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We study a system consisting of a junction of N quantum wires, where the junction is characterized
by a scalar S-matrix, and an impurity spin is coupled to the electrons close to the junction. The
wires are modeled as weakly interacting Tomonaga-Luttinger liquids. We derive the renormalization
group equations for the Kondo couplings of the spin to the electronic modes on different wires, and
analyze the renormalization group flows and fixed points for different values of the initial Kondo
couplings and of the junction S-matrix (such as the decoupled S-matrix and the Griffiths S-matrix).
We generally find that the Kondo couplings flow towards large and antiferromagnetic values in one
of two possible ways. For the Griffiths S-matrix, we study one of the strong coupling flows by a
perturbative expansion in the inverse of the Kondo coupling; we find that at large distances, the
system approaches the ferromagnetic fixed point of the decoupled S-matrix. For the decoupled S-
matrix with antiferromagnetic Kondo couplings and weak inter-electron interactions, the flows are
to one of two strong coupling fixed points in which all the channels are strongly coupled to each
other through the impurity spin. But strong inter-electron interactions, with Kρ < N/(N + 2),
stabilize a multi-channel fixed point in which the coupling between different channels goes to zero.
We have also studied the temperature dependence of the conductance at the decoupled and Griffiths
S-matrices.

PACS numbers: 73.63.Nm, 72.15.Qm, 73.23.-b, 71.10.Pm

I. INTRODUCTION

The area of molecular electronics has grown tremen-
dously in recent years as a result of the drive towards
smaller and smaller electronic devices [1]. Molecular elec-
tronic circuits typically need multi-probe junctions. The
first experimental growths of three-terminal nanotube
junctions were not well controlled [2]; more recently, new
growth methods have been developed whereby uniform
Y -junctions have been produced [3, 4, 5]. Transport mea-
surements have also been carried out for the Y -junctions
[6], as well as for three-terminal junctions obtained by
merging together single-walled nanotubes by molecular
linkers [7].

On the theoretical side, there have been several stud-
ies of junctions of quantum wires. There have been de-
tailed studies of carbon nanotubes with different pro-
posed structures for the junction [8, 9]. Several groups
have analyzed the geometry and stability of the junctions
[10, 11]. Junctions of quantum wires have also been stud-
ied [12, 13, 14, 15, 16, 17] in terms of one-dimensional
wires, with the junction being modeled by a scattering
matrix S. These studies include the effects of electron-
electron interactions which are often cast in the language
of Tomonaga-Luttinger liquid (TLL) theory [18, 19, 20].

Many earlier studies of junctions have only included
‘scalar’ scatterings at the junction. i.e., the S-matrix
has been taken to be spin-independent. The response
of a junction of quantum wires to a magnetic impu-
rity or an impurity spin at the junction has recently
been studied both experimentally [21] and theoretically

[22, 23, 24, 25, 26]. As is well-known in three dimen-
sions, an impurity spin can lead to the Kondo effect [27].
[The coupling between the conduction electrons and the
impurity spin grows as one goes to lower temperatures;
this leads to a larger scattering and therefore a larger
resistance as long as the temperature is higher than the
Kondo temperature TK . Below TK , the resistance due to
scattering from the impurity spin decreases (if the value
of the impurity spin S is larger than or equal to half the
number of channels N) because the spin decouples from
the electrons.] The Kondo effect for a ‘two-wire junc-
tion’ in a TLL wire has been studied by several groups
[28, 29, 30, 31, 32, 33, 34, 35]. Using a renormalization
group (RG) analysis for weak potential scattering, Fu-
rusaki and Nagaosa showed that for an impurity spin of
1/2, there is a stable strong coupling fixed point (FP)
consisting of two semi-infinite uncoupled TLL wires and
a spin singlet [29]. For strong potential scattering, the
above FP is reached when the inter-electron interactions
are weak. However, sufficiently strong inter-electron in-
teractions are known to stabilize the two-channel Kondo
FP instead [30]. The Kondo effect has also been stud-
ied in crossed TLL wires [36] and in multi-wire systems
[37, 38].

In this paper, we consider a junction of quantum wires
which is characterized by an S-matrix at the junction;
further, an impurity spin is coupled to the electrons at the
junction. The wires are modeled as semi-infinite TLLs.
The details of the model defined in the continuum will be
described in Sec. II. In Sec. III, we will discuss how RG
equations for the Kondo couplings and for the S-matrix
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at the junction can be obtained by successively integrat-
ing out the electronic modes far from the Fermi energy.
We find that the flow of the Kondo couplings involve the
S-matrix elements, but the flow of the S-matrix elements
do not involve the Kondo couplings (up to second order
in the latter). To simplify our analysis, therefore, we con-
centrate on the FPs of the S-matrix RG equations and
study how the Kondo couplings evolve in Sec. IV. For the
case of N decoupled wires, we find that for a large range
of initial values of the Kondo couplings, the system flows
to a multi-channel ferromagnetic (FM) FP lying at zero
coupling. This FP is associated with spin-flip scatterings
of the electrons from the impurity spin whose tempera-
ture dependence will be discussed. Outside this range,
the flow is towards a strong antiferromagnetic (AFM)
coupling. On the other hand, at the Griffiths S-matrix
(defined below), there is no stable FP for finite values
of the Kondo couplings, and the system flows towards
strong AFM coupling in two possible ways. We also con-
sider the case when the scattering matrix has a chiral
form. In this case, we find that the Kondo coupling ma-
trix for the three wire case has three independent degrees
of freedom and a single FP at strong coupling.

The strong coupling flows will be further discussed in
Sec. V where we will consider some lattice models at the
microscopic length scale. As in the three-dimensional
Kondo problem, we find that there are various possibili-
ties depending on the number of wires N and the spin S
of the impurity, such as the under-screened, over-screened
and exactly screened cases [39]. We will generally see
that a Kondo coupling which is small at high tempera-
tures (small length scales) can become large at low tem-
peratures (large length scales). In Sec. VI, we will show
that the vicinity of one of the strong coupling FPs can be
studied through an expansion in the inverse of the cou-
pling; we will then find that the large coupling can be
re-interpreted as a small coupling in a different model.

In Sec. VII, we will study the case of decoupled wires
with strong interactions using the technique of bosoniza-
tion. Analogous to the results of [30], we find that the
multi-channel (N ≥ 2) AFM Kondo FP is stabilized for
Kρ < N/(N + 2). We will discuss the temperature de-
pendence of the conductance in Sec. VIII at both high
and low temperature; we will compare the behaviors of
Fermi liquids and TLLs. Sec. IX will contain some con-
cluding remarks. A condensed version of some parts of
this paper has appeared elsewhere [26].

Before proceeding further, we would like to emphasize
that we have not used bosonization in this paper (except
in Sec. VII), although this is a powerful and commonly
used method for studying TLLs [18, 19, 20]. In the pres-
ence of a junction with a general scattering matrix, it is
not known whether the idea of bosonization can be imple-
mented. (Some reasons for the difficulty in bosonizing are
explained in Ref. [14]). It is therefore necessary to work
directly in the fermionic language. We have adopted the

following point of view in this work [14, 40]. We start
with non-interacting electrons for which the scattering
matrix approach and the Landauer formalism for study-
ing electronic transport [41, 42] are justified. We then
assume that the interactions between the electrons are
weak, and treat the interactions to first order in pertur-
bation theory to derive the RG equations. This is the
approach used in most of this paper. Only in Sec. VII
do we use bosonization to discuss the effect of strong in-
teractions for the case of decoupled wires, since that is
one of the cases where bosonization can be used.

II. MODEL FOR SEVERAL WIRES COUPLED

TO AN IMPURITY SPIN

We begin with N semi-infinite quantum wires which
meet at one site which is the junction; on each wire, the
spatial coordinate x will be taken to increase from zero at
the junction to ∞ as we move far away from the junction.

The incoming and outgoing fields are related by an
S-matrix at the junction, which is an N × N unitary
matrix whose explicit values depend on the details of the
junction. Hence the wave function corresponding to an
electron with spin α (α =↑, ↓) and wave number k which
is incoming in wire i (i = 1, 2, · · · , N) is given by

ψiαk(x) = e−i(k+kF )x + Siie
i(k+kF )x on wire i ,

= Sji e
i(k+kF )x on wire j 6= i . (1)

Here k is the wave number with respect to the Fermi
wave number kF (i.e., k = 0 implies that the energy
of the electron is equal to the Fermi energy EF ). We
will take k to go from −Λ to Λ, where Λ is a cut-off of
the order of kF ; we will eventually only be interested in
the long wavelength modes with |k| ≪ Λ. We will use
a linearized approximation for the dispersion relation so
that the energy of an electron with wave number k is
given by vF k with respect to the Fermi energy; here vF is
the Fermi velocity, and we are setting ~ = 1. In Eq. (1),
we will refer to the waves going as e−ikx as the incoming
part ψIiαk, and the waves going as eikx as the outgoing
part ψOiαk or ψOjαk.

The second quantized annihilation operator corre-
sponding to the wave function in Eq. (1) is given by

Ψiαk(x) = ciαk ψiαk(x) , (2)

where the wire index i runs from 1 to N , and the total
second quantized operator is given by

Ψα(x) =
∑

i

∫ Λ

−Λ

dk

2π
ciαk ψiαk(x) . (3)

(Note that it is not possible to quantize the system in
terms of N independent fields on each of the wires, be-
cause an electron that is incoming on one wire has out-
going components on all the other wires as well). The
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non-interacting part of the Hamiltonian for the electrons
is then given by

H0 = vF

∑

i

∑

α

∫ Λ

−Λ

dk

2π
k c†iαkciαk . (4)

If the impurity spin is coupled to the electrons at the
junction, that part of the Hamiltonian is given by

Hspin =
∑

α,β

J ~S · Ψ†
α(x = 0)

~σαβ

2
Ψβ(x = 0) , (5)

where ~σ denotes the Pauli matrices. (For simplicity, we
will assume an isotropic spin coupling Jx = Jy = Jz). Eq.
(5) can be written in terms of second quantized operators
as

Hspin =
∑

i,j

∑

α,β

∫ Λ

−Λ

∫ Λ

−Λ

dk1

2π

dk2

2π

Jij
~S · c†iαk1

~σαβ

2
cjβk2

, (6)

where Jij = J(1 +
∑

l S
∗
li)(1 +

∑

m Smj) is a Hermi-
tian matrix. In general, however, the impurity spin may
also be coupled to the electrons at other sites which are
slightly away from the junction; for instance, this may be
true if the model is defined on a lattice at the microscopic
scale as we will see in Sec. V. It is therefore convenient
to take Jij to be an arbitrary Hermitian matrix which is
not necessarily related to the entries of the S-matrix in
any simple way.

Next, let us consider density-density interactions be-
tween the electrons in each wire of the form (we will drop
the wire index i for the moment)

Hint =
1

2

∫ ∫

dx dy ρ(x) U(x− y) ρ(y) , (7)

where the density ρ is given in terms of the second quan-
tized electron field Ψα(x) as ρ = Ψ†

↑Ψ↑ +Ψ†
↓Ψ↓. As men-

tioned earlier for the wave-functions, the electron field
can also be written in terms of outgoing and incoming
fields as

Ψα(x) = ΨOα(x) eikF x + ΨIα(x) e−ikF x . (8)

If the range of the interaction U(x) is short (of the or-
der of the Fermi wavelength 2π/kF ), such as that of a
screened Coulomb repulsion, the Hamiltonian in (7) can
be written as

Hint =
∫

dx
∑

α,β

[g1Ψ
†
OαΨ†

IβΨOβΨIα + g2Ψ
†
OαΨ†

IβΨIβΨOα

+
1

2
g4(Ψ

†
OαΨ†

OβΨOβΨOα + Ψ†
IαΨ†

IβΨIβΨIα)],

(9)

where

g1 = Ũ(2kF ) ,

and g2 = g4 = Ũ(0) . (10)

For repulsive and attractive interactions, g2 > 0 and < 0
respectively. (We have ignored umklapp scattering terms
here; they only arise if the model is defined on a lattice
and we are at half-filling).

III. THE RENORMALIZATION GROUP

EQUATIONS

It is known that the interaction parameters g1, g2 and
g4 satisfy some RG equations [43]; the solutions of the
lowest order RG equations are given by [40]

g1(L) =
Ũ(2kF )

1 + Ũ(2kF )
πvF

lnL
,

g2(L) = Ũ(0) − 1

2
Ũ(2kF ) +

1

2

Ũ(2kF )

1 + Ũ(2kF )
πvF

lnL
,

g4(L) = Ũ(0) , (11)

where L denotes the length scale.
In general, the couplings g1, g2 and g4 can have dif-

ferent values on different wires; hence we have to add a
subscript i to them. For weak interactions, i.e., when g1i,
g2i and g4i are all much less than 2πvF , we can derive the
RG equations for the S-matrix at the junction [14, 40].
Let us define a parameter

αi =
g2i − 2 g1i

2πvF
, (12)

which is a function of length scale due to Eqs. (11), and
a diagonal matrix M whose entries are given by

Mii =
1

2
αirii . (13)

Then the RG equations can be written in the matrix form

dS

d lnL
= M − SM †S . (14)

The FPs of this equation are given by the condition M =
SM †S.

We use the technique of ‘poor man’s RG’ [39, 44] to de-
rive the renormalization of the S-matrix and the Kondo
coupling matrix Jij . Briefly, this involves using the sec-
ond order perturbation expression for the low energy ef-
fective Hamiltonian,

Heff =
∑

h

|l2 >< l2|Hpert|h >< h|Hpert|l1 >< l1|
El − Eh

,

(15)
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g
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FIG. 1: Pictures of the terms which contribute to the renor-
malization of the Kondo coupling matrix J to order J2 and
g2J respectively; g2 denotes the coefficient of the electron-
electron interaction. Thin lines and thick lines denote low
energy and high energy electrons respectively.

where the perturbationHpert is given by the sum of Hspin

and Hint in Eqs. (6) and (9), l1 and l2 denote two energy
states, and h denotes high energy states. We now restrict
the sum over h in Eq. (15) to run over states for which
the energy difference Eh−El lies within an energy shell E
and E+dE; we have assumed that the difference between
different low energy states is much smaller than E, so
that we can simply write El1 = El in the denominator
of the above equation. We then see that the change in
the effective Hamiltonian dHeff is proportional to dE/E
which is equal to −d lnL, where the length scale L is
inversely related to the energy scale E. In this way, we
get an RG equation for the derivatives with respect to
lnL of various parameters appearing in the low energy
Hamiltonian.

Using this method, we find that the Kondo couplings
Jij do not contribute to the renormalization of the S-
matrix in Eq. (14) up to second order in Jij . (This is
not true beyond second order; however, we will only work
to second order here assuming that the Jij are small).
On the other hand, the S-matrix does contribute to the
renormalization of the Jij through the interaction Hamil-
tonian in Eq. (9); this is because the relation between
the outgoing field on wire i (i.e., ΨOiα) and the opera-
tors cjα involves the S-matrix. For instance, the terms
involving g2i in Eq. (9) take the form

∑

i,j,l

∑

α,β

∫ Λ

−Λ

∫ Λ

−Λ

∫ Λ

−Λ

∫ Λ

−Λ

dk1

2π

dk2

2π

dk3

2π

dk4

2π

× π δ(k1 − k2 + k3 − k4) g2i

× S∗
ijc

†
jαk1

c†iβk2
ciβk3

Silclαk4
, (16)

where we have used the identity

∫ ∞

0

dx e(−ik1+ik2−ik3+ik4−ǫ)x

= − i

k1 − k2 + k3 − k4 − iǫ

= − i P
( 1

k1 − k2 + k3 − k4

)

+ π δ(k1 − k2 + k3 − k4) , (17)

with ǫ being an infinitesimal positive number. [In Eq.
(16), we have kept only the δ-function term and have
dropped the principal part term since the latter can be
either positive or negative, and its contribution vanishes
when one integrates over the variables ki.] Note that the
terms involving g2 in Eq. (16) (as well as those involving
g1 and g4 in Eq. (9)) conserve momentum while the
Kondo coupling terms in Eq. (6) do not.

We will omit the details of the RG calculations here
apart from making a few comments below. We find that

dJij

d lnL

=
1

2πvF
[
∑

k

JikJkj

+
1

2
g2i Sij

∑

k

JikS
∗
ik +

1

2
g2j S

∗
ji

∑

k

JkjSjk

− 1

2

∑

k

(g2k − 2g1k) (JikS
∗
kkSkj + S∗

kiSkkJkj) ] ,

(18)

where Sij is the S-matrix at the length scale L. Eq. (18)
is the key result of this paper. Note that it maintains
the hermiticity of the matrix Jij . Eq. (18) always has a
trivial FP at Jij = 0.

Let us briefly comment on the origin of the various
terms on the right hand side of Eq. (18). The first and
second lines arise from Figs. 1 (a) and (b) respectively.
(The terms of order J2 in the first line have been de-
rived in Ref. [22]). The parameters g1i and g4i do not
appear in the second line of Eq. (18) since the terms
which are proportional to these parameters either do not
appear in the numerator of Eq. (15) because they are
not allowed by momentum conservation, or they appear
in Eq. (15) but their contribution vanishes because the
Pauli matrices are traceless. Finally, the third line of Eq.
(18) arises as follows. In Ref. [14], the RG equation for
the S-matrix was derived. This was based on the idea
that due to reflections at the junction (these arise from
the diagonal elements of the S-matrix which are the re-
flection amplitudes), there are Friedel oscillations in the
density of the electrons; the amplitudes of these oscilla-
tions are proportional to Skk and S∗

kk in wire k. We now
treat the interactions in the Hartree-Fock approximation
[14]; this results in reflections from the Friedel oscilla-
tions with a strength proportional to g2k − 2g1k in wire
k. Now, an electron going from wire j to i can either (i)
first go from wire j to wire k with a transmission ampli-
tude Skj , scatter from the Friedel oscillations in wire k
with an amplitude (g2k −2g1k)S∗

kk, and finally scatter off
the impurity spin from wire k to wire i with amplitude
Jik, or (ii) first scatter off the impurity spin from wire
j to wire k with amplitude Jkj , scatter from the Friedel
oscillations in wire k with an amplitude (g2k − 2g1k)Skk,
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and finally scatter from wire k to wire i with a transmis-
sion amplitude S∗

ki. These two processes give rise to the
third line of Eq. (18).

It is interesting to observe that Eq. (18) remains in-
variant if we transform Sij → eiφiSij , where the φi can be
arbitrary real numbers. According to Eq. (1), this cor-
responds to the freedom of redefining the phases of the
outgoing waves by different amounts on different wires.

IV. ANALYSIS OF THE RENORMALIZATION

GROUP EQUATIONS

To simplify our analysis, we will make two assump-
tions.
(i) The couplings g1i and g2i have the same value on all
the wires, and therefore the subscript i on g1 and g2 can
be dropped.
(ii) The S-matrix is at a FP of Eq. (14), so that S does
not flow with the length scale.

We will now consider several possibilities for the S-
matrix, and will study the RG flows and FPs of the
Kondo couplings Jij in each case. The different possi-
bilities can be realized in terms of quantum wires and
quantum dots containing the impurity spin as shown in
Fig. 2.

(a) (b)

FIG. 2: Schematic pictures of the system of wires (shown by
solid lines), an impurity spin (shown inside a circle), and the
coupling between the spin and the wires (dotted lines). Fig-
ures (a) and (b) show the cases of disconnected and Griffiths
S-matrices respectively.

A. N disconnected wires

The S-matrix for N disconnected wires is given by the
N ×N identity matrix (up to phases). (We will assume
that N ≥ 2). A picture of the system is indicated in Fig.
2 (a); the wires are disconnected from each other, and the
end of each wire is coupled to the impurity spin. A more
microscopic description of the system will be discussed
in Sec. V.

Let us consider a highly symmetric form of the Kondo
coupling matrix in which all the diagonal entries are equal
to J1 and all the off-diagonal entries are equal to J2,
with both J1 and J2 being real. (In the language of the

three-dimensionalN -channel Kondo problem, J2 denotes
coupling between different channels). Since the S-matrix
is also symmetric under the exchange of any two of the
N indices, such a symmetric form of the Kondo matrix
will remain intact during the course of the RG flow. In
other words, it is natural for us to choose the J matrix
to have the same symmetry as the S-matrix, since that
symmetry is preserved under the RG flow. Eq. (18) gives
the two-parameter RG equations

dJ1

d lnL
=

1

2πvF
[J2

1 + (N − 1)J2
2 + 2g1J1] ,

dJ2

d lnL
=

1

2πvF
[2J1J2 + (N − 2)J2

2 − (g2 − 2g1)J2] .

(19)

(For N = 2 and g1 = 0, Eq. (19) agrees with the results
in Ref. [30]).

Since g1(L = ∞) = 0, Eq. (19) has only one FP at
finite values of (J1, J2), namely, the trivial FP at (0, 0).
We then carry out a linear stability analysis around this
FP. [Given a RG equation of the form dX/d lnL = aX ,
we will say that the FP at X = 0 is stable if a < 0,
unstable if a > 0, and marginal if a = 0. In the marginal
case, we look at the next order term; if dX/d lnL =
bX2 and b > 0, we say that the FP at X = 0 is stable
on the x < 0 side and unstable on the x > 0 side.] If
ν ≡ g2(L = ∞)/(2πvF ) > 0 (repulsive interactions), the
stability analysis shows that the trivial FP is stable to
small perturbations in J2. For small perturbations in J1,
this FP is marginal; a second order analysis shows that
it is stable if J1 < 0 and unstable if J1 > 0, i.e., it is the
usual ferromagnetic FP which is found for Fermi liquid
leads. However, the approach to the FP is quite different
when the leads are TLLs. At large length scales, the FP is
approached as J1 ∼ −1/ lnL and J2 ∼ 1/Lν. From this,
we can deduce the behavior at very low temperatures,
namely,

J1 ∼ − 1/ ln(TK/T ) , and J2 ∼ (T/TK)ν . (20)

where we have introduced the Kondo temperature TK .
(This is given as usual by TK ∼ Λe−2πvF /J , where Λ is
an energy cut-off of the order of the Fermi energyEF , J is
the value of a typical Kondo coupling at the microscopic
length scale as explained after Eq. (22), and 1/(2πvF ) is
the density of states at EF ). The form in Eq. (20) is in
contrast to the behavior of J2 for Fermi liquid leads, i.e.,
for g1 = g2 = 0. In that case, Eq. (19) can be solved
exactly in terms of the linear combinations J1 − J2 and
J1 + (N − 1)J2; we again find a FP at (J1, J2) = (0, 0),
with

J1 ∼ − 1/ ln(TK/T ) , and J2 ∼ 1/ ln(TK/T )2 . (21)

Note that J2 approaches zero faster than J1 for both
Fermi liquid leads and TLL leads; but for the latter case,
it goes to zero much faster, i.e., as a power of T .
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Eq. (21) is valid provided that neither J1 − J2 nor
J1 + (N − 1)J2 is exactly equal to zero; if one of them is
exactly zero and the other is not, then both J1 and J2 go
as 1/ ln(TK/T ). However, having one of the two combi-
nations exactly equal to zero requires a special tuning in
a microscopic model, as we will see in Sec. V. In general,
therefore, the powers of 1/ ln(TK/T ) in J1 and J2 are
different; this does not seem to have been noted in the
earlier literature.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

J1 −−−−−−>

J 2
−

−
−

−
−

−
>

FIG. 3: RG flows of the Kondo couplings for three discon-
nected wires, with Ũ(0) = Ũ(2kF ) = 0.2(2πvF ).

Figure 3 shows a picture of the RG flows for three
wires for Ũ(0) = Ũ(2kF ) = 0.2(2πvF ). [This gives
a value of ν which is comparable to what is found in
several experimental systems (see [45] and references
therein). In all the pictures of RG flows, the values of
Jij are shown in units of 2πvF .] We see that the RG
flows take a large range of initial conditions to the FP
at (0, 0). For all other initial conditions, we see that
there are two directions along which the Kondo couplings
flow to large values; these are given by J2/J1 = 1 and
J2/J1 = −1/(N − 1) (with N = 3). [On a cautionary
note, we should remember that the RG equations stud-
ied here are only valid at the lowest order in Jij and g2,
i.e., for the case of weak repulsion (or attraction) and
small Kondo couplings.]

The fact that the Kondo couplings flow to large values
along two particular directions can be understood as fol-
lows. For values of J1 and J2 much larger than g1 and
g2, one can ignore the terms of order g1 and g2 in Eq.
(19). One then obtains the decoupled equations

d [J1 − J2]

d lnL
≃ 1

2πvF
(J1 − J2)

2 ,

d [J1 + (N − 1)J2]

d lnL
≃ 1

2πvF
(J1 + (N − 1)J2)

2 .

(22)

From these equations one can deduce that the couplings
can flow to large values in one of two ways, depending
on the initial conditions. Either J1 + (N − 1)J2 goes
to ∞ much faster than J1 − J2 (this is what happens
in the first quadrant of the figures in Figs. 3 and 4),
or J1 − J2 goes to ∞ much faster than J1 + (N − 1)J2

(this happens in the fourth quadrant of the figures in
Figs. 3 and 4). A third possibility is that J2 remains
exactly equal to zero while J1 → ∞; however, this can
only happen if one begins with J2 exactly equal to zero.
(This also seems to happen if the interactions are strong
enough as we will discuss in Sec. VII). We will provide
a physical interpretation of the first two possibilities in
Sec. V.

Eq. (22) has the form dJ/d lnL = J2/(2πvF ). If J(d)
denotes the value of J at a microscopic length d, and
J(d) ≪ 2πvF , then it becomes of order 1 at a length
scale L0 given by L0/d ∼ e2πvF /J(d); the corresponding
temperature is given by TK ∼ Λe−2πvF /J(d).

Finally, note that the special case with J2 = 0 and
g1 = g2 = 0 is equivalent to the Kondo problem in three
dimensions with N channels and no coupling between
channels [27]. In the three-dimensional case, the RG
equation has been derived to fifth order in the Kondo
coupling [46]. This reveals a stable FP at a finite value
of the coupling

J1 =
4πvF

N
, (23)

where 1/(2πvF ) is the density of states at the Fermi en-
ergy. Thus the couplings Jij need not really flow to infin-
ity as Fig. 3 would suggest; one may find strong coupling
FPs lying at values of order 2πvF if one takes into account
terms of higher order in the RG equations. In Sec. VII,
we do find a strong coupling FP for sufficiently strong
inter-electron interactions.

Although we have discussed the case of completely dis-
connected wires here, the results do not change signif-
icantly if we allow a small spin-independent tunneling
amplitude of the form

Htun = τ
∑

i6=j

∑

α

Ψ†
i,α(xi = 0) Ψj,α(xj = 0) . (24)

This is equivalent to changing the S-matrix slightly away
from the identity matrix. Using the RG equation in (14),
we find that the parameter τ satisfies the RG equation

dτ

d lnL
= − 1

2πvF
(g2 − 2g1) τ . (25)

This has the same form as the interaction dependent
terms in the RG equation for J2 in (19). Hence, τ also
scales at low temperatures as T ν just like J2 in Eq. (20).
Thus the contributions of both τ and J2 to the conduc-
tance go as (T/TK)2ν .

Here and subsequently we have not discussed the case
of attractive interactions (g2 < 0). The stability analysis
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can easily be suitably modified in that case; some of the
directions for the RG flows may become stable and others
may become unstable if the sign of g2 is reversed.

B. Griffiths S-matrix for N wires

This is the case in which all the N wires are connected
to each other and there is maximal transmission, subject
to the constraint that there is complete symmetry be-
tween the N wires. (We will again assume that N ≥ 2.)
A picture of the system is indicated in Fig. 2 (b); the
wires are connected to each other at a junction, and the
junction is also coupled to the impurity spin. A more
microscopic description of the junction will be discussed
in Sec. V.

The maximally transmitting completely symmetric S-
matrix is also called the Griffiths S-matrix and has all the
diagonal entries equal to −1+2/N and all the off-diagonal
entries equal to 2/N . Since here, too, the S-matrix is
fully symmetric in the N wires, we again consider the
highly symmetric form of the Kondo coupling matrix as
in the previous subsection, with real parameters J1 and
J2 as the diagonal and off-diagonal entries respectively.
Eq. (18) then gives

dJ1

d lnL
=

1

2πvF
[J2

1 + (N − 1)J2
2 + 2g1 (1 − 2

N
)2 J1

− 4g1(1 − 2

N
) (1 − 1

N
) J2 ],

dJ2

d lnL
=

1

2πvF
[2J1J2 + (N − 2)J2

2 − 4g1
N

(1 − 2

N
)J1

+ (g2 − 2g1(1 − 2

N
)2) J2 ]. (26)

(For N = 2, i.e., a full line with an impurity spin cou-
pled to one point on the line, Eq. (26) agrees with the
equations derived in Ref. [29]).

The only FP of Eq. (26) is again the trivial FP at the
origin. A linear stability analysis shows that this FP is
unstable in one direction (J2) and marginal in the other
(J1) for g2(L = ∞) > 0.

Figure 4 shows a picture of the RG flows for three
wires for Ũ(0) = Ũ(2kF ) = 0.2(2πvF ). We see that there
is no stable FP at finite values of the couplings. The cou-
plings flow to large values along one of the two directions
J2/J1 = 1 and J2/J1 = −1/(N − 1). The reason for this
is the same as that explained around Eq. (22) since the
RG equations in (19) and (26) have the same form for
large values of J1 and J2.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

J1 −−−−−−>

J 2
−

−
−

−
−

−
>

FIG. 4: RG flows of the Kondo couplings for the Griffiths
S-matrix for three wires, with Ũ(0) = Ũ(2kF ) = 0.2(2πvF ).

C. Chiral S-matrix for three wires

We choose a chiral S-matrix of the form

S =





0 0 γ
γ 0 0
0 γ 0



 , (27)

where γ is a complex number satisfying |γ| = 1. (We will
see a physical realization of this form in Sec. V. Alter-
natively, we could have considered an S-matrix which is
the transpose of the one given above).

Let us consider a Kondo coupling matrix of the form

J =





J1 J2 J∗
2

J∗
2 J1 J2

J2 J∗
2 J1



 , (28)

where J1 is real but J2 can be complex.
Then Eq. (18) gives

dJ1

d lnL
=

1

2πvF
[ J2

1 + 2|J2|2 ] ,

dJ2

d lnL
=

1

2πvF
[ 2J1J2 + (J∗

2 )2 +
1

2
g2J2 ] . (29)

[Note that the above equations remain invariant under
the transformation J2 → J2e

i2π/3 or J2e
−i2π/3. We will

see in Sec. V. C that a lattice realization of the chiral
S-matrix has the same symmetry.]

One can again show that the only FP of Eq. (29) is
the trivial FP at the origin. A linear stability analysis
shows that the trivial FP is unstable in one direction
(J2) and marginal in the other (J1) for g2(L = ∞) > 0.
Figure 5 shows a picture of the RG flows for three wires
for Ũ(0) = Ũ(2kF ) = 0.2(2πvF ). The upper and lower
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FIG. 5: RG flows for the chiral S-matrix for three wires, with
Ũ(0) = Ũ(2kF ) = 0.2(2πvF ). The upper and lower figures
show the magnitude and phase respectively of J2.

figures show the way in which the magnitude and phase
of J2 evolve. We see that there is no stable FP at finite
values of the couplings. The phase of J2 flows towards
one of the three values, 0 or ±2π/3; this is consistent
with the symmetry of J2 pointed out after Eq. (29).
Further, J1 and the magnitude of J2 flow in such a way
that J1 +2|J2| grows much faster than J1 − |J2|. We can
understand these observations as follows.

For values of J1 and J2 much larger than g2, one can
ignore the term of order g2 in Eq. (29). If we write
J2 = |J2|eiφ, we find that

dφ

d lnL
≃ − 1

2πvF
|J2| sin(3φ) ,

d|J2|
d lnL

≃ 1

2πvF
[ 2J1|J2| + |J2|2 cos(3φ) ] . (30)

The first equation in (30) shows that φ = 0,±π/3,±2π/3
and π are fixed points; however, since |J2| flows to ∞

under RG, only the values φ = 0 and ±2π/3 are stable.
Substituting this fact that cos(3φ) → 1 in the second
equation in (30), and combining it with the first equation
in (29), we obtain the decoupled equations

d [J1 − |J2|]
d lnL

≃ 1

2πvF
(J1 − |J2|)2 ,

d [J1 + 2|J2|]
d lnL

≃ 1

2πvF
(J1 + 2|J2|)2 . (31)

From this we deduce that J1 + 2|J2| must flow to ∞
much faster than J1 − |J2| since J1 + 2|J2| > J1 − |J2|
to begin with. Note that unlike the disconnected and
Griffiths cases, where J1 and J2 flow to large values in
two possible ways (with |J2|/J1 → 1 and −1/(N − 1)
respectively), in the chiral case, J1 and J2 flow to large
values in only one way, along the direction |J2|/J1 = 1.

V. INTERPRETATION IN TERMS OF LATTICE

MODELS

We will now see how the different S-matrices and RG
flows discussed in Sec. IV can be interpreted in terms
of lattice models [29]. This will provide us with physical
interpretations of the various kinds of RG flows and FPs.
We will concentrate on what the lattice models imply
about the structure of the region near the junction, rather
than the form of the interactions between the electrons
in the bulk of the wires which has already been discussed
in Sec. II. (The interactions can be introduced in the
lattice model by, for instance, writing a Hubbard term
at each site). We will again discuss three different cases
here. (The models shown in Fig. 6 and discussed below
in detail can be thought of as providing a microscopic
picture of the systems shown in Fig. 2).

2

3 3

2

1

(a) (b)

1
3 2 1 1

1

3

2

23

2

1

33

2

1

3

2

1

0

FIG. 6: Lattice models for some of the S-matrices for three
wires. (a) can be a model for the disconnected and Griffiths
S-matrices, while (b) can be a model for the chiral S-matrix.
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A. N disconnected wires

This system can be realized by a lattice of the form
shown in Fig. 6 (a). N wires meet at a junction which
is labeled by the site number 0; all the other sites are
labeled as n = 1, 2, · · ·, with n increasing as one goes
away from the junction. (The lattice spacing will be set
equal to one). We take the Hamiltonian to be of the
tight-binding form, with a hopping amplitude equal to −t
on all the bonds (where t is real), except for the bonds
which connect the sites labeled as n = 1 on each wire
to the junction site; we set those hopping amplitudes
equal to zero. This is equivalent to removing the junction
site from the system; we will therefore not consider that
site any further in this subsection. We then obtain a
system of disconnected wires with an S-matrix which is
equal to −1 times the identity matrix. To show this,
we consider a wave which is incoming on wire i with a
wave number k, where 0 < k < π. We then find that
the corresponding eigenstate of the Hamiltonian has an
energy equal to Ek = −2t cosk, and a wave function
given by

ψik(n) = e−ikn − eikn for n = 1, 2, · · · on wire i ,

= 0 at the junction and on all wires j 6= i .

(32)

We introduce an on-site potential which is equal to µ at
all sites. In the absence of interactions, the ground state
is one in which all the states with energies going from
= −2t up to µ are filled; the Fermi wave number kF is
given by µ = −2t coskF , assuming that µ lies in the range
[−2t, 2t]. [We can then redefine all the wave numbers k by
subtracting kF from them as indicated after Eq. (1); the
redefined wave numbers then run from −Λ to Λ, where
Λ is of order kF .]

Let us now consider coupling the impurity spin to the
sites labeled as n = 1 on the different wires by the fol-
lowing Hamiltonian

Hspin = F1
~S ·

∑

i

∑

α,β

Ψ†
α(i, 1)

~σαβ

2
Ψβ(i, 1)

+ F2
~S ·

∑

i6=j

∑

α,β

Ψ†
α(i, 1)

~σαβ

2
Ψβ(j, 1) ,

(33)

where Ψα(i, 1) denotes the second quantized electron field
at site 1 on wire i with spin α. (Eq. (42) below will pro-
vide a justification for this Hamiltonian). In Eq. (33),
F1 and F2 denote amplitudes for spin-dependent scatter-
ing from the impurity within the same wire and between
two different wires respectively. Namely, a spin-up elec-
tron coming in through one wire can get scattered by the
impurity spin as a spin-down electron either along the
same wire (F1) or along a different wire (F2). We then

find that the Kondo coupling matrix Jij in Eq. (6) is as
follows: all the diagonal entries are given by J1 and all
the off-diagonal entries are given by J2, where

J1 = 4F1 sin2 kF ,

and J2 = 4F2 sin2 kF (34)

for modes with redefined wave numbers lying close to
zero. This is precisely the kind of Kondo matrix whose
RG flows were studied in Sec. IV. A. The flows of the
parameters J1 and J2 considered there can be translated
into flows of the parameters F1 and F2 here. In partic-
ular, the approach to the FP at (J1, J2) = (0, 0) given
by Eq. (20) at low temperatures implies that spin-flip
scattering within the same wire or between two different
wires will have quite different temperature dependences.

The flows to strong coupling shown in Fig. 3 can be
interpreted as follows. In the first quadrant of Fig. 3, we
see that J1 + (N − 1)J2 goes to ∞ faster than |J1 − J2|;
Eq. (34) then implies that F1 and F2 go to ∞. In the
fourth quadrant of Fig. 3, J1 − J2 goes to ∞ faster than
|J1 + (N − 1)J2|; this implies that F1 goes to ∞ and F2

goes to −∞ as −F1/(N − 1).
These flows to strong coupling have the following in-

terpretations. In the first case, F1 and F2 flow to ∞.
From Eq. (33), this implies that the impurity spin (of
magnitude S) is strongly and antiferromagnetically cou-
pled to only one electronic field, namely, the ‘centre of
mass’ field given by

∑

i Ψ(i, 1)/
√
N (suppressing the spin

labels and the Pauli matrices for the moment). Hence
that field and the impurity spin will combine to form
an effective spin of S − 1/2. In analogy with the three-
dimensional Kondo problem, we can say that the impu-
rity spin is under-screened or exactly screened if S > 1/2
or S = 1/2 respectively. In the second case, F1 and
F2 = −F1/(N−1) go to ∞. Using Eq. (33), we can then
show that the impurity spin is strongly and antiferromag-
netically coupled to the N − 1 ‘difference’ fields (given
by the orthogonal combinations [Ψ(1, 1) − Ψ(2, 1)]/

√
2,

[Ψ(1, 1)+ Ψ(2, 1)− 2Ψ(3, 1)]/
√

6, · · ·). Hence those fields
and the impurity spin will combine to give an effective
spin of S−(N−1)/2 = S+1/2−N/2. Thus the impurity
spin is under-screened, exactly screened or over-screened
if 2S + 1 is greater than, equal to or less than N respec-
tively.

B. Griffiths S-matrix for N wires

This system can again be realized by the lattice shown
in Fig. 6 (a) and a tight-binding Hamiltonian. However,
we now take the hopping amplitude to be −t on all bonds,
except for the bonds which connect the sites labeled as
n = 1 on each wire to the junction site; on those bonds,
we take the hopping amplitude to be t1 = −t

√

2/N .
The on-site potential is taken to be µ at all sites, includ-
ing the junction. We then find that the S-matrix is of
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the Griffiths form for all values of the wave number k.
Namely, for a wave which is incoming on wire i with a
wave number k, the wave function is given by

ψik(n) = e−ikn − (1 − 2

N
) eikn on wire i ,

=
2

N
eikn on all wires j 6= i ,

=
2

N
at the junction site . (35)

We now consider coupling the impurity spin to the
junction site labeled by zero, and the sites labeled as
n = 1 on the different wires by the following Hamiltonian

Hspin = F3
~S ·

∑

α,β

Ψ†
α(0)

~σαβ

2
Ψβ(0)

+ F4
~S ·

∑

i

∑

α,β

Ψ†
α(i, 1)

~σαβ

2
Ψβ(i, 1) ,

(36)

where Ψα(0) denotes the second quantized electron field
at the junction site with spin α. (Sec. VI will provide a
justification for this kind of a coupling). Then the Kondo
coupling matrix Jij in Eq. (6) takes the following form:
all the diagonal entries are given by J1 and all the off-
diagonal entries are given by J2, where

J1 =
4F3

N2
+ 2F4 [ 1 − (1 − 2

N
) cos 2kF ] ,

and J2 =
4F3

N2
+

4F4

N
cos 2kF (37)

for modes with wave numbers lying close to zero. The
RG flows of this kind of Kondo matrix were studied in
Sec. IV. B.

In terms of F3 and F4, the variables in Eq. (22) are
given by

J1 − J2 = 2F4 (1 − cos 2kF ) ,

and J1 + (N − 1)J2 =
4F3

N
+ 2F4 (1 + cos 2kF ) .

(38)

Since 0 < kF < π, 1±cos 2kF lie between 0 and 2. In the
first quadrant of Fig. 4, J1 + (N − 1)J2 goes to ∞ faster
than |J1 − J2|; Eq. (38) then implies that F3 goes to ∞
and |F4| ≪ F3. In the fourth quadrant of Fig. 4, J1 − J2

goes to ∞ faster than |J1 + (N − 1)J2|; this implies that
F4 goes to ∞ and F3 goes to −∞.

These flows to strong coupling have the following inter-
pretations. In the first case, F3 flows to ∞ which means
that the impurity spin (of magnitude S) is strongly and
antiferromagnetically coupled to an electron spin at the
junction site n = 0; hence those two spins will combine
to form an effective spin of S − 1/2. (This case will be
discussed in detail in Sec. VI). In the second case, F3

goes to −∞ while F4 goes to ∞; hence the impurity spin
is coupled strongly and ferromagnetically to an electron
spin at the site n = 0, and antiferromagnetically to elec-
tron spins at the sites labeled as n = 1 on each of the N
wires (see Fig. 6 (a) for the site labels). Hence the im-
purity spin will combine with those N + 1 spins to form
an effective spin of S + 1/2 −N/2. Interestingly, we see
that the magnitudes of the effective spins formed in the
strong coupling limits in the first and fourth quadrants
are the same in the cases of N disconnected wires and
the Griffiths S-matrix.

C. Chiral S-matrix for three wires

This system can be realized by a lattice of the form
shown in Fig. 6 (b). The three wires meet at a triangle;
the sites on each wire are labeled as n = 1, 2, · · ·. The
hopping amplitude is taken to be −t on all the bonds,
except for the three bonds on the triangle. On those
bonds, we take the hopping amplitude to be complex, and
of the form −teiθ in the clockwise direction and −te−iθ

in the anticlockwise direction. [We can think of the total
phase 3θ of the product of hopping amplitudes around
the triangle as being the Aharonov-Bohm phase arising
from a magnetic flux enclosed by the triangle. Such a
flux breaks time reversal symmetry which makes the S-
matrix non-symmetric. Note that since only the value of
3θ modulo 2π has any physical significance, we are free
to shift the value of θ by ±2π/3. This changes the phase
of the coupling J2 defined below.] We then find that the
S-matrix is of the chiral form given by Eq. (27), provided
that the wave number k satisfies

ei(3θ+k) = − 1 . (39)

The phase γ in (27) is then given by ei(θ+k). [Unlike
the disconnected and Griffiths cases, we have not found
a lattice model which gives an S-matrix as in (27) for
all values of the wave number k.] Given a value of θ,
we therefore choose a chemical potential µ = −2t coskF

such that kF satisfies Eq. (39). Since the properties of
a fermionic system at low temperatures are governed by
the modes near kF , the above prescription produces a
system with a chiral S-matrix.

We now consider coupling the impurity spin to the
three sites of the triangle through the Hamiltonian

Hspin = F5
~S ·

∑

i

∑

α,β

Ψ†
α(i, 1)

~σαβ

2
Ψβ(i, 1) .

(40)

Then the Kondo coupling matrix Jij in Eq. (6) takes the
form given in Eq. (28), where

J1 = 2F5 ,

and J2 = F5e
−i(θ+3kF ) (41)
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for modes with wave numbers lying close to zero. This is
a special case of the Kondo matrix given in Eq. (28). [To
obtain the most general form given in (28), we need to
introduce another parameter, such as a coupling of the
impurity spin to the sites labeled by n = 2 in Fig. 6 (b).]
The RG flows of this kind of Kondo matrix were studied
in Sec. IV. C.

VI. EXPANSION AROUND A STRONG

COUPLING FIXED POINT

In Sec. V, we considered several examples of S-
matrices and the RG flows of the Kondo coupling. In
most cases, we found that the Kondo couplings flow to
large values. We can now ask whether the vicinity of the
strong coupling FPs can be studied in some way. We will
see that it is possible to do so through an expansion in
the inverse of the Kondo coupling [39].

We will consider one example of such an expansion
here. Following the discussion given after Eq. (38), let
us assume that the RG flows for the case of the Griffiths
S-matrix have taken us to a strong coupling FP along
the direction J2/J1 = 1, as shown in the first quadrant
of Fig. 4. This implies that the coupling of the impurity
spin S to an electron spin at the junction site n = 0 has a
large and positive (antiferromagnetic) value F3, while its
coupling to the sites labeled as n = 1 on each of the wires
has a finite value F4 which is much less than F3 (the site
labels are shown in Fig. 6 (a)). The ground state of the
F3 term (namely, just the first term in Eq. (36)) consists
of a single electron at site n = 0 which forms a total spin
of S−1/2 with the impurity spin. The energy of this spin
state is −F3(S + 1)/2; this lies far below the high energy
states in which there is a single electron at site n = 0
which forms a total spin of S + 1/2 with the impurity
spin (these states have energy F3S/2), or the states in
which the site n = 0 is empty or doubly occupied (these
states have zero energy).

We can now do a perturbative expansion in 1/F3. We
take the unperturbed Hamiltonian to be one in which the
hopping amplitudes on all the bonds are −t, except for
the bonds connecting the sites labeled as n = 1 on the
different wires to the junction site; we take those hopping
amplitudes to be zero. (This means that the unperturbed
Hamiltonian corresponds to the case of N disconnected
wires). We also include the spin coupling proportional to
F3 in the unperturbed Hamiltonian. We take the pertur-
bation Hpert as consisting of (i) the hopping amplitude t1
on the bonds connecting the sites labeled as n = 1 to the
junction site, and (ii) the F4 term in Eq. (36). Using this
perturbation, we can find an effective Hamiltonian [39].
[Once again, we use the expression in Eq. (15), where
the high energy states are the ones listed in the previous
paragraph. We will work up to second order in t1 and
F4.] If S > 1/2, we find that the effective Hamiltonian

has no terms of order t1 or t1F4, and it is given by

Heff = F1,eff
~Seff ·

∑

i

~si

+ F2,eff
~Seff ·

∑

i6=j

∑

α,β

Ψ†
α(i, 1)

~σαβ

2
Ψβ(j, 1)

+ C
∑

i6=j

(~Seff · ~si) (~Seff · ~sj) + D
∑

i<j

~si · ~sj

(42)

plus some constants, where

~si =
∑

α,β

Ψ†
α(i, 1)

~σαβ

2
Ψβ(i, 1) ,

F1,eff = − 8 t21
(S + 1) (2S + 1) F3

+
2(S + 1)F4

2S + 1

− 2 (S + 1) F 2
4

(2S + 1)3 F3
,

F2,eff = − 8 t21
(S + 1) (2S + 1) F3

,

C =
2 F 2

4

(2S + 1)3 F3
,

and D = − F 2
4

(2S + 1) F3
. (43)

In Eq. (42), ~Seff denotes an object with spin S − 1/2.
We thus find a weak interaction between the spin S−1/2
and all the sites which are nearest neighbors of the site
n = 0 as shown in Fig. 6 (a).

If the impurity is a spin-1/2 object (i.e., S = 1/2),
then the electron at the site n = 0 forms a singlet with
the impurity. In that case, only the last term in Eq.
(42) survives. However, there are other terms in the ef-
fective Hamiltonian which are of higher order in t1/F3

than in (42); these have been calculated in Ref. [47] for
the case S = 1/2. One of these terms describes spin-
independent tunneling from one wire to another, of the
form

∑

i6=j

∑

α Ψ†
α(i, 1)Ψα(j, 1). This is a contribution

to the S-matrix at the junction, and it can contribute
to the conductance from one wire to another as we will
discuss in Sec. VIII.

Returning to the case S > 1/2, we note that the last
two terms in Eq. (42) are irrelevant as boundary opera-
tors if g2(L = ∞)/(2πvF ) is small; this is because ~si has
the scaling dimension 1−g2/(2πvF ) (as one can see from
Eq. (19)), and therefore the product ~si ⊗~sj has the scal-
ing dimension 2(1 − g2/(2πvF )) which is larger than 1.
The first two terms in Eq. (42) have the same form as in
Eqs. (33) and (34), where the effective Kondo couplings

J1,eff = 4F1,eff sin2 kF ,

and J2,eff = 4F2,eff sin2 kF (44)

are equal, negative and small. We can now study the RG
flow of this as in Sec. IV. A. With these initial conditions,
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Eq. (19) and Fig. 3 show that the Kondo couplings flow
to the FP at (J1,eff , J2,eff) = (0, 0).

In this example, therefore, we obtain a picture of the
RG flows at both short and large length scales. We start
with the Griffiths S-matrix with certain values of the
Kondo coupling matrix, and we eventually end at the
stable FP of the disconnected S-matrix for repulsive in-
teractions, g2(L = ∞) > 0.

We will not discuss here what happens for the other
possible RG flow for the Griffiths S-matrix, in which
J1 and J2 become large along the direction J2/J1 =
−1/(N − 1). As we noted in Sec. V B, N + 1 spins get
coupled strongly to the impurity spin in that case; an
expansion in the inverse coupling is much more involved
in that case. For the same reason, we will not discuss
expansions in the inverse coupling for the flows to strong
coupling for the disconnected and chiral S-matrices.

VII. DECOUPLED WIRES WITH STRONG

INTERACTIONS

In this section, we will briefly discuss what happens
if there are N decoupled wires and the interactions are
strong. For the decoupled S-matrix, one can ‘unfold’ the
electron field in each semi-infinite wire to obtain a chi-
ral electron field in an infinite wire, and then bosonize
that chiral field [18, 19, 20]. In the language of bosoniza-
tion, the interaction parameters are given by Kρ for the
charge sector and Kσ for the spin sector. Spin rotation
invariance implies that Kσ = 1, while Kρ is related to
our parameters gi as follows [20],

Kρ =

√

1 + g4/πvF + (g1 − 2g2)/2πvF

1 + g4/πvF − (g1 − 2g2)/2πvF

→ 1 +
g1 − 2g2
2πvF

. (45)

In the second line of the above equation, we have taken
the limit of small gi since we have worked to lowest order
in the gi in the earlier sections. From Eq. (11), we see
that 2g2 − g1 is invariant under the RG flow. The case
of repulsive interactions corresponds to 2g2−g1 > 0, i.e.,
Kρ < 1.

The case of two decoupled wires (N = 2) has been
studied by Fabrizio and Gogolin in Ref. [30]. They
showed that if the interactions are weak enough, the
Kondo couplings J1 and J2 are both relevant; their re-
sults then agree with those discussed in Sec. IV A. But
if the interactions are sufficiently strong, i.e., Kρ < 1/2,
then J2 is irrelevant and flows to zero.

We will now show that their results can be generalized
to the case of N wires; one finds that there is again a
value of Kρ below which J2 is irrelevant. Following Ref.
[30], we can write the spin-up and down Fermi fields Ψi,α

in wire i in terms of the charge and spin bosonic fields

Φi,ρ and Φi,σ. Close to the junction denoted as xj = 0,
we have

Ψi,↑ ∼ ηi,↑√
2πd

ei(Φi,ρ/
√

2Kρ + Φi,σ/
√

2) ,

and Ψi,↓ ∼ ηi,↓√
2πd

ei(Φi,ρ/
√

2Kρ − Φi,σ/
√

2) , (46)

where we have used the fact that Kσ = 1, and we have
not explicitly written the arguments of the fields (xi = 0)
for notational convenience. The ηi,a denote Klein factors,
and d is a short distance cut-off; these will not play any
role below.

In bosonic language, the Hamiltonian H = H0 +Hint

in Eqs. (4) and (9) is given by

H =
1

4π

∑

i

∫ ∞

0

dxi [ vρ

(

∂Φi,ρ

∂xi

)2

+ vσ

(

∂Φi,σ

∂xi

)2

] ,

(47)
where vρ, vσ denote the charge and spin velocities re-
spectively. The bosonic fields satisfy the commutation
relations

[
∂Φi,a(xi)

∂xi
, Φj,b(xj) ] = i 2π δab δij δ(xi − xj) , (48)

where a, b = ρ, σ.
The impurity spin part of the Hamiltonian is given by

Hspin = J1
~S ·

∑

i

∑

α,β

Ψ†
i,α

~σαβ

2
Ψi,β

+ J2
~S ·

∑

i6=j

∑

α,β

Ψ†
i,α

~σαβ

2
Ψj,β . (49)

The spin densities on different wires are given by

1

2
[ Ψ†

i,↑Ψi,↑ − Ψ†
i,↓Ψi,↓ ] =

1

2
√

2π

∂Φi,σ

∂xi
. (50)

The other terms take the form

Ψ†
i,↑Ψi,↓ ∼ e−i

√
2Φi,σ ,

Ψ†
i,↑Ψj,↑ ∼ e(i/

√
2)[−Φi,ρ/

√
Kρ−Φi,σ+Φj,ρ/

√
Kρ+Φj,σ ] ,

Ψ†
i,↑Ψj,↓ ∼ e(i/

√
2)[−Φi,ρ/

√
Kρ−Φi,σ+Φj,ρ/

√
Kρ−Φj,σ ] ,

(51)

and so on. In (49) and (51), we have not explictly writ-
ten the arguments of the fields, xi = xj = 0; we will
continue to do this wherever convenient. [The bosonic
forms of the fermion bilinears in Eqs. (50) and (51) are
so different because we are using abelian bosonization.
For the same reason, we will find it useful to distinguish
between the different components of J1 and J2, i.e., J1z,
J1⊥, J2z , and J2⊥.] Let us define N ‘orthonormal’ linear
combinations of the spin boson fields, namely, the ‘centre
of mass’ combination

Φ0
σ =

1√
N

∑

i

Φi,σ , (52)
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and the ‘difference’ fields

Φn
σ =

1
√

n(n+ 1)
[

n
∑

m=1

Φm,σ − n Φn+1,σ ] , (53)

where n = 1, 2, · · · , N − 1. We can now write Eq. (49) in
the bosonic language. We obtain

Hspin =
J1z

2
√

2π
Sz

∑

i

∂Φi,σ

∂xi

+
J1⊥
4πd

[ S+ ei
√

2/NΦ0

σ

∑

i

ei
∑

n
an

i Φn
σ + H.c.]

−J2z

πd
Sz

∑

i<j

sin

(

∑

n

bnijΦ
n
σ

)

× sin

(

Φi,ρ − Φj,ρ
√

2Kρ

)

+
J2⊥
2πd

[ S+ ei
√

2/NΦ0

σ

×
∑

i<j

ei
∑

n
cn

ijΦ
n
σ cos

(

Φi,ρ − Φj,ρ
√

2Kρ

)

+H.c.],

(54)

where the sums over n in the second, third and last lines
run over the ‘difference’ fields Φn

σ. The constants an
i , bnij

and cnij in Eq. (54) satisfy the relations

∑

n

(an
i )2 = 2 − 2

N
,

∑

n

(bnij)
2 = 1 ,

and
∑

n

(cnij)
2 = 1 − 2

N
(55)

for all values of i, j.
We can remove the phase factors exp(i

√

2/NΦ0
σ) in

Eq. (54) by performing an unitary transformation of the
total HamiltonianHtot given by the sum of (47) and (49),
namely, Htot → UHtotU

† [48], where

U = e−iSz
√

2/NΦ0

σ . (56)

After this transformation, Eq. (54) takes the form

Hspin =
λ

2
√

2π
Sz

∑

i

∂Φi,σ

∂xi

+
J1⊥
4πd

[ S+
∑

i

ei
∑

n
an

i Φn
σ + H.c. ]

−J2z

πd
Sz

∑

i<j

sin

(

∑

n

bnijΦ
n
σ

)

× sin

(

Φi,ρ − Φj,ρ
√

2Kρ

)

+
J2⊥
2πd

[ S+
∑

i<j

ei
∑

n
cn

ijΦ
n
σ cos

(

Φi,ρ − Φj,ρ
√

2Kρ

)

+ H.c. ] , (57)

where λ = J1z−4πvσ/N . We can now study the problem
in the vicinity of the point λ = J1⊥ = J2z = J2⊥ = 0.
Note that this is a strong coupling FP, since λ = 0 implies
that

J1z =
4πvσ

N
. (58)

Since the scaling dimension of eiβΦi,a is given by β2/2,
for a = ρ, σ, we see from Eq. (55) that the operators
multiplying J1⊥, J2z and J2⊥ in Eq. (57) have the scaling
dimensions 1 − 1/N , 1/2 + 1/(2Kρ) and 1/2 − 1/N +
1/(2Kρ) respectively. This impies that the J1⊥ operator
is always relevant, while the J2z operator is irrelevant
if Kρ < 1 (repulsive interactions). Most interestingly,
the J2⊥ operator is relevant or irrelevant depending on
whether Kρ > or < N/(N+2). For N = 2, this gives the
critical value of Kρ to be 1/2 [30], while for N → ∞, the
critical value of Kρ approaches 1, i.e., the limit of weak
repulsive interactions.

We saw in Sec. IV A that a flow to strong coupling
is indeed possible along the line J2 = 0, although that
line is unstable to small perturbations in J2. We now see
that the line is stabilized (to first order in the couplings)
if the interactions are sufficiently strong, i.e., if

Kρ <
N

N + 2
. (59)

If J2 flows to zero and J1 flows to large values, Eq. (33)
shows that the impurity spin is coupled strongly and anti-
ferromagnetically to the electron fields Ψ(i, 1) on all the
N wires; hence they will combine to form an effective
spin of S −N/2. (If S < N/2, the impurity spin is over-
screened). This describes a N -channel AFM FP with no
coupling between channels [23, 25].

VIII. CONDUCTANCE CALCULATIONS

Our calculations for the Kondo couplings can be ex-
plicitly applied to various geometries of quantum wires
and a quantum dot (containing the impurity spin) shown
in Fig. 2, such as (a) a dot coupled independently to
each wire (disconnected S-matrix for the wires), so that
the conductance can only occur through the dot, or (b) a
side-coupled dot (Griffiths S-matrix for the wires), where
the conductance can occur directly between the wires. In
general, of course, one can have any S-matrix at the junc-
tion, so that the conductance can occur both through the
dot and directly between the wires.

Let us now consider the conductance near the different
FPs [24, 35] for the case of weak interactions. In the
Griffiths case where the conductance can occur directly
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between the wires, let us consider the case of small values
of J1, J2 (both much smaller than 2πvF ), and g2 ≫ g1.
At high temperatures, before the Ji’s have grown very
much under RG, we see from Eq. (26) that J1 remains
small, while J2 grows due to the term g2J2. Namely,
J2 ∼ (T/TK)−ν , where ν = g2(L = ∞)/(2πvF ). The
effect of J2 is to scatter the electrons from the impurity
spin, and thereby reduce the conductance between any
two wires from the maximal value of G0 = (4/N2)e2/h.
Since the scattering probability is proportional to J2

2 , the
conductance at high temperatures (T ≫ TK) is given by

G − G0 ∼ − G0 S(S + 1) (T/TK)−2ν . (60)

[The factor of S(S + 1) appears for the following reason.
Consider an electron coming in through wire i; it can
have spin up or down, and the impurity spin can have any
value of Sz from S to −S. We assign all these 2(2S + 1)
states the same probability. As a result of the Kondo
coupling J2, the electron can scatter to a different wire
j; as a result, its spin may or may not flip, and the value
of Sz for the impurity spin can also change by 0 or ±1. If
we calculate the probabilities of all the different possible
processes and add them, we get a factor of S(S + 1)].
Using Eq. (45), we see that (60) takes the form

G − G0 ∼ − G0 S(S + 1) (T/TK)Kρ−1 , (61)

where we have used the RG flow to set g1 = 0 and ν =
g2(L = ∞)/(2πvF ). On the other hand, if the leads were
Fermi liquids (g1 = g2 = 0), J2 would be given by Eq.
(21), and we would get

G − G0 ∼ − G0S(S + 1)

ln(T/TK)4
. (62)

At low temperatures, the Kondo couplings flow to large
values; as discussed at the end of Sec. VI, their behaviors
are then governed by the FP at (J1,eff , J2,eff) = (0, 0) of
the disconnected wire case with an effective spin Seff =
S − 1/2. In this case, only J2

2 contributes to the conduc-
tance between two different wires. From Eq. (20), we see
that the conductance is given by

G ∼ G0 Seff(Seff + 1) (T/TK)2ν

∼ G0 Seff(Seff + 1) (T/TK)1−Kρ (63)

for T ≪ TK . For Fermi liquid leads, Eq. (21) implies
that the conductance is given by

G ∼ G0Seff(Seff + 1)

ln(T/TK)4
. (64)

Thus a measurement of the temperature dependence of
the conductance should be able to distinguish between
the Fermi liquid and TLL cases at both high and low
temperatures. For the case N = 2, the expressions in
Eqs. (61) and (63) agree with those given in Refs. [29,

35], but Eqs. (62) and (64) differ from the expressions
given in earlier papers (like Ref. [35]) for the powers of
1/ ln(T/TK). (As we had discussed earlier after Eq. (21),
we would get the same powers of 1/ ln(T/TK) as in Ref.
[35] if J2 was exactly equal to J1 or −J1/(N − 1)).

The above expressions for the conductance shows that
for both Fermi liquid leads and TLL leads (with repul-
sive interactions), and for both T ≫ TK and T ≪ TK ,
the conductance increases with the temperature. It is
then natural to assume that this would be true for inter-
mediate temperatures as well, so that the conductance
increases monotonically with temperature from 0 to G0;
this would be consistent with the results in Refs. [29, 35].
It may be useful to discuss here why there is no Kondo
resonance peak in the conductance at low temperatures
in our model, in contrast to what is found in other mod-
els (for instance Refs. [24, 49, 50]) and observed experi-
mentally [51, 52]. In our model, once the impurity spin
gets very strongly coupled to the junction site in Fig.
6 (b) (due to the flow to large J1 and J2 in the Grif-
fiths case), that site decouples from the wires; this leaves
no other pathway for the electrons to transmit from one
wire to another. In contrast to this, if the junction region
was more complicated (for instance, if there were addi-
tional bonds which connect different wires without going
through the impurity spin, or there was a dot with several
energy levels through which the electron can transmit),
then the electron may still be able to transmit even after
the impurity quenches the electron on a single site (or
level). Hence, it may be possible for the conductance to
increase to the unitarity limit at the lowest temperatures;
this is known to occur for models with Fermi liquid leads.
For TLL leads, however, our analysis remains valid even
if there are additional bonds between the wires, because
any such direct tunneling amplitudes are irrelevant and
renormalize to zero as shown in Eq. (25).

Finally, let us briefly consider the case of strong inter-
electron interactions. For Kρ < N/(N + 2), we saw in
Sec. VII that a multi-channel FP gets stabilized in the
case of N disconnected wires. To obtain the conductance
at this point, we need to study the operators perturbing
this point, similar to the analysis in Refs. [25, 34, 35];
this has not yet been done.

IX. CONCLUSIONS

To summarize our results, we have studied systems of
TLL wires which meet at a junction. The junction is
described by a spin-independent S-matrix, and there is
an impurity spin which is coupled isotropically to the
electrons in the neighborhood of the junction. The S-
matrix and the Kondo coupling matrix Jij satisfy certain
RG equations. We have studied the RG flows of the
Kondo couplings for a variety of FPs of the S-matrices.
Although the Kondo couplings generally grow large, one
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can sometimes study the system through an expansion in
the inverse of the coupling. This leads to a new system
in which the effective Kondo couplings are weak; the RG
flows of these effective couplings can then be studied.

For example, at the fully connected or Griffiths S-
matrix, we find that for a range of initial conditions, the
Kondo couplings can flow to a strong coupling FP along
the direction J2/J1 = 1, where their fate is decided by
a 1/J analysis. This analysis then shows that the cou-
plings flow to the FM FP of the disconnected S-matrix
lying at (J1,eff , J2,eff) = (0, 0). For this system, therefore,
one obtains a description of the system at both short and
large length scales.

For the case of disconnected wires and repulsive in-
teractions, there is a range of Kondo couplings which
flow towards a multi-channel FM FP at (J1, J2) = (0, 0).
At low temperatures, we find spin-flip scattering pro-
cesses with temperature dependences which are dictated
by both the Kondo effect and the inter-electron interac-
tions. It may be possible to observe such scatterings by
placing a quantum dot with a spin at a junction of several
wires with interacting electrons.

For other initial conditions for the disconnected case,
the Kondo couplings flow towards the strong coupling
FPs at J1, |J2| → ∞. In general, this is just the single
channel strong coupling AFM FP. But there is a spe-
cial line where J1 → ∞ and J2 = 0; this is the multi-
channel AFM FP. The RG equations show that both J1

and J2 are relevant around the weak coupling FP if the
interactions are weak. However, if the interactions are
sufficiently strong (i.e., Kρ < N/(N + 2)), we find that
J2 → 0, and the multi-channel FP gets stabilized.

Experiments are underway to look for multi-channel
FPs, and proposals have been made for minimizing the
couplings between channels using gate voltages [23]. We
suggest here that enhancing inter-electron interactions in
the wires offers another way of reducing the inter-channel
coupling and thereby observing the effects of the multi-
channel FP.

Finally, we have discussed the temperature depen-
dences of the conductances close to the disconnected and
Griffiths S-matrices, and showed that this also provides
a way to distinguish between Fermi liquid leads and TLL
leads.
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