equation (5.7)
in the form

= —(—1)plplen)t pleg)tp(en)} (FuD++E) |0 qy - -y - - caj N, (5.13)

*
m,n

Comparison of Eqn. (5.6) with Eqn. (5.13) implies that
By — Py, 5.14)
for all possible values of j and k. Using Eqns. (5.4) and (5.14), we find that
UH™YT = 20y — HTI™) (5.15)

Hence the spectrum of the Hamiltonian H (™™ can be obtained by inverting the spec-
trum of its dual Hamiltonian H™™ and giving this inverted spectrum an overall shift
of amount 2wy. If we define the partition function corresponding to the Hamiltonian
Hmm) ag Z](Vm‘")(q) =tr (qH(m‘n)), then by using Eqn. (5.15) we obtain a duality rela-

tion at the level of the partition function as
Z(m‘") — 42wo Z("‘m) -1 5.16
v o@=a"Zy (). (5.16)

It should be observed that, while proving the above duality relation, we have kept
the coupling constants wy and wj in the Hamiltonian H™™ (5.1) as completely free
parameters. By properly choosing these free parameters, one can generate many quan-
tum integrable models like SU(m|n) supersymmetric versions of the Haldane-Shastry

spin chain, the Polychronakos spin chain, and the isotropic Heisenberg spin chain. For
1 N(N2-1)

. B B N ) ‘
example, by choosing wy = Zl§j<k§N W) - . and w; = ) with
{; = %, in Eqn. (5.1), we recover the Hamiltonian (1.1) of the SU(m|n) supersym-

metric HS spin chain. The partition functions for all of the above mentioned quantum
integrable models will naturally satisfy the duality relation (5.16). However, since the
spin chain Hamiltonian (5.1) is nonintegrable for generic choice of wjj, it is obvious
that integrability or quantum group symmetry is not a necessary requirement for the
existence of the duality relation (5.16).

By using the (anti-)commutation relations (2.1), it is easy to verify that the su-

persymmetric exchange operator pj(,?'") (2.3) commutes with the set of operators Qg‘ﬁ
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given in Eqn. (2.10a). Therefore, the spin chain Hamiltonian H™™) (5.1) also com-
mutes with the set of operators QS‘B . Since commutation relations among the Qg‘ﬁ s
generate the SU(m/|n) algebra, it is clear that H (™™ has a global SU(m|n) symmetry
for any value of the parameters wy and wj;. It may be noted that H™) in Eqn. (5.1)
depends linearly on the supersymmetric exchange operators JSJ(,T ™) One can also con-
struct more general spin chain Hamiltonians with a global SU(m|n) symmetry by
including the products of different exchange operators (corresponding to different lat-
tice sites) with arbitrary coefficients. It is easy to see that such a Hamiltonian would
satisfy the duality relation (5.16), provided we construct the dual Hamiltonian 7 ™™)
from the original Hamiltonian H ") by keeping wy as well as all coupling constants as-
sociated with the products of odd numbers of exchange operators unchanged, reversing
the sign of all coupling constants associated with the products of even numbers of ex-
change operators, and finally replacing ]5].(,?1'”) by ]%(:‘m). Since any quantum integrable
or nonintegrable spin chain with a global SU(m|n) symmetry can be expressed as a
polynomial function of the exchange operators Pj(;n ‘"), it is evident that the partition

functions associated with such spin chains would satisfy the duality relation (5.16).

6 Concluding remarks

We have provided here an analytical proof for the boson-fermion duality relation in
the case of the SU(m|n) supersymmetric HS spin chain. To this end, we utilize the
Y (gl(m|n)) super Yangian symmetry of the SU(m|n) HS spin chain in a crucial way.
At first, we define a generalized partition function which reduces to the usual partition
function of this spin chain in some limit of the related parameters. Subsequently, we
express this generalized partition function in terms of the super Schur polynomials
associated with border strips, which label a family of irreducible representations of
the Y (gl(m|n)) quantum group. It is well known that such super Schur polynomials
satisfy a duality relation under the exchange of bosonic and fermionic variables. Using
this duality relation, we finally derive the boson-fermion duality (1.2) for the partition
function of the SU(m|n) HS spin chain. Apart from leading to a proof for this duality
relation, our expression (3.27) for the generalized partition function of the SU(m|n) HS
spin chain through the super Schur polynomials might be useful in future for finding
various correlation functions.

As a byproduct of our investigation of the duality relation of the SU(m|n) HS spin
chain, we obtain some results which are interesting from the mathematical point of

view. For example, while expressing the partition function of the SU(m|n) HS spin
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chain in terms of the super Schur polynomials, we find a novel combinatorial formula
for the super Schur polynomials. Furthermore, while studying the transformation of
a border strip under the conjugation operation, we give a new proof for the known
duality relation of corresponding super Schur polynomials.

In this article we also explore the question whether nonintegrable quantum spin
chains can also exhibit duality relation under the exchange of bosonic and fermionic
spin degrees of freedom. By using a mapping between the anyon like representations
of the graded exchange operators like PJ(,T ") and 15](,? ™) we are able to show that the
partition function of any quantum spin chain with a global SU(m|n) symmetry would
satisfy such a duality relation (5.16). This duality relation implies that the spectrum
of the SU(m|n) model can be obtained by inverting the spectrum of the SU(n|m)
model and giving an overall shift to this inverted spectrum. Since a global SU(m|n)
symmetry can be found in a wide class of integrable as well as nonintegrable spin

chains, this duality relation seems to be a useful probe to study their spectra.
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Appendix A. Derivation of the recursion relation (3.26)

.....

= (=1 B, (z,9) + ) Y. U Bagoan,  (@y) . (AL

k=2 {£1,03,....0;, }€Pr (k) i=1
Since, {¢1,0s,...,lr} € P.(k) and all these {4’s are positive integers, it is evident that

bo=r—(1+0lo+ -+ lr_1) <r—k+1. Therefore, Eqn. (A-1) can also be expressed
as

r r—k+1 k
= (_1)T_1EMr(xay) + Z Z Z (_1>T_kHEMLi—MLi,1(xay)'
k=2 £p=1 {{1,02,...0s—1}E€EPy_g, (k—1) i=1

By interchanging the order of the summation variables k& and ¢, in the above equation,

we obtain

r—1 r—fp+1 k
= (_1)T_1EMr(xay) + Z Z Z (_1)T_kHEMLi—MLi,1(xay)'
lp=1 k=2 {51,52,...,£k,1}€73r4k (k—l) =1

Now, using the fact that, Ly = Z§:1 ly =7 and L, = Zl:: by = 1 — {), we can
rewrite the above equation as

r—1
= (=) Ba, (w,9) + | D (1) Bag i, (2,9)
l=1
r—0p+1 k—1
« Z Z (_1)(1+é2+~..+ék—1_(k—1) H EMLi_MLi—l (Ia y)] :
k=2 {l1,02,...0y,—1}EPr g, (k—1) i=1
(A-2)
Redefining ¢, = s and k — 1 = ¢, we obtain
g<m1 maysmr) (T3 Y)
r—1
= <_1)T_1EM7‘ (.:C, y) _'_ [Z(_:l)s_lEMr_Mrfs (.:C, y)
s=1
r—s t
X Z Z (_1)Zl+62+...+6t_t H EMLi_MLiA (ZL’, y) ’ (A_B)
t=1 {61762 ----- ét}elprfs(t) =1

23



-----

.....

r—1

g(ml,mz ..... mr) (ZIZ’, y) = (_I)T—HEMT-(:)% y) +Z(_1)8+1EMT-—MT,S (ZIZ’, y) : S<m1,m2 ..... mr.,s>($7 y)
s=1
= Z(_1)s+1Emr+mr71+"'+mrfs+1 (':U? y) ' §<m17m2 ~~~~~ mr'fs>(x7 y)’ (A_4)

s=1

where Sy (z,y) = 1.
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