
ar
X

iv
:h

ep
-p

h/
94

06
37

1v
2 

 6
 F

eb
 1

99
5

A Model for the Three Lepton Decay Mode of the

Proton

Biswajoy Brahmachari1

Theory Group,

Physical Research Laboratory,
Ahmedabad - 380009, India.

Patrick J. O’Donnell
Physics Department,

University of Toronto,
Toronto, Ontario M5S 1A7, Canada.

and

Utpal Sarkar2

Institut für Physik,

Universität Dortmund,
D-44221 Dortmund, Germany

Abstract

An extension of the left–right symmetric model has been con-

structed which gives in a natural way the three lepton decay modes of

the proton which have been suggested as an explanation for the atmo-

spheric neutrino anomaly. We write down the potential which after

minimization gives the proper choice of the Higgs spectrum. With
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this Higgs spectrum we then study the evolution of the gauge cou-

pling constants and point out that for consistency one has to include

effects of gravity.
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1 Introduction

One expects to see produced in the atmosphere twice as many muon neutrinos

as electron neutrinos since detectors cannot distinguish between neutrinos

and antineutrinos. The two water–Cerenkov detectors give a result which is

a factor of two smaller for the ratio R = N(νµ)/N(νe), a ratio in which many

systematic uncertainties are expected to cancel. The results are

Robs/RMC = 0.60 ± 0.07 ± 0.05

from the Kamiokande experiment [1] (based on 6.1 Kton year) and

Robs/RMC = 0.54 ± 0.05 ± 0.12

from IMB [2](based on 7.7 Kton Year). The experiments look for “contained”

single prong events which are caused by neutrinos with energies below 2 GeV.

The ratio R is estimated from the relative rates of sharply defined single rings

(muon–like) and diffused single rings (electron–like). (Other reported values

[3] for this ratio are: Frejus [4] 0.87 ± 0.21 (1.56 Kton Year), NUSEX [5]

0.99 ± 0.40 (0.4 Kton year), SOUDAN II [6] 0.69 ± 0.19 (1 Kton year)).

Although this atmospheric neutrino anomaly has a popular explanation

within the neutrino oscillation framework [7], there is an alternative expla-

nation based on three lepton decays of the proton [8]. The single ring events

have been analysed within the proton decay interpretation where it is argued

that, if the proton decays into a positron and two neutrinos with a lifetime

of τ(P → e+νν) ∼ 4 × 1031 years, then the excess observed electron events

could be due to proton decay events [8]. The lifetime for this particular decay

mode of the proton [9] is consistent with the present limit [10] for the ex-

pected dominant decay mode of the proton τ(P → e+π◦) > 5× 1032 yr. The

possibility that this particular decay mode might dominate over other usual

decay modes was considered earlier on general grounds [11, 12, 13] where it

3



was pointed out that it is difficult to have light neutrinos in the final decay

product.

In most models the left–handed neutrinos are light and the right handed–

neutrinos are heavy. Thus the decay modes are restricted to

P → e+νLνL or P → e+νL
cνL or P → e+νL

cνL
c. (1)

Recently [13] it has been pointed out that these decay modes are allowed

in the framework of certain left–right symmetric models. In this paper we

construct an explicit model in which three lepton decay mode of the proton

is the dominant one. We write down the general form of the potential and

show that the minima of the potential are consistent with the choice of Higgs

structure. We then study the evolution of the gauge coupling constants

including non-renormalizable interactions which may arise from the Planck

scale physics [14, 15].
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2 A Proton Decay Mechanism

We work in the framework of the left–right symmetric model [11, 12, 16] and

start with the symmetry breaking chain

SU(4) × SU(2)L × SU(2)R [≡ GPS]

MPS

−→ SU(3)c × SU(2)L × SU(2)R × U(1)(B−L) [≡ GLR]

MR

−→ SU(3)c × SU(2)L × U(1)Y [≡ Gstd]

MW

−→ SU(3)c × U(1)em.

In the minimal left–right symmetric model [11, 12, 16] the Higgs scalars

consist of the following fields. The group GPS is broken by the vacuum

expectation value (vev) of the field H which transforms as (15,1,1) under

the group GPS. The right handed group is broken by the vev of a right

handed triplet Higgs field ∆R ≡ (1,1,3,-2) ⊂ (10,1,3). By left–right parity

this will imply the existence of the left handed triplet field ∆L ≡ (1,3,1,

-2) ⊂ (10,3,1), which gives Majorana mass to the left–handed neutrinos and

whose vev should be ≤ 1 GeV. (Where there are four numbers, the first three

correspond to the representations of SU(3)c × SU(2)L × SU(2)R while the

last shows the U(1) quantum numbers).

Finally the electroweak symmetry breaking takes place through the vev

of a doublet scalar field φ ≡ (1,2,2,0) ⊂ (1,2,2). This field φ also gives

masses to the fermions. However this does not reproduce the right quark–

lepton mass ratios. For the right magnitude of the quark–lepton mass ratios

we require yet another field ξ ≡ (1,2,2,0) ⊂ (15,2,2) [11]. The SU(3)c

singlet component of this field ξ, which acquires vev, has different Clebsch–

Gordon coefficients for the SU(3)c and the U(1) part of SU(4). Hence they
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contribute to the quark and lepton masses with different coefficients. As a

result, suitable combinations of φ and ξ can reproduce the right quark–lepton

mass ratios.

It was pointed out in ref [13] that with this minimal scalar content it is

possible to get the decay mode required to explain the atmospheric neutrino

problem. For this we need the SU(3)c color triplet components of the fields

∆L and ξ, which we represent by ∆3
L and ξ3 respectively. (∆L is (10,3,1)

under GPS and the (1,3,1,-2) component acquires a vev; the 10 represen-

tation of SU(4) decomposes under SU(3)c as 6 + 3 +1. Similarly, the 15

representation of SU(4) decomposes under SU(3)c as 8 + 3 + 3̄ + 1). Then

the Yukawa couplings,

LY uk = fql(qLclL)∆3∗

L + fdl(dR
clL

c)ξ3∗ (2)

and the quartic scalar coupling,

Ls = λpr∆3
L∆3

Lξ
3ξ1 (3)

give the (B−L) conserving proton decay P → eL
+νLνL

c through the diagram

of figure 1. This diagram will also give, with equal probability, the decay

mode, P → µL
+νLνL

c.

Such a proton decay mechanism will give equal number of sharp single

rings (muon–like events) and diffuse single rings (electron–like events). Since

the proton decay events contribute to both electron– and muon–like events

this seems to imply that the reduction of the ratio R cannot be explained

by proton decay events. However, the weighted average of the two processes

with ratios R(proton decay) = 1 and R(atmospheric neutrino) = 2 (the

theoretical expected ratio for the muon–to–electron events if they have their

origin only from the atmospheric neutrinos) can in fact explain the atmo-

spheric neutrino anomaly.

To see this we note the observed numbers of electron–like [muon–like]

events ne(obs) [nµ(obs)] are the sum of the numbers of electrons [muons] pro-

6



duced by the atmospheric electron [muon] neutrinos νe [νµ] through scattering

inside the detector ne(atm) [nµ(atm)] and from the decays of the protons into

e+νLνL
c [µ+νLνL

c] inside the detectors ne(prot) [nµ(prot)]. That is,

Robs =
nµ(obs)

ne(obs)
=
nµ(atm) + nµ(prot)

ne(atm) + ne(prot)
∼ 0.6RMC ∼ 1.2.

In ref [8] it was assumed that the proton decays into e+νLνL
c (and not

muons), i.e., nµ(prot) = 0. They found that, by doing a Monte Carlo simu-

lation to obtain the proton lifetime, the atmospheric neutrino anomaly could

be achieved with a proton lifetime of τp ∼ 4 × 1031 years. In the above

relation this corresponds to ne(prot) ∼ (2/3)ne(atm) ∼ (1/3)nµ(atm).

In the present scenario the proton decays into both electrons and muons

so that ne(prot) ∼ nµ(prot). Thus for the explanation of the atmospheric

neutrino anomaly we require ne(prot) ∼ 4ne(atm) ∼ 2nµ(atm). Since the

number of proton decays is increased to give the same Robs there will be

a reduction in the proton lifetime by a factor of 6. Thus in this scenario

we can explain the atmospheric neutrino anomaly with a proton lifetime

τp ∼ (2/3)× 1031 years, which is still consistent with present experiments on

proton decay.

The amplitude for the process is given by

A =
λprf 2

qlfdl〈ξ1〉
m2

ξ3m4
∆3

. (4)

where, 〈ξ1〉 = 〈φ〉 = 250 GeV, λpr is the strength of the quartic coupling

defined in Eq. (3) and the fql, fdl are the Yukawa coupling constants.

Then, taking reasonable values for the quartic and the quadratic Yukawa

coupling parameters, λpr ∼ 10−2 and f ∼ 10−3, say, requires mξ3 and m∆3

to be relatively light. For the proton decay mode P → eL
+νLνL

c to be

1031 years to explain the atmospheric neutrino anomaly, it has been argued

[11, 12] that the mass mξ3 can be as light as about a TeV, which requires

m∆3 ∼ few TeV. This can also be achieved naturally [13].
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3 A General Left–Right Symmetric Potential

We now concentrate on the masses mξ3 and m∆3 . In earlier references [11, 12,

13] two new mechanisms were proposed which could give rise to appropriate

masses for these fields. Here we check the consistency of these two different

mechanisms when the complete potential with all the scalar fields is written

and minimized. First we describe the two mechanisms which keep these two

fields mξ3 and m∆3 light.

For lightmξ3 it was argued [11, 12] that if there exists a field ξ′ ≡ (15, 2, 2)

which can mix with the field ξ, then fine tuning can give a large mass to one

combination of the fields ξ and ξ′ and keep the other combination with a

light mass. However, this will also keep the masses of the color octet and the

color singlet light, which is undesirable from the point of view of evolution

of the gauge coupling constants. This problem is avoided [12] if instead of ξ′

we introduce a field χ ≡ (6, 2, 2) under GPS. If the symmetry group GPS is

embedded in the unified group SO(10) then this field is contained in a 54–

plet of SO(10), which is required to break the symmetry of the large group.

The mixing of the field χ with ξ can then give a mass matrix which may be

fine tuned to give only a light color triplet field. We shall discuss the details

of this mechanism at a later stage. In the rest of the article we shall use the

field χ and not ξ′.

For the field ∆3 to remain light we have to alter the way in which the

left–right symmetric model gets broken, although, as we shall see later, this

particular method will make the mechanism in the last paragraph consistent

with the minimization of the general potential. For this purpose we introduce

a singlet field η ≡ (1,1,1,0) ⊂ (1,1,1), to break the left–right parity (usually

this is referred to as D–parity) at a different scale from the left–right symme-

try breaking scale MR [17]. This field transforms under D as η → −η. The

scalar and the fermionic fields transform under D–parity as ∆L,R → ∆R,L

and ψL,R → ψR,L, while φ and ξ stay the same. Then with the field η we can
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add new terms to the lagrangian,

Lη∆ = −Mηη(∆
†
R∆R − ∆†

L∆L) − ληη
2(∆†

L∆L + ∆†
R∆R) (5)

In theories where the triplet Higgs breaks D–parity along with SU(2)R

we have m∆L
= m∆R

. The masses of the fields ∆L and ∆R are not be the

same when D–parity is broken by the vev of the field η. When η gets a

non–zero vacuum expectation value, the masses are given by,

m2
∆L

= m2
∆ −Mη〈η〉 + λη〈η〉2 and m2

∆R
= m2

∆ +Mη〈η〉 + λη〈η〉2

where m∆ is the mass at which the left–right symmetry breaking of SU(2)R

is broken spontaneously. So, in the absence of the η field, both these ∆ fields

will have mass ∼ m∆. With < η > present the parameters in the three terms

can be tuned to make m∆L
vanish. The field ∆L will then acquire mass of

the order of a TeV from radiative corrections. The same sets of parameter

will also make m∆R
heavy and lead to a solution

〈η〉 ∼ 〈∆R〉 ≫ 〈∆L〉 and Mη ≈ m∆R
≈ 〈∆R〉 ≈ m∆ and m∆L

≪ 〈∆R〉 (6)

Thus we can have m∆3 ∼ m∆L
∼ few TeV even when m∆R

∼ 〈∆R〉 is as

large as 1010 GeV.

We now write the most general potential with all the fields present in the

minimal left–right symmetric model with the additional fields ξ, χ and the

D–parity odd–singlet field η. We then show the two mechanisms required

to keep the color triplet fields light are consistent with the minima of the

potential. To simplify the expression we define,

φ1 ≡ φ ; φ2 ≡ τ2φ
∗
1τ2 ; ξ1 ≡ ξ ; ξ2 ≡ τ2ξ

∗
1τ2

The most general potential with all the fields is,

V (φ1, φ2,∆L,∆R, ξ1, ξ2, η, χ) = Vφ + V∆ + Vη + Vξ + Vχ

+Vηφ + Vη∆ + V∆φ + Vφξ + V∆ξ + Vηξ + Vχξ

(7)
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where the different terms in this expression are given by,

Vφ = −
∑

i,j

µ2
ij tr(φ

†
iφj) +

∑

i,j,k,l

λijkl tr(φ
†
iφj) tr(φ

†
kφl)

+
∑

i,j,k,l

λ′ijkl tr(φ
†
iφjφ

†
kφl)

V∆ = −µ2 [tr(∆†
L∆L) + tr(∆†

R∆R)] + ρ1 [tr(∆†
L∆L)2 + tr(∆†

R∆R)2]

+ρ2 [tr(∆†
L∆L∆†

L∆L) + tr(∆†
R∆R∆†

R∆R)] + ρ3 tr(∆
†
L∆L∆†

R∆R)

Vη = −µ2
η η

2 + βη η
4

Vξ =
∑

i,j

m2
ij tr(ξ

†
i ξj) +

∑

i,j,k,l

nijkl tr(ξ
†
i ξjξ

†
kξl) +

∑

i,j,k,l

pijkl tr(ξ
†
i ξj) tr(ξ

†
kξl)

Vχ = M2
χtr(χ

† χ) + λχ
1 [tr(χ† χ)]2 + λχ

1 tr(χ
† χχ† χ)

V∆φ = +
∑

i,j

αij [tr(∆†
L∆L) + tr(∆†

R∆R)] tr(φ†
iφj) +

∑

i,j

βij [ tr(∆†
L∆Lφiφ

†
j)

+tr(∆†
R∆Rφ

†
iφj)] +

∑

i,j

γij tr(∆
†
Lφi∆Rφ

†
j)

Vη∆ = −Mη η [tr(∆†
L∆L) − tr(∆†

R∆R)] + λη η
2 [tr(∆†

L∆L) + tr(∆†
R∆R)]

Vηφ =
∑

i,j

δij η
2 tr(φ†

iφj)

Vφξ =
∑

i,j,k,l

uijkl tr(φ
†
iφjξ

†
kξl) +

∑

i,j,k,l

vijkl tr(φ
†
iφj) tr(ξ

†
kξl)
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V∆ξ = +
∑

i,j

aij [ tr(∆†
L∆L) + tr(∆†

R∆R)] tr(ξ†i ξj)

+
∑

i,j

bij [ tr(∆†
L∆Lξiξ

†
j ) + tr(∆†

R∆Rξ
†
i ξj)]

+
∑

i,j

cij tr(∆
†
Lξi∆Rξ

†
j )

+
∑

i,j

λpr
ij [tr(∆L∆Lξiξj) + tr(∆R∆Rξiξj) + tr(∆L∆Rξiξj)]

Vηξ =
∑

i,j

dij η
2 tr(ξ†i ξj)

Vχξ = P η[tr(ξχ∆R) − tr(ξχ∆L)] +M [tr(ξχ∆R) + tr(ξχ∆L)]

We have not written the SU(4) indices explicitly for simplicity. For exam-

ple, if we include the SU(4) index, the term ρ2tr(∆
†
L∆L∆†

L∆L) in our nota-

tion will actually mean two terms, ρa
2tr(∆

†α
L ∆Lα∆†β

L ∆Lβ) and ρb
2tr(∆

†α
L ∆Lβ∆†β

L ∆Lα).

However, as far as the minimization and the consistency of the model is con-

cerned, we only have to replace ρ2 by (ρa
2 + ρb

2). Otherwise the rest of the

analysis will be unaltered. A more detailed analysis with explicit SU(4)

indices will not constrain or relax any of the constraints in this model.

The vacuum expectation values (vev) of the fields have the following form:

< φ > =
(
k 0
0 k′

)
; < ∆L >=

(
0 0
vL 0

)
;

< φ̃ > =
(
k′ 0
0 k

)
; < ∆R >=

(
0 0
vR 0

)
;

< ξ > =
(
k̃ 0
0 k̃′

)
; < ξ̃ >=

(
k̃′ 0
0 k̃

)
;

< η > = η0 ; < χ >= 0

The notation needs some clarification. For the fields φ and ξ we have

used the representation in which rows correspond to the SU(2)L quantum

numbers (+1
2
, − 1

2
) and columns correspond to the SU(2)R quantum numbers
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(−1
2
, + 1

2
). The field φ is a singlet under the group SU(4) and hence it

has a SU(4) matrix representation diag(1, 1, 1, 1). On the other hand the

field ξ transforms under SU(4) as a 15 representation. Under the SU(3)

subgroup of SU(4) the 15 decomposes as 8 + 3 + 3̄ + 1. The SU(4) matrix

representation of the singlet is a traceless diagonal matrix which is a unit

matrix in the SU(3) space. Hence the SU(4) matrix representation of the

component of ξ, which is a singlet under both the SU(3)C and the U(1)

subgroups of SU(4) and which acquires a vev, is diag(1, 1, 1,−3). The SU(2)

representations are as above. Thus these fields φ and ξ contribute differently

to the quarks and leptons masses, and hence a proper combination of the

two fields give the correct mass relations between the quarks and leptons

[11]. For the fields ∆L and ∆R we used the 2 × 2 triplet representations of

SU(2). Thus the components τ 1 − i τ 2, which has the isospin +1 and hence

charge neutral, acquire vev. (The electric charge is T3L + T3R + (B − L)/2.

For these representations B − L = −2. So the charge neutral component

should have T3L or T3R = +1, meaning they should contract with τ 1 − i τ 2).
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4 Minimization of the Potential

It is almost impossible to minimize the potential with respect to all the fields

and then find the absolute minima. For this purpose one needs to simplify

the problem considerably. As a first approximation one can extremize the

potential with respect to all the fields and then substituting the vevs of the

different fields to check if there is any inconsistency. In the minimal left–right

symmetric potential, i.e., without the field η, there are no linear terms in

any field so the usual practice is to replace the various fields by their vevs

then extremize it with respect to these vevs and finally check for consistency.

We shall also follow the same procedure, but we need to take care of the

extra linear terms present in the potential. For these linear terms, we shall

afterwards minimize the potential with respect to those fields which do not

acquire any vev. The vanishing of these derivatives after substituting for the

vevs will then impose new constraints which also have to be satisfied.

After the spontaneous symmetry breaking, when the fields acquire a vev,

the potential contains terms with k, k′, k̃, k̃′, vL and vR. We need only terms

involving vL and vR. These are given by,

V = −µ2 (v2
L + v2

R) +
ρ

4
(v4

L + v4
R) +

ρ′

2
(v2

Lv
2
R) + 2vLvR[(γ11

+γ22)kk
′ + γ12(k

2 + k′
2
)] + (v2

L + v2
R) [(α11 + α22 + β11) k

2

+(α11 + α22 + β22) k
′2 + (4α12 + 2β12) kk

′]

−Mη η0 (v2
L − v2

R) + λη η
2
0 (v2

L + v2
R)

+(v2
L + v2

R) [(a11 + a22 + b11 + λpr
11) k̃

2 + (a11 + a22 + b22 + λpr
22) k̃

′
2
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+(4a12 + b12 + λpr
12) k̃k̃

′] + 2vLvR[(c11 + c22 + λpr
11 + λpr

22)k̃k̃
′

+(c12 + λpr
12)(k̃

2 + k̃′
2
)] (8)

where we have defined the new parameters ρ = 4(ρ1 + ρ2) and ρ′ = 2ρ3.

The minimization of this potential gives a constraint on vL and vR. In-

stead of minimizing this potential with respect to the fields vL and vR sepa-

rately, we consider a combination, ∂V
∂vL

vR − ∂V
∂vR

vL = 0, which gives a relation

among the fields vL and vR

vLvR =
β1k

2 + β2k̃
2

[ρ− ρ′ − 4Mηη0

(v2

L
−v2

R
)
]
. (9)

where, β1 = 2γ12; and β2 = 2(c12+λ
pr
12) and we assumed k′ << k and k̃′ << k̃.

This allows us to have a very tiny vev for the left–handed triplet field ∆L

while keeping the vev of the right–handed triplet field ∆R very large. This

is in agreement with what we required in Eq. (6).

Now consider the linear terms involving χ given by Vχξ. These terms allow

for the correct mixing between the color triplet components of the fields ξ

and χ. The mass matrix for ξ3 and χ3 is now given by

M =
(
a b
c d

)
(10)

where, a = m2, d = M2
χ and b = c = (Pη0 + M)vR, and where we assumed

all mijs are equal to m. If we now fine tune parameters to make detM = 0,

i.e.,

(mMχ)2 = (Pη0 +M)2v2
R

then one of the mass eigenvalues is zero. This fine tuning requires that

M must be negative and (Pη0 + M) be very small and negative. In fact,

|Pη0 + M | has to be of the order of ∼ M2

W

MR
. This massless field will get a

mass of the order of ∼ TeV after radiative corrections during the electroweak

symmetry breaking are included.
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The terms linear in χ required for this mechanism have another effect

which was not transparent when we did the minimization of the potential

with respect to the vevs of the various fields. If we first minimize with

respect to the field χ and then substitute for the vevs of the various fields

(which is not usually done since that complicates the calculation), then there

is an additional constraint,

vL =
Pη0 +M

Pη0 −M
vR (11)

This means that to satisfy Eq. (9), we require |Pη0 +M | << |Pη0 −M |.
In other words, for vL ∼ M2

W

MR
, we need

∣∣∣Pη0+M
Pη0−M

∣∣∣ ∼ M2

W

M2

R

. This is consistent

with the fine tuning used to keep the color triplet component of ξ light, for

which |Pη0 + M | ∼ M2

W

MR
and |Pη0 −M | ∼ MR. This would not have been

possible if the field η were not present. For example, in the original paper

[12] where the field χ was introduced and the field η was not required, this

method would have led to an inconsistency. In the absence of the field η

minimization of the potential with respect to the field χ would have given

a constraint vL = −vR, which is inconsistent with the LEP data. Here we

need the field η to keep the left–handed color triplet light and the fine tuning

makes it consistent.

We now turn to the question of light ∆3. As mentioned earlier, to have

M∆ ∼ few TeV, we require the coupling of η and ∆ as in Eq. (5). Also,

in the most general potential the only term which contributes at the level

of η0 ∼ M∆R
is Vη∆, which is exactly the same as in (Eq. 5). Thus the

field ∆3 ∼ ∆L can be massless at that level. Then during the electroweak

phase transition this will again acquire mass through radiative corrections

of the order of a few TeV. This is more natural in supersymmetric theories

where the radiative corrections induce mass of the order of supersymmetry

breaking scale, which are usually of the order of a few TeV.

The mechanism just mentioned to make ∆3 light has one drawback. It

makes the other components of ∆L also very light. For example, the ∆6 can
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now mediate n− n̄ oscillation, which has to be suppressed. This problem is

similar to the doublet-triplet splitting of any other grand unified models. In

the present scenario we assume that although this field is light the coupling

of ∆6 is very small, which can make the model safe. However, this is not

the best choice and if one can find some good solution to the doublet-triplet

splitting in other GUTs, then one has to incorporate the same mechanism

here in future. With our present assumption that the Yukawa coupling of ∆6

is very small, we now have to check the consequences of these fields in the

evolution of the gauge coupling constants.

Finally, we point out that the quartic coupling (given by V∆ξ) required

for generating the required diagram is also present in the general potential.
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5 Evolution of the Coupling Constants

There have to be many light scalars for the present scenario to work. These

scalars may destabilize the unification of the gauge coupling constant at

the unification scale. In the evolution of the gauge coupling constant with

these Higgs scalars included and with the mass scales as above it is im-

possible to have unification of the gauge coupling constants using the LEP

constraints [18] on sinθ
w and αs. However higher dimensional operators, which

might originate from Planck scale physics such as quantum gravity or com-

pactification of Kaluza-Klein theories or Superstring theories, can save the

situation[14, 15]. Thus if the three lepton decay mode of the proton survives

all of the experimental tests, then we may have an indication that Planck

scale physics is actually modifying the boundary conditions of the gauge

coupling constants near the unification scale.

In our analysis we include the effect of the non-renormalizable terms

arising from Planck scale physics from the beginning using the notation and

method of reference [15]. We write down the generalized renormalization

group equations in which the Planck scale effects are parametrized in terms

of four extra parameters. We recover the usual relations between the coupling

constants in the absence of gravity by setting the extra parameters to zero.

It is when we do this we obtain a contradiction and the equations fail to

provide unification.

The evolution of gauge coupling constants with the energy scale is gov-

erned by Renormalization Group Equations (RGE). Here we consider the

RGE in one loop approximation i.e. the gauge fields fermionic fields and the

scalar fields contribute to the evolution of the gauge couplings via one loop

graphs only [19]. In this approximation the renormalization group equation

takes the form,

µ
dαi(µ)

dµ
= 2biα

2
i (µ)
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where, αi =
g2

i

4π
and the beta function is given in the following generic form.

b =
1

4π

[
−11

3
N +

4

3
nf +

1

6
Ts

]
(12)

Here N = 1, 2, 3 or 4, the number of neutrinos is always 3 and the scalars

take on the values discussed below. Since there are a large number of scalar

fields present in our model their contribution will be substantial despite the

suppression by a factor of 6 in the beta function of the scalar term (Ts). We

list the scalar fields that contribute to the RGE at different energy scales in

Table. 1. For simplification of notation we write Mc for MPS in this section.

We embed the Pati-Salam group GPS into a larger GUT group SO(10).

The SO(10) symmetry is broken by a 54-plet of Higgs field Σ at the scale

MU . The Σ is a traceless symmetric field of the SO(10) and the vevs of Σ

which mediates this symmetry breaking are given by,

〈Σ〉 =
1√
30

Σ0 diag(1, 1, 1, 1, 1, 1,−3

2
,−3

2
,−3

2
,−3

2
). (13)

where, Σ0 =
√

6
5παG

MU and αG = g2
0/4π is the GUT coupling. The vev of a

45-plet field H breaks the symmetry group GPS to GLR,

〈H〉 =
1√
12 i

H0




033 133 034

−133 033 034

043 043 044


 (14)

where, 0mn is a m× n null matrix and 1mm is a m×m unit matrix.

The (1,1,1) component of the 54-plet field Σ breaks the SO(10) group at

the scale MU and hence does not affect the RGE. The (15,1,1) component

of the 45-plet field H breaks GPS and so contributes to the RGE between the

scale Mc and MU . The color singlet part of the (10,1,3) component of the

126-plet field ∆R breaks the GLR symmetry. Then by extended survival hy-

pothesis the color singlet component contribute to the RGE between the scale

MR to Mc and all the components (10,1,3) contribute between the scales

Mc and MU [19]. On the other hand our proposed mechanism, allows all of

18



the components of the field ∆L ≡ (10,3,1) to remain light and contribute

to the RGE at all energies between MW and MU . The bidoublet (1,2,2)

field breaks the electroweak symmetry group and contributes at all energies

to the RGE . For the correct quark-lepton mass relation we also require the

bidoublet color singlet component of (15,2,2) to acquire a vev at the elec-

troweak scale. For the potential we have, the (6,2,2) field will mix with the

color triplet and anti-triplet components of the (15,2,2) field and one com-

bination of these color triplet and anti-triplet fields will remain light. The

color singlet and one combination of the triplet and anti-triplet component

will then contribute to the RGE at all energies, while the other combination

of the color triplet and anti-triplet will become heavy and contribute only

between the energies Mc and MU .

MU →Mc Mc →MR MR →MW

(1,1,1)
(15,1,1)

(10,1,3) (1,1,3,
√

3
2
)

(10,3,1) (6,3,1,−
√

3
2
)+(3,3,1,

√
1
6
) +(1,3,1,

√
3
2
) (6,3,−

√
3
5
) +(3,3, 1

3

√
3
5
)+(1,3,

√
3
5
)

(1,2,2) (1,2,2,0) (1,2,1
2

√
3
5
)+(1,2, −1

2

√
3
5
)

(15,2,2) (3,2,2,
√

2
3
)+(3̄,2,2,-

√
2
3
)+(1,2,2,0) (3,2,1

6

√
3
5
)+(3,2,7

6

√
3
5
)+(1,2, 1

2

√
3
5
)

(3̄,2, −1
6

√
3
5
)+(3̄,2, −7

6

√
3
5
)+(1,2, −1

2

√
3
5
)

(6,2,2)

Table 1: Higgs scalars at various symmetry breaking scales. The U(1) quan-
tum numbers are normalized from their embedding in SO(10).

The normalization of the U(1) quantum numbers at the right handed

breaking scale is fixed by the relation,

Y =

√
3

5
T 3

R +

√
2

5
YB−L.
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Combining results of Eq. 12 and Table. 1 it is easy to write down the

following explicit form of the beta functions that regulate the evolutionary

behaviour of the gauge couplings at various energy scales. We assume that

the number of fermion generations is three.

MU →Mc Mc →MR MR → Mz

b4uc= -11/3 b3cr= -29/6 b3crw = -29/6

b2Luc= 11/3 b2Lcr= 4/3 b2Lrw = 4/3

b2Ruc= 11/3 b2Rcr= 3/2 b1Y rw= 49/6

b1B−Lcr= 13

Table 2: The modified beta functions (b̃N = 4πbN ) for the various groups
at different energy scales. In the table we use the notation bNxy, where N
represents the group (N for SU(N) and 1S for U(1)S) and xy means the
beta functions within the scales Mx and My.

We consider both symmetry breaking scales, MU and Mc, to be very large

so that Planck scale effects are not negligible. We start with the renormaliz-

able SO(10) invariant lagrangian,

L = −1

2
Tr(FµνF

µν) (15)

and then include the non-renormalizable higher dimensional terms which

have their origin in Planck scale physics. We consider only terms of dimension

5 and 6, given by

L(5) = −1

2

η(1)

MP l

Tr(FµνφF
µν) (16)
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L(6) = −1
2

1
M2

Pl

[
η(2)

a {Tr(Fµνφ
2F µν) + Tr(FµνφF

µνφ)} +

η
(2)
b Tr(φ2)Tr(FµνF

µν) + η(2)
c Tr(F µνφ)Tr(Fµνφ)

]
(17)

where η(n) are dimensional couplings of the higher dimensional operators.

When any Higgs scalar φ acquires vev φ0, these operators induce effective

dimension 4 terms modifying the boundary conditions at the scale φ0.

The symmetry breaking atMU shifts the boundary condition of the SU(4)

coupling constant with respect to the SU(2) couplings whereas the vevs of

the 45-plet field H contribute to the relative couplings of the SU(3) and the

U(1) constants. The GPS invariant effective lagrangian, modified by these

higher dimensional operators, is given by,

−1

2
(1 + ǫ4) Tr(F (4)

µν F (4)µν) − 1

2
(1 + ǫ2) Tr(F (2L)

µν F (2L)µν)

− 1

2
(1 + ǫ2) Tr(F (2R)

µν F (2R)µν) (18)

where,

ǫ4 = ǫ(1) + ǫ(2)a +
1

2
ǫ
(2)
b

ǫ2 = −3

2
ǫ(1) +

9

4
ǫ(2)a +

1

2
ǫ
(2)
b .

and

ǫ
(n)
i =

[{
1

25παG

} 1

2 MU

MP l

]n

η
(n)
i .

Then the usual GPS lagrangian can be recovered with the modified coupling

constants,

g2
4(MU) = ḡ2

4(MU)(1 + ǫ4)
−1

g2
2L(MU) = ḡ2

2L(MU)(1 + ǫ2)
−1

g2
2R(MU) = ḡ2

2R(MU)(1 + ǫ2)
−1 (19)
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where the ḡi are the coupling constants in the absence of the nonrenormaliz-

able terms and gi are the physical coupling constants that evolve below MU .

The modified boundary condition then reads,

g2
4(MU )(1 + ǫ4) = g2

2L(MU)(1 + ǫ2) = g2
2R(MU )(1 + ǫ2) = g2

0. (20)

At Mc the symmetry group SU(4)c breaks down to SU(3)c × U(1)B−L

when the (15,1,1) component of the 45-plet of Higgs field H acquires a vev.

The SU(3)c × U(1)B−L invariant lagrangian is given by,

−1

2
(1 + ǫ′3) Tr(F (3)

µν F (3)µν) − 1

2
(1 + ǫ′1) Tr(F (1)

µν F (1)µν)

where,

ǫ′3 = ǫ′(2)a + 12ǫ
′(2)
b

ǫ′1 = 7ǫ′(2)a + 12ǫ
′(2)
b + 12ǫ′(2)c .

and

ǫ
′(2)
i =

η
′(2)
i φ2

0

24M2
P l

=

[
1

20πα4

[
MI

MP l

]2
]
η
′(2)
i

where, i = a, b, c. Then the boundary condition at Mc becomes,

g2
1(B−L)(Mc)(1 + ǫ′1) = g2

3c(Mc)(1 + ǫ′3) = g2
4(Mc).

The matching conditions at the scale MR are not modified by the Planck

scale effects and are given by,

g−2
1Y (MR) =

3

5
g−2
2R(MR) +

2

5
g−2
1(B−L)(MR)

g−2
2L (MR) = g−2

2R(MR) (21)

Using the above boundary conditions and the one loop renormalization

group equation the unification coupling αU can be related to the three cou-

plings at the W mass scale (MW ) through the following relations [15] (we

have defined mij = lnMi

Mj
),
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α−1
y (MW ) = α−1

G (1 + 3/5ǫ2 + 2/5ǫ4 + 2/5(ǫ′(1 + ǫ4))) + (6/5 b2ruc + 4/5(1 + ǫ′1) b4uc) muc

+(6/5 b2rcr + 4/5 b1blcr) mcr + 2b1yrw mrw

α−1
2 (MW ) = α−1

G (1 + ǫ2) + 2 b2luc muc + 2 b2lcr mcr + 2 b2lrw mrw

α−1
3 (MW ) = α−1

U (1 + ǫ4) + 2 b4uc muc + 2 b3cr mcr + 2 b3crw mrw

We define,

A = α−1
Y (MW ) − α−1(MZ)

and

B = α−1
2L (MW ) +

5

3
α−1

Y (MZ) − 8

3
α−1

3c (MW )

and relate them to the experimental numbers through the following equa-

tions,

sin2
θW

=
3

8
− 5

8
αA

1 − 3

8

α

αs

= αB. (22)

If we now take all the ǫ s to be zero, then we have

mrw = −36.7 + 5.7muc

mcr = 147.3 − 11.2muc .

There is no solution with positive mrw and mcr for any value of Muc with

the constraints, sin2 θW = 0.2334, αs = 0.12, and with the unification scale

below the Planck scale . In other words this means that if we do not consider

the effect of gravity, then in the presence of so many light Higgs scalars it is

not possible to have unification of the gauge coupling constants. Thus if the

three lepton decay mode of the proton is the explanation of the atmospheric

neutrino problem, gravity effects modify the low energy predictions of the

grand unified theories.
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We now consider the effects of the Planck scale. For several choices of

the ǫ s it is possible to have a mass scale solution which may explain the

atmospheric neutrino problem. To demonstrate this we present a few rep-

resentative solutions in table 2. The light scalars contribute from the scale

Mz ∼ 100 GeV in the RG equation. The unification scale MU and the

GPS breaking scale Mc are very close to each other (i.e., muc = lnMU

Mc
is

very small) and is considered here to be around MU ∼ Mc ∼ 1018 GeV

(i.e., mrw + mcr + muc = 39); the right handed breaking scale is around

MR ∼ 1013 GeV (i.e., mrw ∼ 28). With these values of the mass scales the

three lepton decay mode of the proton would be the most dominant decay

mode (with τ(P → e+νν) ∼ 1031 yrs). Since the unification scale is quite

high now, conventional proton decay modes are very much suppressed (with

τ(P → e+π◦) ∼ 1039 yrs.). Thus even though the three lepton decay mode

of the proton explains the atmospheric neutrino anomaly there is no conflict

with the non-observation of proton decay in other experiments.

ǫ′1 ǫ2 ǫ′3 ǫ4 α−1
G mrw mcr muc

−1 −.75 1 −1 55 28.32 9.73 .93
−1 −.75 1 −1 57 28.04 10.34 .61
−1 −.75 1 −1 59 27.75 10.95 .28
−.99 −.75 1 −1 59 27.76 10.95 .28
−.90 −.75 1 −1 59 27.76 10.94 .28
−.80 −.75 1 −1 59 27.77 10.93 .28

Table 3: Allowed ranges of parameters for unification
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6 Conclusions

We have presented an extension of the left–right symmetric model where the

most dominant proton decay mode is through three leptons. The lifetime for

this decay mode is large enough to explain the atmospheric neutrino anomaly.

We have minimized the complete potential to check the consistency of the

model. In the end we have carried out a renormalization group analysis

to estimate the mass scales of the model. We have shown that when the

gravity induced effects coming from the Plank scale physics are included in

the renormalization group analysis, the couplings unify; an estimation of the

several mass scales of the model then becomes possible.
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Figure 1: Diagram giving P → eL
+νLνL
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