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Abstract

We use the collective field theory known for the Calogero-Sutherland
model to study a variety of low-energy properties. These include the ground
state energy in a confining potential upto the two leading orders in the par-
ticle number, the dispersion relation of sound modes with a comparison to
the two leading terms in the low temperature specific heat, large ampli-
tude waves, and single soliton solutions. The two-point correlation func-
tion derived from the dispersion relation of the sound mode only gives its
nonoscillatory asymptotic behavior correctly, demonstrating that the theory
is applicable only for the low-energy and long wavelength excitations of the

system.

PACS numbers: 03.40.Kf, 03.65.Ge

'Permanent Address: Centre for Theoretical Studies, Indian Institute of Science, Ban-

galore 560012, India


http://arXiv.org/abs/cond-mat/9702152v1

1. INTRODUCTION

The Calogero-Sutherland-Moser model (CSM) [1-3] has attracted much
attention in recent years due to its relation to a wide variety of interest-
ing problems. Some examples are random matrix theory [, quantum spin
chains with long-range interactions [[], generalized exclusion statistics [6-12],
Gaussian conformal field theories [[3], edge states in a quantum Hall system
[[4], and nonlinear internal waves in a stratified fluid [[7J].

The CSM has been known to be exactly solvable and integrable, both
classically and quantum mechanically, for quite some time [1-3, 16]. However
detailed investigations into its collective properties have begun only recently
[17-19]. A collective field theory to study the excitations of a superfluid,
as well as the ground state of a condensed Bose-Einstein gas was developed
long back [B(]. In such a theory, the fundamental coordinate is the density
field [21-24]. For the CSM, the results obtained so far include the ground
state energy of the model placed in a harmonic oscillator potential, waves of
arbitrary amplitude for strong coupling, and isolated solitons on an uniform
background density.

In our paper, we will study essentially the same aspects but in more detail
and for arbitrary coupling, thereby generalizing the earlier results in several
ways. Wherever appropriate, we will compare our results with those obtained
earlier by other methods [[LT, RF|. This will illustrate that certain properties
of the model can be derived more easily and generally from collective field
theory. These properties include the dispersion relation for small amplitude

and long wavelength sound modes, the low temperature specific heat, and the



two-point correlation function. The collective field theory yields a dispersion
relation for the sound mode that terminates exactly in the second order of
the wave number, which is adequate only for small wave numbers. This gives
the correct nonoscillatory behavior of the two-point correlation function for
asymptotically large distances, and it fails at shorter distances. The collective
field theory formulation is thus seen to be a useful description for the low-

energy, or small wave number excitations of the CSM system.

2. CALOGERO-SUTHERLAND MODEL AND COLLECTIVE
FIELD THEORY

The simplest form of the CSM consists of particles on a line which interact
pairwise through an inverse-square potential. The model can also be defined
on a circle with periodic boundary condition [J]; the two versions of the
model have identical physical properties in the thermodynamic limit in which
the the number of particles N and the length L of the line (or circle) are
simultaneously taken to infinity keeping the particle density po = N/L fixed.

The Hamiltonian for particles on a line is given by

N 2 2
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where the dimensionless coupling A > 0. To make the problem well-defined

(1)

2m m

quantum mechanically, we have to add the condition that the wave functions
U goes to zero as |r; — SL’j‘)‘ whenever two particles ¢ and j approach each
other. For A = 0 and 1, the model describes free bosons and free fermions
respectively. Since the two-body potential is singular enough to prevent par-

ticles from crossing each other, we can choose the wave functions to be either
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symmetric (bosonic) or antisymmetric (fermionic). The energy spectrum is
the same in the two descriptions.

Let us briefly summarize some of the exactly known results for this model
B, [[). If Ey denotes the ground state energy, then the chemical potential
at zero temperature is given by u = 0FEy/ON in the thermodynamic limit.

This takes the form
2R \2p?

#e= 2m

(2)

In a fermionic description of the model, it is natural to define a Fermi mo-
mentum
po = mhpo . (3)
(We should point out that some papers in this field find it more convenient
to define the Fermi momentum to be mhApy). The low-energy excitations of
(M) are known in detail. They can be thought of as being made up of particle
and hole excitations. Let us first define the sound velocity by the relation
2 = 2 (@> . (4)
m \dpo

Then

_ mhpo
vy = = (5)

It is known that the particle excitations necessarily have |p| > po, with the

dispersion

@p) = 5 (17l = po) Lol + (A= po ] + 4 (0

The hole excitations have |p| < pg, with the dispersion

A

enlp) = 5 o —p") — . (7)



If we define group velocities v = how/dp, we find that particles have |v| > vy,
while holes have |v| < v,. The sound velocity in (H) can be obtained by
considering a sound mode to be made up of a particle with energy-momentum
(€1,p1) and a hole with energy-momentum (e, p2). Then vy = (€1 +€2)/(p1 —
pe) in the limit pq, po — po.

The collective field theory for the CSM is obtained by changing variables
from the particle coordinates z; to the density field p(x) defined as

pa) = Y ol ). ®)

As emphasized in reference [B1], such a change of variables is meaningful only
if the particle number N — oo. We therefore have to check at various stages
whether the results obtained from collective field theory for finite values
of N are indeed correct for the model defined in ([]). For this reason, we
will compare the collective field theory results with those obtained by other
methods whenever possible.

After changing variables, the quantum Hamiltonian takes the form [23,

T2\ r
3

+ AXA—=1) pudp +

2
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4 p
where 0 = 0/0z, and py is proportional to the Hilbert transform of p defined
as the principal part integral [27],

P
= d
pula) = [dyply) — .
1 1 1
h = - ) 10
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The field A6 is canonically conjugate to p, and they satisfy the equal-time

commutation relation

[ p(x) , WO(y) | = iho(z —y) . (11)

We may therefore set 6(z) = —id/dp(x), and try to find eigenstates of the
Hamiltonian (fJ) as functionals of p(x). Although this is sometimes possible
B3], it is generally very difficult to find exact eigenstates.

We will therefore take the simpler route of studying () classically. For
this purpose, it is useful to rewrite the collective theory in terms of a fluid.

Let us introduce a complex field

Y(x,t) = \Jpla,t) PO (12)

We define a Lagrangian L = [ dxzL, where the Lagrangian density

h , , h?
L o= S @% = ) — = 0w — Ulpla)]
. B (9p)?
= — hpd — % [ 4p + p(89>2} o U[/)] ’
2 212 _ 2
where Ulp] = 2h—m [W;\ P>+ XA—=1) padp + )\()\4 2 (0::) } )

(13)

and a dot denotes 9/dt. From ([J) we see that p and hf are canonically
conjugate to each other, and we can recover the Hamiltonian (f]) by the
usual methods.

It is interesting to note that the Lagrangian ([[3) is quadratic in ¢ and
¥*, and is therefore noninteracting for A = 0 (free bosons). This is under-

standable because the collective field theory is a bosonic theory, as is clear
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from ([I)). On the other hand, the collective theory is interacting for A = 1
(which is free in terms of a fermionic theory).

We now proceed to study the theory ([J) classically. At a classical level,
Eq. (f) (for the static case) may be regarded as the energy density functional
of the single-particle density p(z). This is analogous to the density functional
theory of a correlated many-particle system, a highly sucessful formalism in
many branches of physics [Bg]. Since we wish to study the system in an

external potential V' (x) in Section 3, let us add

[de [n=V@) ] plw) = pN (14)

to the Lagrangian, where p is the chemical potential. The Fuler-Lagrange

equations of motion obtained by extremizing the action S = [ dtL are given

by

Il RPA\ — 1) P\ —1)% ¢ ,0py\2 %p
_ A7 7 B SOV Y (e R il
2m P m Dor + 8m { ( p) p }
. K2 )
- — = 1
+ hé + Sy (00) p + Vix) 0, (15)
and
)+ E8( d0) = 0 (16)
p+ — 0(pdb) = 0.
In addition, the density must satisfy the constraint
/d:c p = N. (17)

Eq. (L) will be recognized as the equation of continuity since (i/m)d0 is
the velocity field; this can be seen from the expression for momentum given

below.



Our system has three conserved quantities, namely, the particle number

N, the momentum (if there is no external potential)

P = —%/dm(zﬂ*@zﬂ—@w*w):h/dajp&?, (18)
and the energy
E= h—2 /dx { p(00)? + ﬂ,03 + AA—1)puOp + (A= 1) 9 }
2m 3 4 p
+ /dx Vix) p. (19)

There are probably an infinite number of conserved quantities in addition to
the three above since our original system is integrable; however explicit field
theoretic expressions for these other quantities are not known.

In the absence of an external potential V(z), Eqs. ([3) and ([[@) are
invariant under scaling and Galilean transformations. Under scaling by a
factor a,, we have

plz.t) —  aplaz,a’),
O(x,t) — Olax,a’t),

po— ol (20)
Under a Galilean transformation by velocity v,

plx,t) —  plr—ott),

O(x,t) — Oz —ovtt) + % (x — %vt) :

o= . (21)
Thus

P — P + mNv,



1
E — E + Pv + ivaz. (22)

It is quite remarkable that if V' = 0, all values of A > 1 are equivalent to

each other according to Egs. ([J) and ([@). Namely, if we redefine

T = X , t:t()\_l)7
- Ap ~ 0
v R v i
_ 1
— 23

then A —1 can be completely scaled out of () and ([[f). Similarly, all values
of A < 1 (but not equal to 0) are equivalent to each other; we can carry
out the same redefinitions as in (B3), followed by p — —p in order to keep

p positive. If we redefine the energy functional as E = AE/|\ — 1|3, we see

from ([9) that

Lo h’ ~ 1 A7\2 7T2~3 ~ (0p)?
E_%/dx[p(ae) + P udp + [, @

where the + signs are for A > 1 and A\ < 1 respectively. Thus it is sufficient
to study the collective field theory for just two values of A\, one less than
1 and the other greater than 1. This property of the collective field theory
clearly shows that it is a rather coarse description of the CSM. This is to
be contrasted with the exact solution of the model (fl) some of whose fea-
tures (for instance, the dynamical correlation functions [P§]) are sensitively
dependent on number theoretic properties of .

In passing, it may be noted that formally the scaled energy density given
by Eq. (B4) is of the same form as the so-called Madelung fluid [R9], which

is a hydrodynamical description of the one-particle Schrodinger equation. In
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this picture, the first term is the classical kinetic energy of the fluid, the
next two represent the potential energy, and the last term arises from the
quantum kinetic energy. The latter gives rise to the Bohm potential [B(] in
the equations of motion. This interpretation also holds if there are N particles
in the same quantum state. The normalization of p in Eq. (B4), however, is
not N. To pursue this line of thought more carefully, it is necessary to modify
transformations (PJ)), and scale the xz-coordinate to demand [ dzp = N. The
Bohm term in (R4) remains unaffected, but the interaction terms become
A-dependent. We will not elaborate further along these lines.

We will now study various solutions of the equations of motion ([F]) and
(6), with an external potential in Section 3 and without an external poten-
tial in Sections 4-6. We are interested in two kinds of solutions, (a) static
solutions in which p depends only on x and # = 0 (in particular, the ground
state is always of this form), and (b) time-dependent solutions in which p

and 6 depend on both z and .

3. GROUND STATE IN AN EXTERNAL POTENTIAL

For any external potential, Eq. ([J) gives the exact quantum ground
state energy and density if A = 0. In that case, let Wy(z) and e denote
the exact one-particle ground state wave function (normalized to unity) and
energy obtained by solving the Schrédinger equation with a potential V().
Then the solution of ([3) and ([[g) is given by

plz) = N [To(2),

E() = N€0 . (25)
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The question therefore is how well collective field theory does for nonzero
values of \.

To begin with, let us consider the case of a simple harmonic potential,
with

1 2

V(z) = §mw2x . (26)

This turns out to be a rather special case because the ground state energy of
the collective field theory can be found exactly. Since this is a static solution
with 8 = 0, we can use the principal part identity
P P P P P P
- -
rT—yY x—2 y—zy—=x 2—T z—Y

= 7%6(x —y)d(x —2), (27)

to write ([J) as a perfect square 23]

A=10p mw \2 hw 9
T, hx) + — [AN? 4+ (1=A)N]. (28)

h2

Thus if p satisfies

A—1 0p mw
A — = = — 2
ot _—E (29)

then it minimizes ([J) and is therefore a solution of the equation of motion

([3). Further, the ground state energy follows from (R§),

E, = %“’ [AN? 4+ (1 —-A)N]. (30)

This is in fact the exact answer for the Hamiltonian ([]).

Eq. (B9) for the density can be solved analytically only if A =0 or 1. We

get
_ mw\1/2 2 : _
p = (m) exp ( —mwz“/h) if A=0
mw , 2Nh 9 \1/2 .
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We can show analytically that the collective field theory density has a Gaus-
sian tail of the form

mwaz? }

o 2AN/(1-)) o _mwr
x exp [ (=N

(32)

if A < 1, and has a sharp cutoff x = +x beyond which p vanishes if A > 1.
For large values of N, we can also show that the second term on the left
hand side of (P9) is generally much smaller than the first term; the scaling
argument is indicated below. If we ignore the second term altogether, we get

the leading behavior of p to be a semicircle for all nonzero values of A,

mw 1/2
Po= (17(2) — 552) for |z| < o,
= 0 for |z|] >x. (33)
Here xg is defined by
2NhA\1/2
= ) 4
w = (S) (34

The relations (B3) and (B4)) are identical to the Thomas-Fermi result obtained
in [[J], and x¢ is just the classical turning point. Note that the form of
p in (B3) is essentially a statement of exlusion statistics for the CSM; the
occupation number in each state in phase space dxdp = 27h is given by 1/\.
One should, however, be wary of using the expression (BJ) for the density
p(x). For example, if we indiscriminantly substitute this p(z) in the static

energy density functional

h? T2\2 A —1)2 (9p)2
E:/de(x)p—l—%/dx[ 3 p3+)\(>\—1)PH8p+( 4> (5) }

(35)

12



the integrals with V(z) and p* on the right-hand side together yield the
correct N2-dependent term in Ey, and the third integral gives the right N-
dependent term (see Eq. (B0), but the last integral involving (9p)?/p diverges.
It may be easily checked, however, that this divergent term goes like N°, i.e.,
of order 1 in the large-N expansion. Such terms in the expansion will be
dropped.

We should point out that the 1/N expansion of p within the collective
field theory cannot be taken too seriously; we recall the cautionary remarks
following Eq. (B). For instance, the absence of a Gaussian tail if A > 1 is an
artifact of collective field theory. If N is finite, the ground state of ([l]) has a

Gaussian tail for all values of \; this can be seen from the exact expression

¥ o] ~ 11 iy exp [ =52 3wl (36)
i<j i

On the other hand, we can generally trust the next to leading term in the

energy given by collective field theory. We have already seen this for the

harmonic oscillator potential, where the N? and N-dependent terms both

came out correctly. We will now show this for a somewhat more general
class of potentials.

We formally define the first two terms in a 1/N expansion as follows. We

assume that the ground state energy and chemical potential have expansions

of the form

po= p@ +u,
E, = EY + EWY. (37)

where ESY /E and u®/u©® are of order 1/N. For the density, we have an
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expansion of the form

pla) = pO) + pV(x). (38)

We will state the procedure for obtaining the expansion (Bg) shortly. But we
can point out immediately that it is not a 1/N expansion for all positions z;
although pM(z)/p® () will generally be order 1/N, that will not be true near
the turning point zy. The first term p(© in (BY) is defined by considering only
the p and Vp terms in the energy functional (BJ) and hence in Eq. (I3).
The leading term in the chemical potential ©(® and the turning point
are then fixed by the particle number constraint ([7). Next, we define the
term p® in (Bg) by considering the p*, Vp and prdp terms in (BF) and the
corresponding terms in ([5). Once again, u is fixed by the constraint ([[7).
We will not go beyond the two leading terms in Egs. (B7) and (BY), and will
therefore not need to consider the (9p)%/p term in (BH); this term actually
diverges even more severely for p(!) than for p(©.

As a specific example of the 1/N expansion, let us now consider a con-

fining potential of the power-law form

Vi) = (L (39)

2ma® \ a
where p > 0, and a is a measure of the width of the potential. (A harmonic
potential corresponds to the case p = 2). For such a potential, we can
prove that the Vp + p3, pg0p, and (9p)?/p terms in the energy functional
(BH)) are successively of higher order in 1/N. To show this, let us define the
dimensionless variables

I 1 €T
T NYe 4
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A0 = e @ P) (40)

so that [dzp = 1. Then Eq. (BY) takes the form

h? 2)\2 AA=1)_ =
e (3p+2)/(p+2) o~ 7P A ~3 ~
E S N /dx [ |Z|P o + 3 TN pOp
(A—1)(9p)°
I B (41)

This justifies the form of the 1/N expansion given in the previous paragraph.

Following that procedure, the leading order terms in p and p are found to be

1> To\P
0) _ -0
H 2ma? ( a ) ’
PO = om(u® V@) ) M2 i e < . (42)
TR =

From the constraint ([[7]) we find

T\ 1+p/2 TAN
(_0) o= of,

L = / dy /1 —yP = Fl+—f)(%) (43)

The leading terms p® and Vp in the energy (BH) then give

a

Ey 3mhX Jo dx [ 2m(p Vi) [77 (™ + 2V (2))
e s
2ma® 3p+2 ‘21

We now go to next order in 1/N by including the terms in ([F) and (B3)
which contain the Hilbert transform pg; we get

7T2h2)\2 (0) (1) h2)\()\

-1) , (©
AR g0 - 45
m Pu 1% ( )

15



The structure of (fF) shows that p") must be taken to be zero outside the
turning point o, just like p(©). Since p(® is normalized to N, we fix u(!) using

the constraint

[ de s — 0, (16)

— o
and we then determine E((]l) by including the py0dp term in (BY). Interestingly,
we find that pt) = 0 for all A for the simple harmonic case (p = 2); that is
why we get the energy correct to order N by just substituting p® in (B3).
However p!) is not zero for a general value of p. We will omit the final
expression for E((]l) for general A\, and will now specialize to A = 1 where we
can compare with the results of a WKB approximation. (Although this is a
free fermion theory, it is an interacting bosonic theory. Hence agreement at
A = 1 is a nontrivial check of collective field theory). We find that both p(!)
and p!)(z) are zero for A = 1. Hence there is no correction to Ej at the next
order after ({4), i.e., at order N?/?**2) We will now show that this result
agrees with WKB.

If e, denote the single-particle energy levels obtained by solving the
Schrodinger equation in the potential V(z), then the exact ground state

energy at A = 1 is given by

Ey = > e, (47)

For large n, we can obtain the two leading order terms in e, using the WKB

formula

/_z; dz[Qm(en—V(:)g))]lm:(n+%)7rh, (48)

where x,, denotes the classical turning point for energy e,,. We thus obtain
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the expansion

[1—ﬁ+---]. (49)

On substituting this in (f7), we find that Ej is indeed given by (E4) and that

e, = 77,2 ( ™ ) 2p/(p+2)

2ma? \2I;

there is no correction to the next order in 1/N.

4. SMALL AMPLITUDE WAVES, CORRELATION FUNCTIONS, AND
SPECIFIC HEAT

In this Section, we will study the small amplitude density fluctuations
about an uniform background density py. We will show that these exhaust
the low-energy excitations upto some order, both in a sum rule and in the
low-temperature specific heat.

For an uniform density pg, the chemical potential is given by (B) or ([[)

to be
2R \2p?
om

Let us now study ([[3) and ([L@) to linear order in an amplitude a << 1. We

po= (50)

assume
p = po + apy cos(kx —wt)
= a % sin(kz — wt) | (51)

where k denotes the wave number; the second equation in (1) follows from
the first due to the equation of continuity ([d). Eq. ([[) then yields the
dispersion relation

ThApolk| B (A—l)ﬁl{:2
m 2m

W = | | (52)
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The sound velocity is given by the group velocity dw/0k at k = 0; the result
agrees with the exact value given in (). Note that (E3) gives the correct
single-particle dispersion for A = 0, as expected for a free boson theory.

We see that the dispersion (FZ) vanishes not only at k£ = 0, but also at

27T)\p0
A—1

k| = (53)

if A > 1. However the latter point where w vanishes seems to be an artifact
of collective field theory; it does not agree with known results. For instance,
reference [R5 defines a dispersion relation called the ”Feynman spectrum” as

follows. Consider the dynamical correlation function and its Fourier trans-

form
G(z,t) = (p(x,t)p(0,0)) — 0,
S(k,w) = 27; [ dn [t a1y it (54)

S(k,w) can be represented in terms of all the states of the system |n) with

energies I, as

Sk,w) = Z (n|pr|0Y|? 6(hw — E, + Ey) ,

n

e~k (55)

Mz ==

Pk =

n=1

One can then define various moments of S(k,w) as
(k) = / dw " Sk, w) | (56)

where I, (k) = k*/2m. The Feynman dispersion is defined as

I(k)
Io(k)

wr(k) =

18



Now this dispersion is known from random matrix theory [}, fl] for three
special values of A = 1/2,1 and 2. For these three values, it is found [
that wr(k) agrees with (b9) upto second order for k close to 0. We therefore
believe that wp(k) is given by (F2) to order k? for all values of A\. However,
the agreement between wr(k) and (F2) does not persist to higher orders in
k even for the three special values of \; in particular, wg(k) does not vanish
at any nonzero values of k, although it does have a roton-like minimum at
|k| = 2mpo for A > 1 [BF]. This discrepancy between wr(k) and () seems
to indicate that collective field theory cannot be trusted for large values of
the wavenumber; it seems to work only upto order k2.

Our statement that the low-energy dispersion is correctly given by (B2)
upto k2 near k = 0 also agrees with the known low-temperature specific heat
of the CSM to second order in the temperature 7" [[]]]. We can compute the
free energy per unit length f from (E9) taking the sound modes to have zero

chemical potential. Thus

o = [T (1= e, (53)
where 3 = 1/kgT. After evaluating this, we can obtain the specific heat per
unit length Cy = —T9*f/0T? to second order in T. We find

k3T N 6¢(3) (A —1) k}LT?
3hv T mhv3
> 1

@) = Z_:l

This agrees with the result in reference [[1].

Cy =

— (59)

We note that the linear terms in (53) and (B9) are typical of a system

whose low-energy and long-wavelength excitations are governed by a confor-
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mal field theory [[J]. The quadratic terms in those two equations indicate
deviations from conformal field theory which start appearing when the wave-
length is no longer much longer than the typical particle spacing 1/pg.
Finally, it may be useful to see what we get if we compute the correlation
function G(z,t) defined in (54) by quantizing the collective field theory. Using
the commutation relation ([[I) and the equations of motion ([F) and ([[@)

to linear order, we find that p and 6 have the following second quantized

expressions,
p = po + / - fk [ak el i(kz—wgt) 4 a;i e—i(kx—wkt) } :
o dk 1 . ,
9 - 2 /oo 27T fk - el(km_wkt) + a;rf e_l(kx_Wkt)} )
o hp(]]{? 1/2
fio = (G ) (60)
where
la, al] = 27 8(k— k). (61)
From this we find that
hpo [ dk K .
G t = — / - Z(k‘l‘ wkt) . 62
(ZL’, ) o e 21 wp e ( )

If we now use the collective field theory dispersion (p3), the integral will
diverge at the nonzero values of |k| where w vanishes. We will therefore
assume, as stated above, that (b3) can only be trusted in the region near
k = 0. The asymptotic form of G(z,t) at large values of = 4 vst only gets
a contribution from that region in the integral (62); further, only the linear

term in the dispersion (FJ) is required to derive the asymptotic expression.
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We then find that

1 1 1
Glat) ~ = 42\ [(I—Ust)2 * (x + vst)? } ' (63)

This agrees with the leading nonoscillating term in the exact expression given
in reference [B§]. However the exact expression also has oscillating terms; in
fact, such a term dominates over (63) if A > 1. The fact that collective
field theory is unable to reproduce these oscillating terms clearly shows its

limitation.
5. LARGE AMPLITUDE WAVES

Following a method given in reference [1§], we can find exact solutions
which describe waves with arbitrary amplitude. We will consider the cases
A>1and 0 < A < 1 separately.

For A > 1, the solutions are given by

(o.0) = (A =1k { - sinh o }
PLT a 21\ cosha — cosk(x —vt) 17’
mu x cosh o — cos k(y — vt)
0(z,t) = — | — 1 /
(z,1) 3 [ (c+1) —oo 4 ccosh a + sinh o — ccos k(y — vt)

1
+x—§vt}, (64)

We choose the wavenumber £ and the parameter « to be positive. The phase
velocity v in (p4)) satisfies
,  (A=1)2R%k* 2

2
(e 1) (¢ +2ccotha+1) , (65)
where
1 — cosh «
- 66
¢ sinh o (66)

21



The average density for this solution is found to be

po = Ao My (67)

We can define the dimensionless amplitude a of the wave to be the fractional

difference between the maximum and minimum densities. Thus

Pmaz — Pmin 1
¢ Pmaz T Pmin csinh o 4 cosh a (68)

For A < 1, the solutions are again given by Eqs. (p4) and (B3), but

—1 — cosh «
< —_—
€= sinh o (69)

The average density for this solution is the same as in Eq. (1), while the

amplitude a is
1

pr— —_— . 70
“ csinh o + cosh « (70)

The solutions above are characterized by three independent parameters
which may be considered to be the average density pg, the wavenumber k,
and the amplitude a. If we hold py and k fixed and let & — oo, we recover
the small amplitude waves discussed in the previous Section. Let us now
look at the conditions under which the frequency w = |vk| can vanish; this
corresponds to stationary waves. We can see from Eq. (B3) that w vanishes
if £ = 0 or if ¢ = 0; the latter is allowed if A > 1 in which case k satisfies
(B3). These two conditions for w = 0 are therefore the same as those found

for the sound modes in Section 4. However we now see that w also vanishes
if
1 — cosh«

— il 1
¢ sinh « (71)
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for A > 1, or if

—1 — cosh «
- - 2
¢ sinh « (72)

for A < 1. In these two cases, we get staionary waves with the largest possible
amplitude a = 1 since pp,;p, = 0.

The interpretation of all these large amplitude waves, including the new
kinds of stationary waves in ([[1]) and (), in terms of the exact solutions
of the CSM model remains an open question. It is possible that some of
the solutions obtained here are peculiar to the collective field theory and do
not correspond to anything in the CSM. For instance, there are no exact
solutions of the CSM which have arbitrary nonzero values of k with w = 0.

In concluding, we would like to mention that the density waves studied
in this Section and in the previous Section were known earlier [[§] for large
A. In addition, the stationary waves ([[d) for A < 1 were found in reference
[[]. Our own results describe both stationary and moving waves, and are

valid for all values of \.
6. SINGLE SOLITONS

We will now describe the single soliton solutions of the collective field
theory [[§, [9. Starting from the large amplitude waves in Section 5, we
can find these solutions for any A different from 0 and 1 as follows. In Eq.
(E4), we take the limit k, @ — 0 keeping a/k = b fixed. Simultaneously, we
let ¢ — oo for A > 1 or —oo for A < 1, keeping py fixed according to (£7).
Since the wavelength 27 /k — oo, we obtain a solution describing an isolated

lump. We find the following expressions for p and 6 in terms of the width b
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and velocity v of the soliton.

(1) = pp+ 2! ’
AT - A (z—vt)2+02
B 1/ x—ut 1 mov?t
Ox,t) = + (A—1) tan" ( T )—5 =
where v = &+ mhAo ,
A—1 q1/2
no= [1+ mpob] . (73)

Thus the velocity and width are related to each other. From Eq. ([J) we see
that |v| > v, and any value of bpy is allowed for A > 1. For A < 1, we must
have bpg > (1—M\)/mA; then |v| < vg. These ranges of velocity agree with the
exact results known for the particle and hole respectively, as discussed after
Eq. (). The identification with particle for A > 1 and hole for A < 1 may
be justified by considering the sign of the integrated density for the soliton,

A—1

[delp@t) = ] = “—. (74)

The magnitude of this number is generally not an integer; the physical mean-
ing of this is not clear to us. It is interesting to note at this point that if
we perform the scaling (PJ) which eliminates A, then the redefined soliton
number is 1 for all A. Hence ([[3) describes a one particle solution in the
redefined theory.

The momentum and energy (obtained after subtracting the background
value) of the soliton ([[3) are given by Eqgs. ([§) and ([9).

A—1

Po= =,
A-1 1
E = T(gmv — ). (75)



This dispersion relation does not agree with the exact dispersion relations
given in ([) and ([f). It therefore seems that the interpretation of solitons as
particles or holes has some difficulties which need to be resolved.

It is interesting to observe that we can also go in the opposite direction
and recover the large amplitude waves by superposing a number of single
soliton solutions in a periodic way [[§]. For this purpose, it is useful to recall

that
> 1 sinh o

200 Y = (76)

W (2mn 4+ kx)? + o2 cosha — cos (kx)

It is worth noting that for A > 1, there is no lower bound on py; in

particular, we can set pg = 0. We then get a new solution corresponding to a
stationary and isolated soliton with no background density. This may also be

seen for the static case from Eq. (9) with no external harmonic potential,

A—1 0p
A — = =0.
P + 2 0 (77)
The solution of this is found to be

A—1 b
)= I B R 8

with eigenvalue Ey = 0. We may now boost this solution using (BI]). The

general solution is therefore

(:c t) B A—1 b
AT oA (x—ut)2 b2
mu 1

where the width and velocity are now independent parameters. The particle

number, momentum and energy of this soliton are given by

A—1
N = -
)\’
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A—1

P = va,
A —1 mv?
g = 2"
)\ 5 (80)

Note that if we had used the scaled variables given by Eq. (3), the normal-
ized dz [ p(x) = 1, with the momentum and energy like a classical particle.
Even though it is an exact solution of the collective field theory, it not a
genuine solution of the CSM. This is because the collective field theory is

meaningful only for large V.
Finally, we note that we may rewrite Eq. ([]) for the scaled density p as

9~

SO T (pw) =0 (81)
Formally, this equation has the same form as the steady-state Coulomb gas
model of Dyson [BI]. In the diffusion problem, it is known as the Smolu-
chowski equation with a singular kernel, and describes the Brownian motion
of a particle immersed in a fluid, with friction-limited velocity. A description
of this equation is given by Andersen and Oppenheim [BZ]. The analogous
single-soliton solution ([/§) of the equation for the diffusion problem was ob-
tained by Satsuma and Mimura [BJ]. These authors also found the soliton

with the hyperbolic kernel, and the periodic solution appropriate for the

Sutherland Hamiltonian on a circle [J].
7. DISCUSSION

We have seen that collective field theory is a powerful technique from
which many properties of the CSM can be derived without having to solve

the N-particle Schrodinger equation (). We can consider other applications
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of collective field theory. For instance, it should be possible to solve for
the low-energy excitations of the CSM in a slowly time-varying harmonic
potential. Analogous calculations have been performed for a trapped Bose-
Einstein condensate in the three-dimensional problem [B4].

It is evident that there are several issues which are either not clear or
beyond the reach of collective field theory. We list some of these problems
below; they are of course related to each other.

(a) The dispersion relation of small amplitude waves whose wavelengths are
comparable to the average particle spacing remains unknown. The difficul-
ties mentioned in Section 4 seem to suggest that the collective field theory
discussed in this paper is not complete; perhaps one needs higher derivative
terms in the energy functional ([J) to obtain better results at short wave-
lengths.

(b) The interpretation of the large amplitude waves and soliton solutions
is not clear. The ideal way to resolve these difficulties would be to set up
a precise correspondence between the collective excitations and the known
solutions of the Schrodinger equation. Refs. [, [[§] make some suggestions
in this direction, but a quantitative mapping is still missing.

(c) It is not clear why we only get exact soliton solutions which correspond to
particles for A > 1 and holes for A < 1. It would be desirable to complete the
story by finding, perhaps numerically, solutions corresponding to particles
for A < 1 and holes for A > 1.

(d) Finally, it would be very interesting to quantize the collective field theory
and study it more carefully than we have done in Section 4. This may

lead to an alternative way of deriving the oscillating terms in the dynamical
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correlation functions.
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