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We study the properties of Dirac fermions on the surface of a topological insulator in the presence
of crossed electric and magnetic fields. We provide an exact solution to this problem and demonstrate
that, in contrast to their counterparts in graphene, these Dirac fermions allow relative tuning of
the orbital and Zeeman effects of an applied magnetic field by a crossed electric field along the
surface. We also elaborate and extend our earlier results on normal metal-magnetic film-normal
metal (NMN) and normal metal-barrier-magnetic film (NBM) junctions of topological insulators
[Phys. Rev. Lett. 104, 046403 (2010)]. For NMN junctions, we show that for Dirac fermions with
Fermi velocity vF , the transport can be controlled using the exchange field J of a ferromagnetic
film over a region of width d. The conductance of such a junction changes from oscillatory to a
monotonically decreasing function of d beyond a critical J which leads to the possible realization
of magnetic switches using these junctions. For NBM junctions with a potential barrier of width d
and potential V0, we find that beyond a critical J , the criteria of conductance maxima changes from
χ = eV0d/~vF = nπ to χ = (n + 1/2)π for integer n. Finally, we compute the subgap tunneling
conductance of a normal metal-magnetic film-superconductor (NMS) junctions on the surface of a
topological insulator and show that the position of the peaks of the zero-bias tunneling conductance
can be tuned using the magnetization of the ferromagnetic film. We point out that these phenomena
have no analogs in either conventional two-dimensional materials or Dirac electrons in graphene and
suggest experiments to test our theory.

PACS numbers: 71.10.Pm, 73.20.-r

I. INTRODUCTION

Topological insulators with time reversal symmetry in
two and three dimensions (2D and 3D) have been stud-
ied extensively in recent years, both theoretically and
experimentally1–8. The 3D topological insulators can be
characterized by four integers ν0 and ν1,2,3

4. The first in-
teger specifies the class of topological insulators as strong
(ν0 = 1) or weak (ν0 = 0), while the last three integers
characterize the time-reversal invariant momenta of the
system given by ~M0 = (ν1~b1, ν2~b2, ν3~b3)/2, where ~b1,2,3
are reciprocal lattice vectors. The topological features
of strong topological insulators (STI) are robust against
the presence of time-reversal invariant perturbations such
as disorder and lattice imperfections. It has been theo-
retically predicted1,4 and experimentally verified2 that
the surface of a STI has an odd number of Dirac cones
whose positions are determined by the projection of ~M0

on to the Brillouin zone of the surface. The position and
number of these cones depend on both the nature of the
surface concerned and the integers ν1,2,3. For compounds
such as HgTe and Bi2Se3, specific surfaces with a single
Dirac cone near the Γ point of the 2D Brillouin zone have
been found2,6,8. Such a Dirac cone is described by the
Hamiltonian

H =

∫

dkxdky
(2π)2

ψ†(~k) (~vF~σ · ~k − µI) ψ(~k), (1)

where ~σ(I) denotes the Pauli (identity) matrices in spin
space, ψ = (ψ↑, ψ↓)

T is the annihilation operator for the
Dirac spinor (T denotes the transpose of a row vector),

vF is the Fermi velocity, and µ is the chemical potential9.
Recently, several novel features of these surface Dirac
electrons such as the existence of Majorana fermions in
the presence of a magnet-superconductor interface on
the surface9,10, generation of time-reversal symmetric
px+ipy-wave superconducting state via proximity to a s-
wave superconductor9, anomalous magnetoresistance of
ferromagnet-ferromagnet junctions11, and novel spin tex-
tures with chiral properties8 have been studied in detail.
Further it has been shown in Ref. 12 that it is possible
to realize a magnetic switch by magnetically tuning the
transport of Dirac fermions with a proximate ferromag-
netic film. However, the response of these fermions in
the presence of crossed electric and magnetic fields has
not been studied so far. Another aspect of such fermions,
namely, their transport through a normal metal-magnetic
film-superconductor (NMS) junction has also not been
explored.

In this work, we study several magnetotransport prop-
erties of these surface Dirac fermions in experimentally
realizable situations. We first study the properties of

the fermions in the presence of crossed magnetic [ ~B =

(0, B cos θ,B sin θ)] and electric fields [~E = (E , 0, 0)] as
shown in Fig. 1. We present an exact solution of this
problem and show that for β = E/(vFB sin θ) ≤ 1,
the relative contributions of the Zeeman and the or-
bital terms to the Landau level energies, and hence their
magnetic field dependence, can be tuned by varying ei-
ther the strength of the applied electric field or the tilt
of the applied magnetic field. We also show that for
E > vFB sin θ, the conductance of these Dirac fermions
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FIG. 1: Schematic representation of the crossed electric and
magnetic field geometry. The electric field is applied along x
while the magnetic field is in the y − z plane. See text for
details.

has an unconventional dependence on the tilt angle θ of
the applied magnetic field and that this dependence can
be used to realize electric-field controlled switching.
The second study involves an extension of the re-

sults obtained in Ref. 12 regarding transport in normal
metal-magnetic film-normal metal (NMN) and normal
metal-barrier-magnetic film (NBM) junctions of topolog-
ical insulators. The relevant experimental geometries are
shown in Fig. 2. We study the transport of these Dirac
electrons across a region with a width d where there is
a proximity-induced exchange field J arising from the
magnetization ~m = m0ŷ of a proximate ferromagnetic
film as shown in the left panel of Fig. 2. We demonstrate
that the tunneling conductance G of these Dirac fermions
through such a junction can either be an oscillatory or
a monotonically decaying function of the junction width
d. One can interpolate between these two qualitatively
different behaviors of G by changing m0 (and thus J )
by an applied in-plane magnetic field leading to the pos-
sible use of this junction as a magnetic switch. We also
study the transport properties of Dirac fermions across
a barrier characterized by a width d and a potential V0
in region II with a magnetic film proximate to region
III as shown in the right panel of Fig. 2. We note that
it is well known from the context of Dirac fermions in
graphene13 that such a junction, in the absence of the
induced magnetization, exhibits transmission resonances
with maxima of transmission at χ = eV0d/~vF = nπ,
where n is an integer. Here we show that beyond a criti-
cal strength of m0, the maxima of the transmission shifts
to χ = (n+ 1/2)π. Upon further increasing m0, one can
reach a regime where the conductance across the junc-
tions vanishes. We also point out that such NMN and
NBM junctions can be used to determine the exact form
of the Dirac Hamiltonian on the surface of the topological
insulator.
Finally, we study the transport of Dirac fermions

across a NMS junction as shown in Fig. 3. The interme-
diate region (region II) in this junction has a thickness

FIG. 2: Proposed experimental setups. Left panel: Schematic
representation of a NMN junction. The ferromagnetic film
extends over region II of width d providing an exchange field
in this region. Right panel: Schematic representation of a
NBM junction. The film extends over region III while the
region II has a barrier characterized by a voltage V0. V and
I denote the bias voltage and current across the junctions
respectively. See text for details.

d with a proximate ferromagnetic film providing a mag-
netization M , while superconductivity is introduced in
region III via the proximity effect. We provide a detailed
analysis of the subgap tunneling conductance G of these
NMS junctions as a function of the applied voltage V
and magnetization M . In particular, we point out that
the positions of the maxima of the zero-bias tunneling
conductance in such NMS junctions as a function of the
width d of the magnetic film can be varied by tuning the
induced magnetization M . We stress that the proper-
ties of the Dirac fermions elucidated in all these studies
are a consequence of their spinor structure in physical
spin space, and thus have no analogs for either conven-
tional Schrödinger electrons in 2D or Dirac electrons in
graphene14–16.
The organization of the rest of the paper is as follows.

In Sec. II, we study the properties of the Dirac fermions in
the presence of crossed electric and magnetic fields. This
is followed by the study of NMN and NBM junctions of
these Dirac materials in Sec. III. In Sec. IV, we study the
transport properties and subgap tunneling conductance
of NMS junctions of topological insulators. Finally we
discuss possible experimental verification of theory and
conclude in Sec. V.

II. CROSSED ELECTRIC AND MAGNETIC

FIELDS

We begin with the properties of Dirac electrons in a
crossed electric and magnetic field as shown in Fig. 1.
The Hamiltonian for the Dirac Fermions for this case
can be written as

H =

∫

d2rψ†(~r)[vF~σ ·Π− µI − gµB~σ · ~B − eEx]ψ(~r),

(2)

where ~Π = −i~~∇ − e ~A is the canonical momentum, c
is set to unity, g is the gyromagnetic ratio, µB is the
Bohr magneton, and we choose the vector potential to be
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FIG. 3: Schematic representation of the NMS junction. The
ferromagnetic film is on region II while superconductivity is
induced in region III via a proximate superconducting film.
See text for details.

~A = (0, Bx sin θ,−Bx cos θ). Note that here the Zeeman
term does not determine the spin quantization axis of

the Dirac electrons due to the presence of the ~Π term.
Thus the in-plane component of the magnetic field, which
enters the Hamiltonian only through the Zeeman term,
only provides a constant shift to ky which can be gauged
away. This property of the Dirac fermions is distinct
from their counterpart in graphene. For E = 0, Eq. (2)
admits a straightforward solution and yields the Landau
level spectrum

En = ±~vF l
−1
B

√

|n|+ αB sin θ if n 6= 0

= −|gµBB sin θ| if n = 0, (3)

where α = g2µ2
B/~v

2
F e, lB =

√

~/[eB sin θ] is the mag-
netic length and we also define l0B = lB(θ = π/2) for
later use. The n = 0 state is non-degenerate as is
also known from analogous studies of Landau levels in
graphene13. For the Dirac electrons on the surface of
HgTe, vF ≃ 5.5 × 105 m/s, so that α ≃ 10−4/T leading
to a negligible contribution of the Zeeman term in the
spectrum.
The situation changes when an electric field is applied

along x. In this case, for E ≤ vFB sin θ, one can define a
boost parameter β = E/[vFB sin θ] ≤ 1 and carry out a
Lorentz transformation17

x′ = x, y′ = γ(y − βvF t), t′ = γ(t− βy/vF ),

E ′ = γ(E − βB sin θ),

B′ sin θ′ = γ(B sin θ − βE),
ψ′(~r

′

) = exp[−σyarctanh(β)/2] ψ(~r), (4)

where γ = (1 − β2)−1/2. In the boosted frame the
Schrödinger equation reads

E′
nψ

′ =
[

− i~vF

(

σx∂x + σy(∂y′ − i
eB′ sin θ′

vF
x)

)

− gµBσzB sin θ
]

ψ′. (5)
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FIG. 4: Plot of Landau level energy En for n = 1 as a function
of the tilt angle θ and transverse momentum ky for a fixed
electric field E = 0.5vFB. Note that θ = π/6 corresponds to
β = 1.

Note that such a boost transformation affects the orbital
part of the magnetic field only; the Zeeman field remains
unchanged. The energy eigenvalues of Eq. (5) can be
easily obtained and are given by

E′
n = ±~vF l

′ −1
B

√

|n|+ αB sin θ if n 6= 0

= −|gµBB sin θ| if n = 0, (6)

where l
′

B =
√

~/[eB′ sin θ′]. Then a reverse boost to the
“laboratory” frame yields

En(ky) = ±~vF l
−1
B γ−3/2

√

|n|+ αBγ sin θ

−β~vFky if n 6= 0

= −γ−1|gµBB sin θ| − β~vFky if n = 0. (7)

Eq. (7) is one of the central results of this section.
It demonstrates that a collapse of the Landau levels for
the Dirac fermions can be induced by varying either the
electric field for a fixed tilt of the applied magnetic field
or by varying the magnetic field tilt for a fixed electric
field. A plot of the energy level as a function of this tilt
and the transverse momentum ky is shown in Fig. 4.
We also note that the magnetic field dependence of

the Landau level energy gaps are different from their
counter part in graphene. To illustrate this we define
∆n = En+1(ky)− En(ky) for n 6= 0. For β ≪ 1, we find:

∆n

~vF l
0−1
B

≃ γ−3/2
√

sin(θ)
(

√

|n+ 1| −
√

|n|
)

. (8)

For β ≃ 1 when γαB ≫ |n|, we find that
∆n/(~vF l

0−1
B ) ≃ γ−3/2/(2

√
αBγ). This behavior

is distinct from its counter part in graphene where
∆n/(~vF l

0−1
B ) = γ−3/2

√
sin θ(

√
n+ 1 − √

n) for all B.
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FIG. 5: Plot of Landau level energy gap ∆n for n = 1 (black
solid line) 2 (red long-dashed line) and 3 (blue dashed line)
as a function of the tilt angle θ for a fixed electric field E =
0.2vFB

.

However, since α ∼ 10−4/Tesla, this behavior can only
be seen in a very tiny window near critical tilt and would
be hard to figure out in experiments. On the contrary,
the variation of dispersion of ∆n with the tilt angle θ,
seen in Fig. 5 for several n, can be tested experimentally
with microwave absorption experiments routinely done
for conventional quantum Hall systems18. This will be
discussed further in Sec. V.
Now we turn to the solution of this problem in the

regime E ≥ vFB where we get scattering states. In this
regime, we define a parameter β′ = vFB sin θ/E and per-
form a similar boost transformation as outlined earlier.
This allows us to shift to a reference frame where there
is no magnetic field and the Schrödinger equation, in the
momentum representation, reads19

ieE ′
~∂kx

ψ′ =
[

~vF (σxkx + σyky)− E′

−gµBσzB sin θ
]

ψ′, (9)

where E ′ = γ′(E−β′vFB sin θ) and E′ = γ′(E−~vFkyβ
′)

are the electric field and energy as seen in the boosted

frame, and γ′ = 1/
√

1− β′2. The scattering states
can now be easily obtained from this equation by not-
ing the similarity of this equation with the standard
Landau-Zenner problem with modified Planck’s constant
~ → eE ′

~. In particular, the transmission probability
of these Dirac electrons in the direction of the applied
electric field in the boosted frame can be written as

T (ky;E) = e−πd2

0
γ′[(gµBB sin θ)2+(~vF k

′

y)
2]/(~vF )2 ,(10)

where d0 =
√

~vF /(eE) is the legth scale set by the elec-
tric field. Now one can rotate back to the “laboratory
frame” using k

′

y = γ′(ky − β′ǫ/~vF ), and integrate over

ky modes to obtain the tunneling conductance19

G = G0(1 − β
′ 2)3/4e−πγ′d2

0
(gµBB sin θ)2/(~vF )2 , (11)

0 0.5 1 1.5
Θ

0.5

1
G�G0

FIG. 6: Plot of the conductance G/G0 as a function of the
tilt angle θ for electric field E = 1 (black solid line), 1.2 (green
dash-dotted line), 1.5 (red long dashed line), 3 (blue dashed
line) for a fixed magnetic field B.

where G0 = e2Ly/(hd0), and Ly is the sample width.
We find that in contrast to graphene19, the Zeeman term
arising from the magnetic field along z produces an addi-
tional exponential suppression of the conductance. This
can be understood by noting that in topological insu-
lators, a Zeeman magnetic field along z results in the
generation of a mass term for the Dirac electrons and
hence leads to a suppression of the conductance. A plot
of G/G0 as a function of the tilt of a magnetic field θ is
shown in Fig. 6 for several representative values of the
electric field E and for a fixed magnetic field B. The plot
shows that for small electric fields, the conductance is
quickly suppressed as we increase θ from 0 to π/2; how-
ever for larger fields, the suppression is minimal. Thus
one can tune the conductance of these insulators either
by tuning the electric field at a fixed θ or by tuning θ at
a fixed electric field.

III. TRANSPORT IN NMN AND NBM

JUNCTIONS

In this section, we analyze the properties of NMN and
NBM junctions of topological insulators as shown in the
left and right panels of Fig. 2. Sec. III A discusses the
NMN junctions while Sec. III B elucidates the properties
of the NBM junctions.

A. NMN junctions

The proposed experimental set up for the NMN junc-
tion is shown in the left panel of Fig. 2. The Dirac
fermions in region I and III are described by the Hamil-
tonian in Eq. (1). Consequently, the wave functions of
these fermions moving along ±x in these regions for a
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fixed transverse momentum ky and energy ǫ can be writ-
ten as

ψ±
j = (1,±e±iα) exp[i(±kxx+ kyy)], (12)

where j takes values I and III, and

α = arcsin(~vF ky/|ǫ+ µ|),

kx(ǫ) =
√

[(ǫ+ µ)/~vF ]2 − k2y. (13)

In region II, the presence of the ferromagnetic strip with
a magnetization ~m0 = m0ŷ leads to the additional term

Hinduced =

∫

dxdy J θ(x)θ(d − x)ψ†(~r)σy ψ(~r), (14)

where J ∼ m0 is the exchange field due to the pres-
ence of the strip11, and θ(x) denotes the Heaviside step
function. Note that Hinduced may be thought as a vector
potential term arising due to a fictitious magnetic field
~Bf = (J /evF )[δ(x) − δ(d − x)]ẑ. This analogy shows
that our choice of the in-pane magnetization along ŷ is
completely general; all gauge invariant quantities such
as the transmission probability are independent of the
x-component of ~m0 in the present geometry. We empha-
size that this effect is distinct from that due to a finite
z component of ~m0 which provides a mass to the Dirac
electrons. For a given m0, the precise magnitude of J
depends on the exchange coupling of the film and can be
tuned, for soft ferromagnetic films, by an applied field11.
The wave function for the Dirac fermions in region II
moving along ±x in the presence of such an exchange
field is given by

ψ±
II = (1,±e±iβ) exp[i(±k′

xx+ kyy)], (15)

where

β = arcsin(~vF (ky +M)/|ǫ+ µ|), M = J /(~vF ),

k
′

x(ǫ) =
√

[(ǫ+ µ)/~vF ]2 − (ky +M)2. (16)

Note that beyond a critical Mc = ±2|ǫ + µ|/(~vF ), and
hence a critical Jc = ±2|ǫ + µ|, k′

x becomes imaginary
for all ky leading to spatially decaying modes in region
II.
Let us now consider an electron incident on region II

from the left with a transverse momentum ky and en-
ergy ǫ. Taking into account reflection and transmission
processes at x = 0 and x = d, the wave function of the
electron can be written as

ψI = ψ+
I + rψ−

I , ψII = pψ+
II + qψ−

II , ψIII = tψ+
III .

(17)

Here r and t are the reflection and transmission ampli-
tudes, and p (q) denotes the amplitude of right (left)
moving electrons in region II. Matching boundary condi-
tions on ψI and ψII at x = 0 and ψII and ψIII at x = d

FIG. 7: Plot of tunneling conductance G/G0 for a fixed V
and µ as a function of the effective width z = d|eV + µ|/~vF
for ~vFM/|eV + µ| = 0.3 (green dotted line), 0.7 (blue solid
line), 1.3 (black dash-dotted line) and 2.1 (red dashed line).
The value of the critical M is given by ~vFM/|eV + µ| = 2.

leads to

1 + r = p+ q, eiα − re−iα = peiβ − qe−iβ ,

teikxd = peik
′

xd + qe−ik
′

xd,

tei(kxd+α) = pei(k
′

xd+β) − qe−i(k
′

xd+β). (18)

Solving for t from Eq. (18), one finally obtains the
conductance

G = dI/dV = (G0/2)

∫ π/2

−π/2

dα T cosα. (19)

Here G0 = ρ(eV )we2/(π~2vF ), ρ(eV ) = |(µ +
eV )|/[2π(~vF )2] is the density of states (DOS) of the
Dirac fermions and is a constant for µ ≫ eV , w is the
sample width, and the transmission T = |t|2 is given by

T = cos2(α) cos2(β)/[cos2(k
′

xd) cos
2(α) cos2(β)

+ sin2(k
′

xd)(1− sinα sinβ)2]. (20)

Eq. (20) and the expression for G represent one of the
main results of this section. We note that for a given
α, T has an oscillatory (monotonically decaying) depen-

dence on d provided k
′

x is real (imaginary). Since k
′

x de-
pends, for a given α, on M , we find that one can switch
from an oscillatory to a monotonically decaying d depen-
dence of transmission in a given channel (labeled by ky
or equivalently, α) by turning on a magnetic field which
controls m0 and hence M . Also, since −1 ≤ sinα ≤ 1,
we find that beyond a critical M = Mc, the transmis-
sion in all the channels exhibits a monotonically decay-
ing dependence on d. Consequently, for a thick enough
junction one can tune G at fixed V and µ from a fi-
nite value to nearly zero by tuning M (i.e., m0) through
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FIG. 8: Plot G/G0 versus eV/µ for several representatives
values ~vFM/µ ranging from 3 (left-most black solid curve)
to 5 (right-most magenta dash-double dotted line) in steps of
0.5 The effective junction width z0 = 5 for all plots. The inset
shows a plot of eVc/µ versus ~vFM/µ. See text for details.

Mc. Thus such a junction may be used as a magnetic
switch. These qualitatively different behaviors of the
junction conductance G for M below and above Mc is
demonstrated in Fig. 7 by plotting G as a function of
the effective barrier width z = d|eV + µ|/~vF for several
representative values of ~vFM/|eV + µ|. Since T and
hence G depends on M through the dimensionless pa-
rameter ~vFM/|eV + µ|, this effect can also be observed
by varying the applied voltage V for a fixed µ, d, and M .
In that case, for a reasonably large dimensionless barrier
thickness z0 = dµ/~vF , G/G0 becomes finite only be-
yond a critical voltage |eVc + µ| = ~vFM/2 as shown in
Fig. 8 for several representative values of z0. The critical
voltage Vc can be determined numerically by finding the
lowest voltage for which G/G0 exhibits a monotonic de-
cay as a function of z0. The plot of eVc/µ as a function
of ~vFM/µ, shown in the inset of Fig. 8, demonstrates
the expected linear relationship between Vc and M . We
note that such a dependence of G onM or V requires the
Dirac electrons to be spinors in physical spin space, and
is therefore impossible to achieve in either graphene13 or
in a conventional 2D electron gas for which a proximate
ferromagnetic film would only provide a Zeeman term for
the electrons, leaving G unaffected.

B. NBM junctions

Next, we analyze the NBM junction shown in the right
panel of Fig. 2 where the region III below a ferromagnetic
film is separated from region I by a potential barrier in
region II. Such a barrier can be applied by changing the
chemical region in region II either by a gate voltage V0
or via doping6. We will analyze the problem in the thin

FIG. 9: Plot of tunneling conductance G1/G0 versus χ and
M for a fixed applied voltage V and chemical potential µ. G1

vanishes for |M | ≥ Mc = 2|eV + µ|/~vF .

barrier limit in which V0 → ∞ and d→ 0, keeping the di-
mensionless barrier strength χ = eV0d/(~vF ) finite. The
wave function of the Dirac fermions moving along ±x
with a fixed momentum ky and energy ǫ in this region is
given by

ψ
′ ±
II = (1,±e±iγ) exp[i(±k′′

xx+ kyy)/
√
2], (21)

where

γ = arcsin(~vF ky/|ǫ+ eV0 + µ|),

k
′′

x (ǫ) =
√

[(ǫ + eV0 + µ)/~vF ]2 − k2y. (22)

The wave functions in region I and III are given by ψ
′

I =

ψI and ψ
′

III = ψII , where ψI and ψII are given in Eq.
(17). Note that one can have a propagating solution in
region III only if |M | ≤ |Mc|.
The transmission problem for such a junction can be

solved by a procedure similar to the one outlined above
for the magnetic strip problem. For an electron ap-
proaching the barrier region from the left, we write down
the following forms of the wave function in the three re-

gions I, II and III: ψ
′

I = ψ+
I +r1ψ

−
I , ψ

′

II = p1ψ
′ +
II +q1ψ

′ −
II ,

and ψ
′

III = t1ψ
+
II . As outlined earlier, one can then

match boundary conditions at x = 0 and x = d, and
obtain the transmission coefficient T1 = |t1|2k

′

x/kx as

T1 = 2 cosβ cosα/[1 + cos(β − α)

− cos2(χ){cos(β − α)− cos(β + α)}]. (23)

Note that in the absence of the ferromagnetic film over
region III, β = α, and T1 → T 0

1 = cos2(α)/[1 −
cos2(χ) sin2(α)]. The expression for T 0

1 , reproduced here
for the special case of M = 0, is well known from anal-
ogous studies in the context of graphene, and it exhibits
both the Klein paradox (T 0

1 = 1 for α = 0) and transmis-
sion resonances (T 0

1 = 1 for χ = nπ)14. WhenM 6= 0, we
find that the transmission for normal incidence (ky = 0)



7

does become independent of the barrier strength, but its
magnitude deviates from unity:

T normal
1 =

2
√

1− (~vFM/|eV + µ|)2
1 +

√

1− (~vFM/|eV + µ|)2
. (24)

The value of T normal
1 decreases monotonically from 1 for

M = 0 to 0 for |M | = |eV + µ|/(~vF ), and can thus be
tuned by changingM (or V ) for a fixed V (or M) and µ.
The conductance of this junction is given by G1 =

(G0/2)
∫ α2

−α1

dαT1 cosα, where α1,2 are determined from

the solution of cosβ = 0 for a givenM . A plot of G1 as a
function of ~vFM/|eV + µ| and χ (for a fixed eV and µ)
is shown in Fig. 9. We find that the amplitude of G1 de-
creases monotonically as a function of |M | reaching 0 at
M = Mc beyond which there are no propagating modes
in region III. Also, as we increase M , the conductance
maxima shifts from χ = nπ to χ = (n+ 1/2)π beyond a
fixed value of M∗(V ) ≃ ±c0|eV + µ|/(~vF ) as shown in
the top left panel of Fig. 10. Numerically, we find c0 =
0.7075. AtM =M∗, G1(χ = nπ) = G1(χ = (n+1/2)π),
leading to a period halving of G1(χ) from π to π/2 .
This is shown in the top right panel of Fig. 10 where
G1(M =M∗) is plotted as a function of χ. We note that
nearM∗, the amplitude of oscillation of G1 as a function
of χ becomes very small so that G1 is almost independent
of χ. In the bottom left panel of Fig. 10, we plot χ = χmax

(the value of χ at which the first conductance maxima
occurs) as a function of ~vFM/|eV + µ| which clearly
demonstrates the shift. This is further highlighted by
plotting ∆G1 = G1(χ = 0)−G1(χ = π/2) as a function
of ~vFM/|eV + µ| in the bottom right panel of Fig. 10.
∆G1 crosses zero at M =M∗ < Mc indicating the posi-
tion of the period halving. Thus the position of the con-
ductance maxima depends crucially on ~vFM/(eV + µ)
and can be tuned by changing either M or V .

C. Alternative forms of the Hamiltonian

In this subsection, we discuss a possible way of distin-
guishing between possible forms of the Dirac Hamiltonian
in the surface of a topological insulator. In the literature
(see, for instance, Ref. 20), two such different forms have
been studied for the first part of the Hamiltonian in Eq.
(1), namely,

h1 =

∫

d2k

(2π)2
ψ†(~k) ~vF (σxkx + σyky) ψ(~k)

and h2 =

∫

d2k

(2π)2
ψ†(~k) ~vF (σxky − σykx) ψ(~k).

(25)

We have implicitly assumed the form h1 in the entire
analysis in this paper. We note that h1 and h2 are both

time-reversal invariant since ~σ → −~σ and ~k → −~k under
that transformation, and they are also invariant under ro-
tations in the x−y plane. But under the two-dimensional

FIG. 10: Top left panel: Plot of G1/G0 versus χ for
~vFM/|eV + µ| = 0.1 (black solid line), 0.7075 (red dashed
line), and 1.4 (blue dash-dotted line) for fixed V and µ. Top
right panel: Plot of G1/G0 versus χ at M = M∗ showing
the period halving. Bottom left panel: Plot of χmax versus
~vFM/|eV +µ| showing conductance maxima positions. Bot-
tom right panel: Plot of ∆G1/G0 versus ~vFM/|eV +µ| which
crosses 0 at M = M∗. The dotted line is a guide to the eye.

parity transformation x → −x and y → y, they trans-
form differently; since kx → −kx, ky → ky, σx → σx and
σy → −σy, we see that h1 → −h1 while h2 → h2. Since
the Hamiltonian of the surface Dirac electrons arises from
a spin-orbit coupling in the bulk which is then projected
on to the two-dimensional surface, and we have not dis-
cussed the bulk Hamiltonian here, we have no a priori

reason to choose between h1 and h2. In principal, we
could even consider a linear combination of the two such
as cos θ h1+sin θ h2. Clearly, when an in-plane magneti-
zation which breaks the in-plane rotational symmetry is
introduced using the ferromagnetic film, the effect of this
on the analysis in Secs. III A and III B will depend on the
angle θ mentioned above; for instance, a magnetization
in the y direction will couple to σy and will therefore shift
the momentum ky for h1 and kx for h2. Hence, when ex-
perimental tests of the various results obtained in those
two sections are performed, one can probe whether the
Hamiltonian for the system of interest is actually h1 or
h2 or a linear combination of the two, by varying the
direction of magnetization of the ferromagnetic film and
studying the effect that this has on the conductance. For
example, if the hamiltonian describing the surface elec-
trons of the topological insulator turns out to be h2, my

will have no effect on transport. In general, for any θ,
there will be specific direction of the in-plane magneti-
zation ~m ≡ my cos θ +mx sin θ which will have maximal
effect on the transport while the component of the mag-
netization ~m′ = −mx cos θ +my sin θ will not affect the
transport at all.
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IV. TRANSPORT IN NMS JUNCTIONS

We consider a NMS junction on the surface of a topo-
logical insulator as shown in Fig. 3. As shown there,
region II, which extends from x = −d to x = 0, has a
proximate ferromagnetic film leading to an induced mag-

netization ~M = Mŷ. Region III depicts the supercon-
ducting region occupying x > d. We assume that super-
conductivity in this regime is induced via a proximate
superconducting film with s-wave pairing as shown in
the figure. The quasiparticles of such a superconductor
can be described by the following Dirac-Bogoliubov-de
Gennes equation4

(

H − EF ∆(r)
∆∗(r) EF −H

)

ψ = Eψ, (26)

where ψ = (ψ↑, ψ↓, ψ
†
↑, ψ

†
↓) are the four components for

the electron and the hole spinors, and the Hamiltonian
H is given by

H = −i~vF~σ · ~∇+ µσyBθ(x + d)θ(−x), (27)

where θ(x + d) and θ(−x) are Heaviside step functions.
∆(r) = ∆0 exp(iφ)θ(x) is the BCS pair-potential in re-
gion III.
Eq. (1) can be solved for the normal, magnetic and

superconducting regions. In the normal region, the wave
functions for electron and hole moving in ±x direction
are given by

ψe±
N = (1,±e±iα, 0, 0) exp[i(±knx+ qy)], (28)

ψh±
N = (0, 0, 1,∓e±iα

′

) exp[i(±k′

nx+ qy)], (29)

sinα =
~vF q

|ǫ + EF |
, sinα

′

=
~vF q

|ǫ− EF |
, (30)

where the wave vector kn(k
′

n) for the electron (hole) wave
functions are given by

kn(k
′

n) =

√

(

ǫ+ (−)EF

~vF

)2

− q2, (31)

and α(α
′

) is the angle of incidence of the electron (hole).
In region II, the wave functions for an electron and a

hole moving in the ±x direction are as follows:

ψe±
B = (1,±e±iθ, 0, 0) exp[i(±kbx+ qy)], (32)

ψh±
B = (0, 0, 1,∓e±iθ

′

) exp[i(±k′

bx+ qy)], (33)

sin θ =
~vF (q +M)

|ǫ+ EF |
, sin θ

′

=
~vF (q +M)

|ǫ− EF |
, (34)

where the wave vector kb(k
′

b) of the electron (hole) wave
function is given by

kb(k
′

b) =

√

(

ǫ+ (−)EF

~vF

)2

− (q +M)2. (35)

Here θ(θ
′

) is the angle of incidence of the electron (hole).
Note that in principle, we could have applied an addi-
tional gate voltage V0 in this region as was done in Ref.
14. However, this leads to an expression of the longitu-
dinal momentum

kb(k
′

b) =

√

(

ǫ+ (−)(EF − V0)

~vF

)2

− (q +M)2. (36)

This shows that in the limit of large V0, the effect of M
on kb(k

′
b) and hence on G becomes negligible. Therefore

we restrict ourselves to the V0 = 0 limit.

In the superconducting region, the BdG quasiparticles
are mixtures of electron and holes. Hence the wave func-
tion for BdG quasiparticles moving in ±x directions with
transverse momenta q and energy ǫ for EF ≫ ǫ,∆0 are
given by

ψe±
S = (e∓iβ ,∓e±i(γ−β), e−iφ,∓ei(±γ−φ))

× exp[i(±ksx+ qy)− κx], (37)

sin γ =
~vF q

|EF |
, ks =

√

(

EF

~vF

)2

− q2, (38)

and β = cos−1(ǫ/∆0)θ(∆0−ǫ)− i cosh−1(ǫ/∆0)θ(ǫ−∆0)
where θ denotes the Heaviside step function.

Next, we note that for any transmission process to take
place we need α

′

, θ, θ
′

, γ ≤ π/2. This condition gives
the limits for the range of α. For simplicity we consider
V0 = 0 in region II. Then θ

′

> θ > α
′

. Using Eqs. (30),
(34) and (38), we find that the Andreev process takes
place for αc1 < α < αc2, where

αc1 = arcsin[(−|ǫ− EF |)/|ǫ+ EF |], (39)

αc2 = arcsin[(|ǫ− EF | −M)/|ǫ+ EF |]. (40)

Note that αc1 6= −αc2, and this asymmetry is generated
by the induced magnetization M .

Following Ref. 14, we write wave functions for the nor-
mal, magnetic and superconducting regions as

ΨN = ψe+
N + rψe−

N + rAψ
h−
N , (41)

ΨB = pψe+
B + qψe−

B +mψh+
B + nψh−

B , (42)

ΨS = tψ+
S + t

′

ψ−
S , (43)

where both normal and Andreev reflection are taken into
account. Here r and rA denote the amplitudes for normal
and Andreev reflection respectively. These wave func-
tions must satisfy the following boundary conditions,

ΨN |x=−d = ΨB|x=−d, ΨB|x=0 = ΨS |x=0. (44)

Solving these boundary conditions, we obtain for
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FIG. 11: Plot of subgap tunneling conductance G(V ) as a
function of the induced magnetization M and applied voltage
V . See text for details.

r, rA, t and t
′14

r = e−2ikndN/D, (45)

N = [eiα cos(kbd+ θ) + i sin(kbd)]

−ρ[cos(kbd− θ) + ieiα sin(kbd)], (46)

D = [e−iα cos(kbd+ θ)− i sin(kbd)]

+ρ[cos(kbd− θ)− ie−iα sin(kbd)], (47)

t
′

=
1

cos(θ)[Γe−iβ + eiβ ]

(

e−iknd[cos(kbd− θ)

+ieiα sin(kbd)] + reiknd[cos(kbd

−θ)− ie−iα sin(kbd)]
)

, (48)

t = Γt
′

, (49)

rA =
t
′

(Γ + 1)eik
′

nd cos(θ
′

)e−iφ

cos(k
′

bd− θ′)− ie−iα′

sin(k
′

bd)
, (50)

where the parameters ρ, Γ and η can be expressed as

ρ =
−Γei(γ−β) + e−i(γ−β)

Γe−iβ + eiβ
, (51)

Γ =
e−iγ − η

eiγ + η
, (52)

η =
e−iα

′

cos(k
′

bd+ θ
′

)− i sin(k
′

bd)

cos(k
′

bd− θ′)− ie−iα′

sin(k
′

bd)
. (53)

The tunneling conductance of the NMS junction can
be expressed in terms of r and rA as

G(eV )

G0(eV )
=

∫ αc2

αc1

dα

(

1− |r|2 + |rA|2
cosα

′

cosα

)

cosα.

(54)

A plot of the subgap tunneling conductance G/G0 as a
function of the magnetizationM and the applied voltage
V for a fixed barrier width d is shown in Fig. 11. We find
that G(0) decreases monotonically as a function of the
magnetization for all values of the applied voltage. This
can be easily attributed to a decrease in the number of

FIG. 12: Plot of zero-bias tunneling conductance G(0)/G0 as
a function of the induced magnetization M and the barrier
width d. See text for details.

conduction channels (i.e., number of ky modes with real
kb) with increasingM . The behavior of the zero-bias con-
ductance as a function of the barrier width d and magne-
tizationM is shown in Fig. 12. We find that the zero-bias
conductance shows an oscillatory behavior as a function
of the barrier width d for small M21. With increasing
M , the position of the conductance maxima shifts which
demonstrates the tunability of the zero-bias conductance
with the induced magnetization. This continuous shift
in position of the zero-bias conductance maxima is to be
contrasted with the sudden change of its counterpart in
NMN junctions of topological insulators.

V. EXPERIMENTS

Experimental verification of our work would involve
carrying out the following experiments. For a topologi-
cal insulator in a crossed electric and magnetic field with
E ≤ vFB sin(θ), we propose measurement of the energy
gap of the Landau levels as a function of the electric field
strength and the tilt angle θ. Such measurements have
been done in quantum Hall systems using microwave ab-
sorption techniques18. The variation of the excitation en-
ergy gap between the ground and the first excited states,
∆1, as shown in Fig. 5, should be observable in similar
experiments performed with topological insulators. For
E ≥ vFB sin(θ), we propose measurement of conductance
G of these films as a function of both the electric field
E and the tilt angle θ. We predict that for small E , the
tunneling should show a faster suppression with increase
θ from 0 to π/2. We note that for a θ suitably chosen
between 0 and π/2, the conductance of these films can
tuned via an electric field, as demonstrated in Fig. 6,
leading to realization of electric field controlled switch-
ing in these materials. For the NMN and NBM junctions,
which can be prepared by depositing ferromagnetic films
on the surface of a topological insulator, we propose mea-
surement of the tunneling conductance G as a function
of m0. For the geometry shown in the left panel of Fig.
2, we predict that depending on the magnetization M ,
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G should demonstrate either a monotonically decreasing
or an oscillatory behavior as a function of the junction
width d. Another, probably more experimentally con-
venient, way to realize this effect would be to measure
Vc of a junction of width d for several values of M and
confirm that Vc varies linearly with M with a slope of
~vF /(2e), provided µ and d remain fixed. For the geom-
etry depicted in the right panel of Fig. 2, one would, in
addition, need to create a barrier by tuning the chemical
potential of an intermediate thin region of the sample as
done earlier for graphene13. Here we also propose mea-
surement of G1 as a function of V0 (or equivalently χ)
for several representative values of m0 and a fixed V .
We predict that the maxima of the tunneling conduc-
tance would shift from χ = nπ to χ = (n+1/2)π beyond
a critical m0 for a fixed V , or equivalently, below a crit-
ical V , for a fixed m0. Finally, for the NMS junction,
we propose measurement of the tunneling conductance
G(V ) as a function of the magnetizationM which should
demonstrate the decaying behavior shown in Fig. 11. The
tunability of the zero-bias conductance maxima, shown
in Fig. 12, can also be tested by making junctions with
different widths.

In conclusion, we have studied several magnetotrans-
port properties of Dirac Fermions on the surface of a
topological insulator, and have shown that they exhibit
several properties which are distinct both from their
counterparts in graphene and conventional Schrodinger
electrons in other 2D systems. These novel features in-
clude tunability of the orbital and Zeeman effects of an
applied magnetic field with a crossed in-plane electric
field, realization of a magnetic switch using a NMN junc-
tion, and magnetic tunability of transmission resonances
of Dirac fermions in NBM and NMS junctions. We have
suggested experiments which can verify our theory.
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