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We study the tunneling density of states (TDOS) for a junction of three Tomonaga-Luttinger liquid
wires. We show that there are fixed points which allow for the enhancement of the TDOS, which is
unusual for Luttinger liquids. The distance from the junction over which this enhancement occurs is
of the order of x = v/(2ω), where v is the plasmon velocity and ω is the bias frequency. Beyond this
distance, the TDOS crosses over to the standard bulk value independent of the fixed point describing
the junction. This finite range of distances opens up the possibility of experimentally probing the
enhancement in each wire individually.

PACS numbers: 71.10.Pm, 71.27.+a, 73.40.Gk

Introduction.- Junctions of multiple quantum wires
(QWs) have attracted considerable attention in recent
years since they form the basic building blocks of quan-
tum circuitry. Experimental realizations of three-wire
Y -junctions of carbon nanotubes have also given the
field a strong impetus [1]. Earlier studies of junctions
of Tomonaga-Luttinger liquids (LL) were mostly focused
on searching for various low-energy fixed points (FPs)
[2, 3, 4, 5, 6, 7, 8, 9] and the corresponding conductance
matrices; this includes the recent development involving
the inclusion of a finite superconducting gap at the junc-
tion [10, 11].

Here we will focus on the local single-particle tunneling
density of states (TDOS); this can be found by measur-
ing the differential tunneling conductance of a scanning
tunneling microscope (STM) tip at a finite bias. The
differential conductance provides a direct measure of the
TDOS of the electrons at an energy given by the bias
voltage [12], provided the density of states for the STM is
energy independent. For a two-wire LL junction, the cur-
rent measured by the STM tip varies as a power of the
bias [13]; the power depends on the Luttinger parameter
g and the FP to which the junction has been tuned.

Earlier studies of the TDOS in a LL system with [14]
and without [15] impurities revealed that the TDOS van-
ishes as a power law in the zero bias limit [19]. This is
popularly considered to be a hallmark of a LL system.
The TDOS for a LL wire with an impurity was studied in
Ref. [13] where the tunneling STM current close to the
impurity was shown to be power law suppressed in the
zero bias limit. An enhancement of the TDOS was found
at a single LL -superconductor [16] junction and was ex-
plained in terms of the proximity effect. An enhancement
of the spectral weight was also found at a junction of
multiple LLs tuned to a fermionic FP (linear boundary
condition (BC) between fermion fields at the junction)
[6]. All the earlier studies of the TDOS were focused on
either a multiple wire junction tuned to a fermionic FP or
a single LL -superconductor junction, but not a junction

of multiple LLs tuned to bosonic FPs. Bosonic FPs refer
to linear BCs connecting incoming and outgoing currents
(which are bilinears in the fermion fields) at the junction.

Here we study the TDOS of a three-wire junction of a
single channel QW modeled as a LL. We find that close
to the junction, the TDOS depends on the details of the
current splitting matrix at the junction which relates the
incoming and outgoing currents; this matrix describes
bosonic FPs of the system. We find that for a certain
range of repulsive inter-electron interaction (g < 1) and
certain current splitting matrices, the TDOS close to the
junction shows an enhancement in the zero bias limit. We
show that this is related to reflection of holes off the junc-
tion which mimics the Andreev reflection process, even
though there is no superconductor in the present sce-
nario. This is in sharp contrast to the case of a two-wire
junction where a repulsive electron-electron interaction
always results in a suppression of the TDOS near the
junction. This is the central result of this Letter. Far
away from the junction, the TDOS reduces to that of the
bulk LL wire, ρ(ω) ∼ ω(g+g−1−2)/2, independent of the
details of the junction, and shows a suppression for both
repulsive (g < 1) and attractive (g > 1) interactions.

Bosonization.- The electron field (taken to be spinless
for simplicity) can be bosonized as ψ(x) = (1/

√
2πα)

[FO e
ikF x+iφO(x) + FIe

−ikF x+iφI (x)], where φO(x), FO

and φI(x), FI are the outgoing and incoming chiral
bosonic fields and corresponding Klein factors, kF is the
Fermi momentum, and α is a short distance cut-off. We
model the wires as spinless LLs on a half-line (x > 0), i.e.,
all the wires are parametrized by a coordinate x running
from 0 to ∞. The corresponding Hamiltonian is given by

H =

∫ ∞

0

dx

N∑

i=1

v

2π

{
g (φ′i)

2
+

1

g
( θ′i)

2
}
, (1)

where prime (dot) stands for spatial (time) derivative,
φi(x, t) = (φOi + φIi)/2, θi(x, t) = (φOi − φIi)/2, φ̇i =
(v/g) θ′i, and θ̇i = (vg)φ′i. The total density and current
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can be expressed in terms of the incoming and outgo-
ing fields as ρ = ρO + ρI with ρO/I = ±(1/2π)φ′O/I ,

and j = jO − jI with jO/I = ±(vF /2π)φ′O/I . Finally,
we need to impose a boundary condition on the fields
at x = 0. Following Ref. [7], the incoming and out-
going currents, and consequently the bosonic fields, are
related at the junction by a current splitting matrix M,
i.e., jOi =

∑
j Mij jIj , which leads to φOi =

∑
j Mij φIj .

To ensure that the matrix M represents a FP of the the-
ory, the incoming and outgoing fields must satisfy the
bosonic commutation relations; this restricts the matrix
M to be orthogonal. Scale invariance imposes the same
constraint of orthogonality on M as shown in Ref. [11];
orthogonality also implies that there is no dissipation in
the system. Current conservation at the junction implies
[9] that each row and column of M adds up to 1.

In general, for a three-wire charge-conserving junction,
M can be parametrized by a single continuous parameter
θ, and it falls into one of two classes with (a) det M1 = 1,
and (b) det M2 = −1. These classes can be expressed as

M1 =



a b c
c a b
b c a


 , M2 =



b a c
a c b
c b a


 . (2)

In Eq. (2), a = (1 + 2 cos θ)/3, b(c) = (1 −
cos θ + (−)

√
3 sin θ)/3. This provides us with an ex-

plicit parametrization of the two one-parameter families
of FPs; any FP in the theory can be identified in terms
of θ, with the FPs at θ = 0 and θ = 2π being identical.
The det M1 = 1 class represents a Z3 symmetric (in the
wire index) class of FPs, while det M2 = −1 represents
an asymmetric class of FPs. In the M1 class, θ = π cor-
responds to the DP FP, θ = 0 corresponds to the discon-
nected N FP, and θ = 2π/3 and 4π/3 correspond to the
chiral cases χ±, following the notation of Ref. [5]. Since
φO and φI are interacting fields, we must perform a Bo-
goliubov transformation, φO/I = (1/2

√
g){(1 + g)φ̃O/I +

(1 − g)φ̃I/O}, to obtain the corresponding free outgoing

(incoming) (φ̃O/I ) chiral fields satisfying the commuta-

tion relations, [φ̃O/I(x, t), φ̃O/I (x′, t)] = ±iπSgn(x− x′).
Unlike the usual Bogoliubov transformation, here we
also need to consider the effect of the junction ma-
trix M relating the interacting incoming and outgo-
ing fields. Following Ref. [7], we obtain a Bogoli-

ubov transformed matrix M̃ which relates φ̃Oi to φ̃Ii.
We find that φ̃Oi(x) =

∑
j M̃ij φ̃Ij(−x) where M̃ =

[(1 + g)I − (1 − g)M]
−1

[(1 + g)M − (1 − g)I]. Note that

the M2 class of matrices satisfy (M2)
2 = I; hence M̃2 =

M2, and the interacting and free fields satisfy identical
BCs at the junction. This is not true for the M1 class,
but M̃1 still has the same form as M1 with the corre-
sponding parameters ã = (3g2 − 1 + (3g2 + 1) cos θ)/η
and b̃(c̃) = 2(1 − cos θ + (−)

√
3g sin θ)/η, where η =

3(1 + g2 + (g2 − 1) cos θ).
The M matrix is related to the DC conductance matrix

STM

eV= hω

Inter-wire 
tunneling region

B

FIG. 1: Schematic picture of STM tip for measuring the
TDOS near the junction, the region of inter-wire tunnelings
and a magnetic field B at the junction.

given by G = (2e2/h)(I − M) for Fermi liquid leads
[5, 11]. Qualitatively, M is related to tunnelings between
the different wires and backscatterings in each wire. The
experimental set-up can be a junction of several edges of
a quantum Hall system as in Ref. [7], and M (or θ) can
be tuned by applying gate voltages and a magnetic field
at the junction. We note that M2 is time-reversal invari-
ant, but M1 is generally not and tuning it will require a
magnetic field piercing the junction (see Fig. 1).

Tunneling density of states.- We now compute the
TDOS for adding an electron with energy ~ω on the ith

wire [12],

ρi(ω) = 2π
∑

n

|〈0 | ψ†
i (x) |n〉|2 δ(En − E0 − ~ω)

= 2Re
∫ ∞

0

dt 〈0 | ψi(x, t)ψ
†
i (x, 0) | 0〉 eiωt. (3)

Here |n〉 (En) denotes the nth eigenstate (eigenvalue) of
the Hamiltonian in Eq. (1). The Green’s function in the

ith wire is G = 〈ψi(x, t)ψ
†
i (x, 0)〉 = 〈ψIi(x, t)ψ

†
Ii(x, 0)〉 +

〈ψOi(x, t)ψ
†
Oi(x, 0)〉+e−2ikF x〈ψIi(x, t)ψ

†
Oi(x, 0)〉+e2ikF x

〈ψOi(x, t)ψ
†
Ii(x, 0)〉. The two non-oscillatory terms are

〈ψIi(x, t)ψ
†
Ii(x, 0)〉 = 〈ψOi(x, t)ψ

†
Oi(x, 0)〉

=
1

2πα

[
iα

−vt+ iα

] (1+g2)
2g

[ −α2 − 4x2

(−vt+ iα)2 − 4x2

] d̃i(1−g2)

4g

.(4)

The oscillatory part vanishes as L → ∞ and can be
dropped in further discussions. For the M̃1 class, d̃i = ã;
for the M̃2 class, d̃i = ã, b̃, c̃ depending on the wire index.

Treating the tunneling strength γ between the ith wire
and the STM tip perturbatively and using Eqs. (3-4), the
differential tunneling conductance evaluated to leading
order in γ is found to be directly proportional [12] to the
TDOS on the ith wire. The TDOS has the same form in
the x→ 0 and x→ ∞ limits and is given by

ρi(ω) =
1

α~Γ(∆)
τc

∆ ω∆−1 e−|ω|α/v Θ(ω), (5)

where Γ(∆) is the Gamma function, Θ(ω) is the Heav-
iside step function, τc = α/v is the short time cut-off,
and ω = eV/~, where e is the electronic charge and V
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is the bias voltage between the STM tip and wire sys-
tem held at a uniform potential. The cut-off frequency
scale for the validity of the perturbation theory is given
by ω0 = [|γ|−2/(∆i−1)v]/α. For x → 0, ∆ is a function
of the d̃i which is the corresponding diagonal element of
the appropriate M̃ matrix. For the M1 class, ∆ = ∆0(ã),
while for M2, ∆ = ∆i is a function of ã, b̃, c̃ depending on
the wire index i. For x→ ∞, ∆ = (g + g−1)/2 indepen-
dent of the M matrix at the junction. Thus we recover
the expression for the bulk TDOS in a LL as x → ∞
irrespective of the details of the junction. For the M1

class, the power law exponent for x → 0 is the same on
all the three wires due to Z3 symmetry and is given by

∆0 =
1

3g

5g2 + 1 + (g2 − 1) cos θ

g2 + 1 + (g2 − 1) cos θ
. (6)

Eq. (6) indicates that for g < 1 there are values of θ
for which ∆ < 1. This implies that there are FPs in
the theory which show an enhancement (see Eq. (5))
of the TDOS in the zero bias limit ω → 0. This is in
sharp contrast to previous studies for various cases of
normal (not superconducting) junctions of two-wire sys-
tems which always showed a suppression of the TDOS in
the zero bias limit for g < 1. This is our main result.
Note that whenever g = 1, ∆ = 1; this implies that the
TDOS is independent of the bias for g = 1. This might
look natural since g = 1 corresponds to free fermions
in the wire for which the TDOS is expected to be bias
(energy) independent. However, this is misleading; the
BC conditions expressed in terms of the matrix M at
the junction correspond to non-linear relations between
the fermions on each wire in the vicinity of the junction,
and hence represent non-trivial interaction between the
fermions at the junction. Hence, the TDOS being energy
independent for g = 1 for any FP represented by M1 is
a non-trivial result by itself. To get a clear idea about
the FPs which show an enhancement of the TDOS , we
present contour plots of ∆ in the g − θ plane in Fig. 2.
In the left plot (corresponding to the M1 class), we can
see a dome shaped region for g < 1 which corresponds
to FPs showing an enhancement, i.e., ∆0 < 1. It is in-
teresting to note that this region is bounded by the two
chiral FPs, χ± at θ = 2π/3, 4π/3. The DP FP at θ = π
also falls in this region and shows an enhancement of the
TDOS for 1/2 < g < 1. For the M2 class, the power law
exponents for the three wires are given by

∆1 =
4 + 2g2 + (cos θ −

√
3 sin θ) (g2 − 1)

6g
, (7)

∆2 and ∆3 which are obtained by shifting θ → θ∓ 2π/3
in ∆1. For this class also, there are FPs which show an
enhancement of the TDOS for g < 1; they correspond
to the dome shaped region in the right plot in Fig. 2.
In contrast to the M1 class, in this case there can be an
enhancement in one wire and suppression in the other
wires due to the broken Z3 symmetry.
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FIG. 2: ∆0 for all wires in the M1 class (left), and ∆1 for wire
1 in the M2 class (right) in the g − θ plane.

The observability of the different FPs and the en-
hancement of the TDOS near the junction crucially de-
pends on the renormalization group (RG) stability of the
FP against various perturbations in the form of inter-
wire electron tunnelings at the junction (see Fig. 1). To
understand the stability of the FP, we present the scal-
ing dimension δ0 for all possible single-electron tunneling
events (quadratic in fermion operators) in Tables I and II;
in these tables, ψI/O are related to φI/O by the bosoniza-
tion formula given earlier. In Fig. 3, we plot the values
of 1 − δ0 as functions of θ for g = 0.9. A positive value
of 1 − δ0 implies that the operator is RG relevant.

Operator Scaling dimension δ0

ψ†
iOψiI

4g(1−cos θ)

3(g2+cos θ(g2−1)+1)

ψ†
2Oψ1I , ψ

†
3Oψ2I , ψ

†
1Oψ3I

2g(cos θ+
√

3 sin θ+2)
3(g2+cos θ(g2−1)+1)

ψ†
1Oψ2I , ψ

†
2Oψ3I , ψ

†
3Oψ1I

2g(cos θ−
√

3 sin θ+2)

3(g2+cos θ(g2−1)+1)

ψ†
2Iψ1I , ψ

†
3Iψ2I , ψ

†
1Iψ3I

2g

g2+cos θ(g2−1)+1

ψ†
2Oψ1O , ψ

†
3Oψ2O , ψ

†
1Oψ3O

2g

g2+cos θ(g2−1)+1

TABLE I: Table of tunneling operators for the M1 class.

Operator Scaling dimension δ0

ψ†
1Oψ1I

1
3
g(2 − 2 cos θ)

ψ†
2Oψ2I

1
3
g(2 + cos θ +

√

3 sin θ)

ψ†
3Oψ3I

1
3
g(2 + cos θ −

√

3 sin θ)

ψ†
1Oψ2I , ψ

†
2Oψ1I

3+g2

12g
(2 − 2 cos θ)

ψ†
2Oψ3I , ψ

†
3Oψ2I

3+g2

12g
(2 + cos θ −

√

3 sin θ)

ψ†
3Oψ1I , ψ

†
1Oψ3I

3+g2

12g
(2 + cos θ +

√

3 sin θ)

ψ†
1Iψ2I , ψ

†
1Oψ2O

2(g2+1)+(g2−1)2 cos θ

4g

ψ†
2Iψ3I , ψ

†
2Oψ3I

2(g2+1)−(g2−1)(cos θ−
√

3 sin θ)
4g

ψ†
3Iψ1I , ψ

†
3Oψ1I

2(g2+1)−(g2−1)(cos θ+
√

3 sin θ)
4g

TABLE II: Table of tunneling operators for the M2 class.

It is clear from Fig. 3 that all the FPs showing an en-
hancement of the TDOS are unstable; however, for the
M1 class close to θ = 2π/3, 4π/3 (the χ± FPs), only
one operator is highly relevant and the rest are almost
marginal. Hence this part of the parameter space al-
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FIG. 3: 1 − δ0 as functions of θ for the classes M1 (left) and
M2 (right) for various tunneling operators, for g = 0.9.

lows for a large temperature window for observing an en-
hancement if one can experimentally suppress the most
relevant tunneling by tuning the junction appropriately.

To gain a better understanding of the enhancement,
we expand the ∆’s for g ≃ 1 in the small parameter
1 − g to obtain ∆j = 1 + (1 − g)dj , where j = 0, 1, 2, 3,
and dj are the diagonal elements of the corresponding
M matrix. This limit corresponds to weakly interacting
electrons in the bulk of the wires away from the junction.
Whenever dj < 0 and g < 1, ∆j is less then unity which
corresponds to an enhancement of the TDOS in the zero
bias limit. But dj < 0 corresponds to a hole current being
reflected from the junction when an electron current is
incident on the junction. Hence we conclude that all the
FPs which involve reflection of a hole off the junction lead
to an enhancement of the TDOS. As discussed earlier, an
enhancement of the TDOS was previously observed in a
junction of a LL wire with a superconductor [16]; this can
be attributed to the proximity induced Andreev process
at the junction which results in the reflection of a hole
from the junction in response to an incident electron. It is
interesting to note that for our case too, the enhancement
is connected to holes being reflected off the junction, even
though there is no superconductor in our model. Finally,
note from Eqs. (4-5) that the cross-over length scale
beyond which the TDOS goes over to its bulk form is
given by x = v/(2ω). For a typical bias voltage of 10 µV
and a Fermi velocity v ≈ 105 m/s (typical of a two-
dimensional electron gas), we get a cross-over length of
about 3 µm; this is readily accessible within present day
experimental realizations of a one-dimensional QW in a
two-dimensional electron gas.

Discussion.- It is important to note that the interest-
ing prediction of an enhancement of the TDOS for g < 1
involves unstable FPs; hence the enhancement can be
expected to be observed in experiments at high tempera-
tures only. If the junction is tuned to one of the FPs which
show enhancement, a variation of the temperature from
high to low will first show an enhancement and then a
suppression of the TDOS as the system finally flows to
the disconnected stable FP at low temperatures. This
non-monotonicity observed via the STM current will be

a hallmark of our prediction. Here, high and low temper-
atures are defined with respect to a cross-over scale called
ω0 after Eq. (5). In other Luttinger liquid systems, such
as the one studied experimentally in Ref. [18], the cross-
over scale TB was found to be of the order of 0.5 − 3K
(corresponding to ω0 ∼ kBTB/~ ∼ 60 − 400GHz); this
scale can be varied by tuning the tunneling strength γ.
Thus the cross-over scale can be tuned experimentally as
was done in Ref. [18]. Hence the temperature window in
which the enhancement of the TDOS can be observed is
experimentally tunable.
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