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We study the locations of the gapless points which occur for quantum spin chains of finite length
(with a twisted boundary condition) at particular values of the nearest neighbor dimerization, as

a function of the spin S and the number of sites.

For strong dimerization and large values of

S, a tunneling calculation reproduces the same results as those obtained from more involved field
theoretic methods using the non-linear o-model approach. A different analytical calculation of the
matrix element between the two Néel states gives a set of gapless points; for strong dimerization,
these differ significantly from the tunneling values. Finally, the exact diagonalization method for a
finite number of sites yields a set of gapless points which are in good agreement with the Néel state
calculations for all values of the dimerization, but the agreement with the tunneling values is not
very good even for large S. This raises questions about possible corrections to the tunneling results.

PACS numbers: 75.10.Jm, 75.10.Pq, 73.43.Nq

I. INTRODUCTION

One-dimensional quantum spin systems have been
studied extensively for many years, particularly after
Haldane predicted theoretically that Heisenberg integer
spin chains should have a gap between the ground state
and the first excited state [1], and this was then observed
experimentally in a spin-1 system [2]. Haldane’s analy-
sis used a non-linear o-model (NLSM) which is a field
theoretic description of the long-distance and low-energy
modes of the spin system [3, 4, 15, 16, [].

Although the NLSM approach is supposed to be accu-
rate only for large values of the spin S, it is found to be
qualitatively correct even for small values of S. For in-
stance, if there is a dimerization in the nearest neighbor
Heisenberg couplings, taken to be 1 and « alternately, the
NLSM predicts that there is a discrete set of values of k
lying in the range 0 < x < 1 for which the spin chain
is gapless; these correspond to quantum phase transi-
tions. Further, the number of gapless points is predicted
to be the number of integers < S + 1/2; in particular,
the undimerized chain (with k = 1) is a gapless point
if S is a half-odd-integer. Numerical analysis shows this
to be true for values of S up to 2 [§, |9, 10, [L1]; how-
ever, the numerically obtained values of k at the gapless
points do not agree well with the NLSM values. It there-
fore appears that there must be corrections to the NLSM
analysis for small values of S.

The NLSM approach that has been used so far to find
the gapless points is based on certain properties of a field
theory in two dimensions (one space and one time); the
gapless points occur when the coefficient of a topological
term is given by 7 modulo 27 (as will be discussed in
Sec. II). Although there are arguments justifying this
criterion [12], there does not seem to be a simple physical
picture behind it. One of the aims of our paper will
be to provide a picture based on tunneling between two

classical ground states.

Numerically, there are different ways of finding the
gapless points for a dimerized spin chain. One of the most
accurate ways is based on exact diagonalization studies
of a finite spin chain with a twisted boundary condition,
to be specified more precisely in Sec. II [10, [13]. In the
presence of the twist, it is found that the gap between the
ground state and first excited state vanishes at a value
of k which is a function of the number of sites 2N (we
use this notation since the number of sites will always be
taken to be even). We will be mainly interested in finite
system sizes in our work; however, it is known from con-
formal field theory [10, 13, 14, 15, [16] that the locations
of gapless points for the infinite system can be found very
accurately by finding the locations of those points for fi-
nite systems, and then extrapolating to N — oo.

In this paper, we will use three different approaches to
study finite systems with a twisted boundary condition,
in order to find the gapless points as a function of S
and N. The first two approaches will be analytical; they
will be based on the idea that in the presence of a twist,
the system has two classical ground states, called Néel
states, which are degenerate. The degeneracy may be
broken in quantum mechanics by tunneling. However, if
the tunneling amplitude is zero, we get a gapless point
in the sense that the lowest two states have the same
energy. The third approach will be numerical and will
be based on exact diagonalization of finite systems using
various symmetries.

In Sec. II, we will first define the dimerized quantum
spin chain and review how it can be described using a
NLSM field theory. We will then describe the twisted
boundary condition for a finite system. In Sec. III, we
will describe our first analytical approach. This is based
on a tunneling calculation for a chain with a finite num-
ber of sites. For reasons explained below, this method
is limited to small values of k. We will see that the ex-
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pressions for the scale of the gap and the locations of the
gapless points agree with those obtained from the NLSM
field theory; this is remarkable because our analysis will
be based only on quantum mechanical tunneling in a fi-
nite system, while the field theoretic analysis is based on
a renormalization group equation and the presence of a
topological term. Our second approach, described in Sec.
1V, is based on a direct quantum mechanical calculation
of the matrix element between the two Néel states to low-
est order in the Hamiltonian; this method works for all
values of k. We will see that the locations of the gapless
points obtained by the two methods differ substantially
for small k. We make some speculations about how the
tunneling results may be corrected. In Sec. V, we use
exact diagonalization to find the gaps and the locations
of the gapless points as functions of x for different val-
ues of S and N. We find that the numerical results for
the locations of the gapless points agree quite well with
those found by the second analytical method, and there-
fore disagree with those found by the tunneling approach.
In Sec. VI, we will summarize our results.

II. DIMERIZED QUANTUM SPIN CHAIN

A. Field theoretic description

In this subsection, we will briefly review the NLSM
field theory for a dimerized spin chain with an infinite
number of sites. The Hamiltonian is given by

H = Z [ggi_l -ggi + K §2i : §2i+1] ) (1)

i

where we have spin S at every site, and x > 0. This de-
scribes an Heisenberg antiferromagnetic spin chain since
all the couplings are positive. We will set & = 1, so that
S’? = 5(S +1). (We will specify the appropriate bound-
ary conditions when we discuss finite systems below). In
many papers, the nearest neighbor couplings are taken to
be 1+ and 1 — 6, instead of 1 and k. After a re-scaling
of the Hamiltonian, we see that the two parameters are
related as
1-9
T TS @
In the classical limit S — oo, the ground state of Eq.
(@ is given by a configuration in which all the spins at
odd sites point in the same direction while all the spins at
even sites point in the opposite direction. This motivates
us to define a variable
e S2n71 - SQn
o(z) = 55 ; 3)

where x = 2na denotes the spatial coordinate and a is
the lattice spacing; = becomes a continuous variable in
the limit @ — 0. In the classical limit, ¢ becomes a

unit vector in three dimensions; the model is called the
NLSM because of this non-linear constraint. One can
then derive an action in terms of the field J(x,t); this
takes the form [1i, 3]

s- drdz [ (22— < (9P
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The parameters ¢, g and 6 denote the spin wave velocity,
the strength of the interactions between the spin waves
(even though the first two terms in @) are quadratic, it
describes an interacting theory because of the non-linear
constraint on 5), and the coefficient of a topological term
respectively. One can show that the term multiplying 6
in (@) is topological in the sense that its value is always
an integer.

It is known that the system governed by Eq. @) is
gapless if # = m modulo 27 and g is less than a critical
value [, 3, [12]. This implies that the theory is gapless if
4Sk/(1+ k) =1,3,--- and g is small enough. In partic-
ular, this means that in the range 0 < k < 1, there are
a discrete set of values of x for which the system is gap-
less; the number of such values is given by the number
of integers < S + 1/2. For all values of 6 # 7w modulo
27, the system is gapped. For # = 0 modulo 27, the
gap is given by exp(—27/g). This follows from the fact
that the interaction g effectively becomes a function of
the length scale L and satisfies a renormalization group
equation of the form dg.ss/dIn L = g2;;/(27). This im-
plies that g.s;(L) becomes very large at a length scale
given by Ly ~ aexp(2m/g), where g = gers(a) is given
in Eq. (). This is the correlation length of the system;
the energy gap is related to the inverse of this length,
namely, AE ~ cexp(—27/g).

B. Twisted boundary condition

In this subsection, we will study the same model as in
Eq. @) but with a finite number of sites going from 1
to 2N. Although a periodic boundary condition would
appear to be the simplest, it turns out that a more useful
boundary condition is one with a twist [10, [13, [17]. We
define the Hamiltonian to be

N
= Y 85,155, + 5%, 15%, + 55,155,
n=1



N—-1
+ 5> [98.55, 41+ 58,581 + 85,55041]
n=1
K [—S5nST — SYySY + S5 ST - (6)

Note that the bond going from site 2NV to site 1, to be
called the bond (2N,1) for short, has a minus sign for
the xz and yy couplings. We will call this a twisted
boundary condition; it is equivalent to rotating the =z
and y components of S by m about the z axis just for
that bond.

An advantage of the twisted boundary condition is that
classically, the Hamiltonian in (@) has exactly two ground
states, namely, (i) San_1 = (0,0, 5) and Sa, = (0,0, —5)
for all n, and (i) San_1 = (0,0,—5) and S5, = (0,0,5)
for all n. We will call these two Néel states N; and Ny
respectively. (This is in contrast to the case of periodic
boundary conditions where there is an infinite family of
classical ground states because Sgn = —Sgn can point
in any direction). If the classical degeneracy is broken
quantum mechanically in any way, there will be a gap
between the lowest two states of the system, while if the
degeneracy remains unbroken, the system will be gap-
less. In Secs. III and IV, we will describe two ways of
analytically studying whether the degeneracy is broken.

Let us now describe the various symmetries of the
Hamiltonian in Eq. (@). Although the total spin is not a
good quantum number because of the twist on one bond,
Sty =,0585,_1+53,) is a good quantum number.

Eq. (@) satisfies the duality property H (k) = kH(1/k),
where H is related to H by an unitary transformation.
[The unitary transformation is required because the twist
only exists at the bond (2N, 1) whose strength is k. By
applying a rotation S — —S7 and SY — —SY, we can
move the twist from the bond (2N, 1) to the bond (1,2).]
Since a unitary transformation does not affect the spec-
trum, we conclude that if there is a gapless point at a
value k, there must also be a gapless point at 1/x.

Next, we define the parity transformation P as reflec-
tion of the system about the bond (2N, 1), namely,

—

S — §2N+17i . (7)

This is a discrete symmetry of the Hamiltonian H, and all
eigenstates of H will be eigenstates of P with eigenvalue
+1. For any value of x, we find that the ground and
first excited states always have opposite values of the
parity. We will show below that the relative parity of the
ground states in the limits kK — 0 and kK — oo is given by
(—1)2%. For integer S, this will imply that in the range
0 < Kk < oo, the number of crossings between the ground
state and the first excited state (and hence the number
of gapless points) must be even. But for half-odd-integer
S, the number of such crossings must be odd; combined
with the duality k — 1/k, this implies that there must
be a crossing and therefore a gapless point at x = 1 (this
is a self-dual point).

To prove the statement about the relative parities of
the ground states at Kk — 0 and Kk — oo being given by
(—1)29, we proceed as follows. We first observe that if
there are only two spins 1 and 2 governed by the un-
twisted Hamiltonian h, = S7S5 + SYSY + S7S3, then
under the reflection 1 < 2, the ground state has the
parity (—1)2°, while the first excited state has the par-
ity (=1)2°*1. But for the twisted Hamiltonian h; =
—S¥S5% — SYSY + 5755, the ground state and first excited
state have parities equal to 1 and —1 respectively. (This
can be proved using the Perron-Frobenius theorem for a
real symmetric matrix). We now consider the entire sys-
tem with 2N sites. In the limit x — 0, the ground state
of the system is given by a direct product of ground states
over the bonds (1, 2), (3,4), ..., (2N —1,2N). Since there
are N dimers, the parity of this state is (—1)2%", while
the parity of the first excited state is (—1)2N*1. On
the other hand, in the limit k — oo, the ground state of
the system is given by a direct product of ground states
over the bonds (2,3), (4,5), ..., (2N, 1). Under parity,
the parity of this state is (—1)2°N+29  while the parity
of the first excited state is (—1)2N+25+1 A comparison
between the ground states in the two limits shows that
they have a relative parity of (—1)27.

III. TUNNELING APPROACH TO THE FINITE
SPIN CHAIN

In this section, we will study the model defined in Eq.
@) using a tunneling approach. We are interested in the
limit S — oo and kK — 0, such that xS is of order 1. We
will compute the action of the system and use that to
compute the tunneling amplitude between the two Néel
states.

In the limit x — 0, the system consists of decoupled
dimers whose energy levels are easy to compute. (We will
assume in this section that there are at least three dimers,
i.e, N > 3). For the dimer on the bond (2n — 1,2n), we
define the variables

z §2n—1 - §2n
G = Z

-

ln = S:anl + §2n . (8)

These variables satisfy the relations
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and  [¢% , ¢b] = 4%,25% 3o etere . (9)



Several simplifications occur in the classical limit .S —
0. Firstly, in the Néel state, [is equal to zero while $ is
an unit vector; the latter is clear from the first equation
in ([@). We will therefore set (531 = 1 exactly. Secondly, we
will take the commutator [¢2,, %] = 0 due to the fourth
equation in ([@). Finally, given the second and third equa-
tions in (@), we can obtain the momentum which is canon-

ically conjugate to ¢,, namely, [, = an X ﬁn, which
satisfies the commutation relatlon
[ ;ln 9 H?J = Z(Smn 6ab . (10)

Using Eq. @), we can write the Hamiltonian in (@) in
terms of ¢ and II, and then obtain the Lagrangian as

=

= don
Z — H . (11)

We eventually find that

L N 1 d—’n ) S2 N-1 . .
- ngl 5 (W) + K ngl ¢n'¢n+1
+ RS2 - Wf — X! + oot ]
kS N~ db,  don -
+7 7;1 (dt + +1) ¢nx¢n+1
S . de¢%  det
+ 2R - Skt + sial)
do¥,  deV
b (O Dot — o)
d¢3,  d
v (Y ¢1>< ool + ol
+ k28?2 [terms of fourth order in (bn] . (12)

The terms in the third line of this Lagrangian are what
give rise to the topological term in Eq. (@) in the con-
tinuum limit. In the last line of (I), the terms of fourth
order in Q§n are chosen in such a way that when we com-
pute the Hamiltonian from it, it agrees with Eq. (&).
We will now see why these fourth order terms are not
important.

In the limit Kk — 0, S — oo and kS of order 1, we
can scale the time ¢ by a factor of v/S to show that only
the first two lines of Eq. (@) contribute to the Euler-
Lagrange equations of motion (EOM); this is a major
simplification. To compute the tunneling amplitude be-
tween the two Néel states, we will find the solutions of the
EOM in imaginary time. We then find that the tunnel-
ing amplitude comes with a phase which arises from the
third through sixth lines of Eq. ([[2); thus these terms are
important even though they do not directly contribute to
the EOM. The fourth order terms in the last line of (2
do not contribute to either the EOM or the phase, and
we will therefore ignore them henceforth.

In imaginary time (denoted by the symbol 7), the ac-
tion takes the form

1 déy .,
S = [ar 3 g (GRS - Z G o)
+ kS PRl + PNy — ¢N¢ﬂ
-KS s d(;n d¢n+1 Ing
—t 2 (d—r —F0) B X bt
kS ¢t de? .
_17[(d—7—_d)( LT+ onol)
d Y d Y
G T A T
doi do3
v (S ¢’>< ohol + o) 1]

(13)

(We have introduced a constant £.S?N so that the action
vanishes for each of the two Néel states). The tunneling
amplitude will be given by the sum of exp(—S&;) along all
the paths of extremal action which join the Néel states.
We will now determine these extremal paths.

Let us use polar angles to write the variables (5n =
(sin vy, €08 By, Sin vy Sin By, cos @, ). The Néel states 1
and 2 are given by «, = 0 for all n and a,, = 7 for
all n respectively. We now solve the EOM following from
the first two lines of Eq. (@) in order to obtain the
paths going from state 1 to state 2. We will not write
the EOM explicitly here, but directly present the solu-
tions. We find that the two paths which have the least
action are given by
A: oy (1) = a(r) and B, = By + (nm/N) for all n, and
B: an(7) = a(r) and B, = By — (nw/N) for all n,
where Jy is an arbitrary angle. In both cases, the function
a(T) satisfies the EOM

d?a

-5 = xS?% sin(2a) (1 — cos %), (14)

with the boundary conditions a(—o00) = 0, a(c) = m,
and da(+00)/dt = 0. This implies that

d

d—(; = 28k sina sin% . (15)
Using this we can evaluate the contribution of the first
two lines of () along either one of the paths joining the
Néel states. We find that the real part of the action is
given by

Re §; = N/ dr | 1 da )? + KkS? sin? a(l—cos%)]
= 4v/kSN sin —— (16)

2N

We can now evaluate the contribution of the imaginary
terms in Eq. ([3) to the action. We find that for path
A, they contribute —i2kSN sin(7/N), while for path B,



they contribute i2kSN sin(w/N). Hence, the total con-
tribution of the two paths to exp(—Sy) is given by

A~ cos(2nSNsin%) exp(—4vESN sin%) . (17)
up to some pre-factors which are determined by fluctu-
ations about the classical paths. Since A is the matrix
element between two classically degenerate states, the
energy gap between the two states is given by 2|A|. We
thus see that the gap vanishes if 2SN sin(7/N) is an
odd multiple of 7/2, i.e., if

4Kk SN sin % = 7 modulo 27 . (18)

This is the same condition as the one satisfied by the
parameter 6 in Sec. II A in the limits S, N — oo and
k — 0. Further, if 4kSN sin(7/N) = 0 modulo 27, the
gap is given by exp(—Re Sy) which agrees with the ex-
pression exp(—2m/g) given in Sec. II A for S,N — oo
and Kk — 0. Thus, a simple quantum mechanical tunnel-
ing calculation seems to reproduce the same conditions
as those obtained earlier by more complex field theoretic
calculations involving topological terms and a renormal-
ization group analysis.

Before ending this section, we should note that there
are other pairs of paths with extremal action, which have
the form
A: (1) = a(7) and B, = By + (pnm/N) for all n, and
B: an(7) = a(r) and 3, = By — (pn7/N) for all n,
where p = 3,5,--- (going up to the largest odd integer
< N —1) labels the different pairs of paths. However,
the real part of the action of these paths is given by
4./kSN sin(pm/2N), which, for large S, is much larger
than the expression given in Eq. ([[H); their contributions
to the tunneling amplitude are therefore much smaller.

Finally, we would like to note that it is important
that the twist in the boundary condition should be by ,
and not by any other angle. Even though any non-zero
twist would lead to two Néel ground states classically,
the pairs of tunneling paths between those two ground
states would not have the same real part of the action if
the twist angle was different from 7. The pairs of paths
would therefore not cancel each other no matter what
the imaginary parts of their actions are. (Two complex
numbers cannot add up to zero, no matter what their
phases are, if their magnitudes are not equal).

IV. A SECOND APPROACH TO THE MATRIX
ELEMENT BETWEEN NEEL STATES

In the previous section we argued that the gapless
points of the Hamiltonian in Eq. (@) can be identified
with the values of x for which the tunneling amplitude
between the two classical ground states vanish. In this
section we will calculate this amplitude using an alter-
nate method.

The twist on the edge bond (2N, 1) breaks the global
SU(2) symmetry and thus lifts the continuous degener-
acy of the classical ground states. With the twist, the
two degenerate ground states of the Hamiltonian are the
Néel states which are connected to each other by rotation
by 7 about the y axis,

|N1> = |87_S5Sa"'7_SaSa_S>7
and |N2> = |_8787_Sa"'787_S5S>5 (19)

where |{m;}) denotes the state with S? eigenvalue m;.
We are interested in the zeroes of the quantity

T = (Nyle PH|Ny) | (20)

as a function of k. Though the calculation of the above
matrix element is an interacting many-body problem,
we can obtain its zeroes ‘exactly’ in the thermodynamic
limit.

First we note that, in the expansion of the exponential,

oo

- (=6H)"
e PH = Z:% — (21)

the first term which makes a non-zero contribution to T'
has n = 2SN. This is because to take |N1) to | N2), spins
belonging to the A-sublattice have to be flipped from |.S)
to | — S), and this requires the action of (S7)2% for each
spin. Similarly, the action of (S7)2% will take spins in
the B-sublattice from | —S) to |S).

Next, we will calculate the values of x for which

(No|H*N|Ny) =0 . (22)
Then we will show that as N — oo, Eq. ([22) implies that
(No| H2SNHFING) =0 (23)

for any finite k. This in turn will imply that T is zero.
The only term in H?SN which makes a non-zero con-
tribution to the left hand side of Eq. @2)) is

N
[1052)%%(85:.1)%.

=1

We need to count the number of ways in which such a
term can arise. The contribution comes from terms of
the following type,

N
TS5 Sia)™ (S50 S22 (24)

i=1

where 0 < m < 25. The above term can be obtained in
(25N)!

(mHN((28 —m)!)

N

ways and comes with a weight (—1)™x™". Here we have
neglected an overall m-independent factor due to the



Clebsch-Gordon coeflicients arising from the repeated ap-
plication of ST and S~ operators. The condition in Eq.
&2) then becomes,

N

S e (anm) = 0.
m=0

where

I{m

m!(2S —m)! (25)

am(Kk) =
Before proceeding further, we note that the above con-
dition preserves the duality symmetry under k — 1/k.
This is because Eq. ([Z3) can be written as,

N

RSN ()28 Z(_nm(amu/n)) —0.  (26)

Hence, if x* is a solution, so is 1/k*. Thus we can restrict
ourselves to the range 0 < xk < 1.

Eq. ([Z8) determines the roots of a polynomial of order
25N, which, in general, cannot be solved analytically.
But it turns out that we can obtain the roots in the limit
N — oo. In this limit, depending on the value of x, one
particular term in the sum is predominant, and the rest
of the terms can be neglected compared to this. The
dominant term is determined by,

max apm = A - (27)

As k varies from 0 to 1, m* successively takes values
m*=0,1,---,5 for integer S and m* =0,1,---,5+1/2
for half-odd-integer S. Noting that neighboring terms in
the sum have opposite signs, Eq. ([0) can be satisfied
only when

G = Qa1 - (28)
Thus the gapless points are given by

m+1
o= 29
fm =98 _m (29)

where, m = 0,1,---,5 — 1 for integer S and m =
0,1,---,8 —1/2 for half-odd-integer S.

To complete our argument that Eq. @) gives the
gapless points, we need to show that Eq. () implies
Eq. @3). To this end, we first note that the non-zero
contributions to the matrix element from H2?5N** can be
obtained from the contributing terms in H2SV given in
Eq. [E3), by adding terms of the form S?S7,,, S;S; ,
or S; Sf ;. Now the weight coming from the Clebsch-
Gordon coefficients depend on the order in which the
terms appear. But formally one can write that, Eq. £3)
implies

S i (am) =0, G0)

where by, j; are finite undetermined constants indepen-
dent of N. As before, in the large-N limit, the left hand

side of Eq. (B) can be zero only through the mutual
cancellation of a pair of neighboring terms, i.e., when

A . bm—i—l 1/N
()T w

Am+41

As N — oo, this reduces to the condition in Eq. 5.
In other words, the vanishing of (No| H29N|Ny) is a suffi-
cient condition for the vanishing of (No|H*N**|Ny) for
any finite k as N — oo.

For half-odd-integer spins, k* = 1 is a solution of Eq.
@9 for m = S —1/2, but it is not a solution for inte-
ger spins. This is consistent with Haldane’s conjecture
[1] that the uniform chain is gapless for half-odd-integer
spins and gapped for integer spins.

Since the identification of gapless points with the ze-
roes of the transition amplitudes between the two Néel
states is essentially a semi-classical approximation, we
expect the formula given by Eq. [EJ) to get better for
larger values of S.

As with the tunneling calculation in Sec III, here also
one can see that it is crucial to have a twist by 7= and not
any other angle. Let us suppose that the twist angle is
x. Then the Hamiltonian for the bond between the spins
at sites 2N and 1 will be

K(S5n ST + €™ SiyST +e ™ Sy ST).
Then the equivalent of the condition in Eq. ([Z8) will read
Um = —€Xapm 1. (32)

Since a,,’s are all real and positive, such a condition can
be satisfied only when x = m, in which case Eq. (B2)
becomes Eq. (28).

Finally, let us compare the gapless values of x given
in Eq. (@9) with those given in Eq. () in the limit
N — o0, namely,

. m+1/2

Km = 29 ’ (33)
where, m = 0,1,---. [Since Eq. ([[¥) was derived under
the assumption that S — oo and kS is of order 1, we
must restrict m to be much less than S in Eq. ([B3]).] We
see that for large values of S and m <« S, the values of
kf, in Egs. () and [B3) are related by a shift of 1/(45).
It would be useful to understand more deeply why this
is so. Heuristically, this discrepancy can be explained by
postulating that the phase difference between the actions
for the two paths discussed in Sec. IIT has an additional
factor of 7 for some reason. Eq. ([[§) would then change
to 47kS = 0 modulo 27 for N — oo; this condition would
be equivalent to Eq. ) for m <« S. In a different prob-
lem (tunneling of a charged particle in two dimensions in
the presence of a large magnetic field), it was empirically
found that an additional factor of m appears due to fluc-
tuations about the tunneling paths [L&]. It may be worth
studying if something similar happens in our problem.



V. NUMERICAL RESULTS FOR FINITE
SYSTEMS

In this section, we numerically determine the values
of k for which the Hamiltonian becomes gapless using
exact diagonalization of finite systems. These results,
being a direct calculation of the gapless points, will give
us information about the physical regimes in which the
analytical methods outlined in Secs. IIT and IV are valid.

We begin with a brief outline of the method used to
find the gapless points. As we vary « in Eq. (D), it is
known that the gapless points separate various phases
whose ground states are represented approximately by
different valence bond states (see Refs. [10, [19] and ref-
erences therein). Specifically, for a given spin S, there are
2S5 +1 different phases separated by the 2.5 gapless points
for k between 0 and co. The lowest two eigenstates of an
untwisted Hamiltonian never cross each other in energy,
even at the transition from one phase to the other; also,
the ground state always has the same eigenvalue (—1)29V
for the parity P. It is here that we make use of the twisted
boundary condition in Eq. (@). It has been shown [1(]
that the lowest two eigenstates of this Hamiltonian (both
of which lie in the S, = 0 sector) have different parity
eigenvalues, and they cross at certain points which, in the
limit N — oo, become the gapless points of the Hamil-
tonian in Eq. ([@). This means that one can locate the
gapless points of the Hamiltonian in Eq. (@) by studying
the crossing of the two lowest eigenvalues of the Hamil-
tonian in Eq. (@) in different parity sectors. This enables
us to find the gapless points without having to consider
two very closely spaced eigenvalues lying within a single
symmetry sector.

We study the Hamiltonian in Eq. (@) numerically. Be-
cause of the duality between k and 1/k we restrict our
studies to 0 < x < 1. We use the Lanczos algorithm to
diagonalize finite systems from N = 3 to N = 5. Spins
from S = 2 to 3 are studied for N = 3 to NV = 5, but for
S = 3.5 to 7 we restrict ourselves to N = 3 and N = 4
due to computational limitations.

In Fig. 1, we present two representative data plots,
for N = 3. The upper plot is for S = 3.5 and the lower
one is for S = 4. Plotted on the y axis in both figures
is E(P = —1) — E(P = +1), the energy difference be-
tween the two lowest energy eigenstates in the two parity
sectors. Wherever the plot crosses the z axis we have a
gapless point of the Hamiltonian in Eq. ([{l). The values
of the crossing points are indicated in the plots. From the
discussion in Sec. II, we know that the ground state for
N =3, S = 3.5 should have a parity —1, and for N = 3,
S = 4 should have a parity +1. This is indeed borne out
by the plots in the figure. Moreover, the gapless point
at kK = 1 is also present for S = 3.5 as expected. The
nature of these plots for other spins and different lattice
sizes is similar. Since our emphasis in this work is on the
locations of the gapless points, we now turn to analyzing
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FIG. 1: Energy difference between the two lowest energies in
the P = —1 and P = +1 sectors as a function of x, for N = 3.
The upper figure is for S = 3.5, and the lower figure is for
S = 4. The locations of the gapless points are shown.

those points more closely. [Incidentally, we observe in
Fig. 1 that the envelope of the magnitude of the gap is
rapidly decreasing with increasing «; this is in accordance
with the exponential factor for the tunneling amplitude
in Eq. ().

Figure 2 shows a comparison of the different methods
used to calculate the gapless points. Plotted on the y axis
is k!, the gapless point closest to the origin for various
values of the spin, for N = 3. The topmost plot (marked
by dots) is for values obtained from the numerical calcu-
lations, called k1,,,. The next plot (crosses) is for values
obtained from the Néel state calculation in Eq. (Z3),
Koo~ The plot at the bottom (squares) is for values ob-
tained from the tunneling expression in Eq. (&), kfy,-
Clearly, the values of k! obtained using the Néel state
calculation are in closer agreement with the numerical
values than the tunneling values. The tunneling values
do not converge with increasing S, even though one is
looking at data for spin values as large as S = 7. On the



FIG. 2: The location ! of the gapless point closest to zero,
as a function of the spin, for N = 3. The results from nu-
merical calculations (dots), Néel state calculations (crosses)
and tunneling calculations (squares) are shown. The joining
lines are guides for the eye. The inset shows the percentage
variation of the Néel state calculations when compared with
the numerical results.
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o r N W b~ g

K*

0.5- R

FIG. 3: The location k™ of the gapless point closest to (but
less than) 1, as a function of the spin, for N = 3. The results
from numerical calculations (dots) and Néel state calculations
(crosses) are shown. The top and bottom parts of the figure
are for integer and half-odd-integer values of the spin respec-
tivly. The joining lines are guides for the eye. The insets
shows the percentage variation of the Néel state calculations
when compared with the numerical results.

other hand, the plot of values using the Néel state calcu-
lations converges much faster. This is made clearer in the
plot by the inset where on the y axis we have plotted the
percentage deviation, ((KLum — Kiee)/Kmum) X 100, of
the values of ., from the numerically obtained values.

Figure 3 shows a comparison between the numerical re-

sults (dots) and those obtained from the Néel state calcu-
lation (crosses) for k*, the gapless point closest to k = 1.
[Unlike Fig. 2, we have not shown the tunneling results
based on Eq. ([[¥)) because that formula for the gapless
points is not valid when & is close to 1.] The data sets for
integer and half-odd-integer spins have been plotted sep-
arately. The plot and the inset at the top are for integer
spins, and the ones at the bottom are for half-odd-integer
spins. As before, we see that the agreement with the nu-
merical results improves as we go to larger spins. We also
see from the insets that for a given spin, the agreement
is much better near x = 1 than it was near x = 0. This
suggests that the Néel state calculation gets better as we
increase k from 0 to 1. This is something which is seen
very clearly in the following tables.

Enum | KNeel | % deviation| Ky |% deviation

0.083]0.080 3.6% 0.047| 45.4%
0.190/0.180 5.2% 0.140{ 26.3%
0.306/0.293 4.2% 0.232| 24.2%
0.438|0.424| 3.19% |0.326] 25.6%
0.77310.765| 1.03% |0.512| 33.8%
1 1 0%
Knum | ENeel | % deviation| Keyr | % deviation
0.077(0.074 3.89% 0.043 44.2%
0.174(0.166 4.02% 0.130 25.3%
0.281]0.269 4.98% 0.252 23.1%
0.400(0.387 3.25% 0.302 24.5%
0.536]0.525 2.05% 0.389 27.4%
0.695]0.685 1.29% 0.475 31.7%
0.887(0.884 0.34% 0.561 36.8%
Table 1. Comparison of the values of all the gapless

points obtained using the three methods of calculating
them, for S = 6.5 (top) and 7 (bottom). The data pre-
sented is for N = 3.

Table 1 shows how the numerical results, the Néel state
calculations and the tunneling results compare for all the
gapless points. The table shows the values of x at which
the Hamiltonian in Eq. () is gapless for S = 6.5 (top)
and S = 7 (bottom), for N = 3. The percentage devia-
tions as defined earlier are also shown for the Néel state
and tunneling calculations. As conjectured after looking
at Fig. 3, we see that the Néel state calculation gives
successively better approximations to the actual gapless
points as we go further from the origin x = 0. We have
shown the tunneling values for all the gapless points only
for completion; the formula given by Eq. () is valid
only for xS of order 1. We again see that these values
have much larger percentage deviations from the values
obtained from the other two methods, even though the
values of the spins considered are quite large.

We now look at how the values of x at the gapless
points change with N and see how the N — oo values
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FIG. 4: Variation of k' with N for § = 2.5, 3, 3.5, and
4. The numbers at the left of each graph are the N — o~
extrapolated values.

compare with those given by Eq. ([3). We take ' as an
example. Figure 3 shows the behavior for S = 2.5, 3, 3.5,
and 4. We find the N — oo values by extrapolating the
best fits obtained by fitting the data to even polynomials
in 1/(2N)? following Ref. [11]. All the data are for N =
2,3,4 and 5 (for S = 2.5 and 3).

The extrapolated values of x!' in the N — oo limit
and the corresponding values obtained from Eq. (E29)
(in parentheses) for S = 2.5, 3.0, 3.5 and 4.0 are
given by 0.223 (0.200), 0.179 (0.167), 0.146 (0.143) and
0.124 (0.125) respectively. Clearly, the agreement be-
tween the two sets of values gets better for larger values
of the spin.

VI. CONCLUSIONS

We have used three different techniques to find the
gapless points of a dimerized spin-S chain with a finite
number of sites and with a twisted boundary condition.
The first technique uses a tunneling approach which is
expected to be valid in the limit S — oo, K — 0 and kS of
order 1. Remarkably, we find that a quantum mechanical
tunneling calculation reproduces the same expressions for
the locations of the gapless points and the gap as those
obtained by more involved field theoretic techniques.

However, a direct numerical study of the gapless points
shows a systematic deviation from the tunneling results
in the limit discussed above. It would be useful to know
why the tunneling results differ systematically from the
numerical results in this limit. One possible idea is to
examine if an additional factor of m appears in the fluctu-
ation pre-factor of the tunneling amplitude as mentioned
at the end of Sec. IV.

In view of the discrepancy between the tunneling and

numerical results, we have presented a second analyti-
cal derivation of the gapless points which is based on a
calculation of the matrix element between the two Néel
states to lowest order in powers of the Hamiltonian; this
derivation is expected to become more accurate as the
number of sites becomes large. We find that the results
obtained by this approach agree much better with the
numerical results than the tunneling results, even in the
limit & — 0. It may be instructive to understand in more
detail why there is such a good agreement between this
relatively simple analytical calculation and the numerical
results.

One of the features of the numerical results shown
above is that the Néel state calculation always underesti-
mates the values of kK which correspond to gapless points,
while all the time getting closer to the actual values with
increasing S (given N) or increasing N (given S). This
may indicate positive corrections of order 1/N and 1/S
to the formula obtained from the Néel state calculation.
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