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Abstract

We consider the gravity induced dimension six terms in addition to the di-

mension five terms in the SUSY GUT Lagrangian and find that the prediction

for αs may be washed out completely in supersymmetric grand unified theories

unless the triplet higgs mass is smaller than 7 × 1016 GeV.

Recently, Hall and Sarid,1 and Langacker and Polonsky2 have shown that the prediction of

the strong coupling constant αs in the minimal supersymmetric SU(5) grand unified theory

is smeared out when dimension five non-renormalizable operators arising from gravity is

included ( Recently Planck scale effects have also been considered by A.Vayonakis2). In this

brief report we point out that for high GUT scale higher dimensional operators can be as

significant as dimension five operators. In particular we show that these operators can wash

out the prediction for αs completely.

1

http://arXiv.org/abs/hep-ph/9403360v2
http://arXiv.org/abs/hep-ph/9403360


In the case of non-supersymmetric GUTs it was shown3 that by considering dimension

five operators alone it is not possible to make minimal SU(5) GUT consistent with the LEP

data and proton decay limit. Whereas by considering both dimension five and dimension six

operators one can make the minimal SU(5) GUT consistent with LEP data and satisfy the

proton decay limit.4

We use the notation of Hall and Sarid and include the GUT threshold corrections to

compare our result with that of Ref.1. We include both dimension 5 and dimension 6

operators, which might originate from non-renormalizable quantum gravity effect, and write
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where M̂P = (8πGN)−1/2 ≃ 2.4 × 1018 GeV is the reduced Planck mass.

Then these terms will modify the kinetic energy terms of the standard model gauge
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where we have defined d1 = (d11 + d12)/2 as the the first two operators in eqn.(1) always

contribute equally. Note that in principle one can also include operators of dimensions higher

than six in our analysis but their contributions to ~ǫ, where ~ǫαG
−1 is the amount by which

~αG
−1 gets modified in the evolution equations for the coupling constants, can be included

by absorbing them in the co-efficients d1, d2 and d3. Since we are interested only in gauge

coupling evolutions it is thus sufficient to confine our analysis to just dimension five and

dimension six operators for minimal supersymmetric SU(5) GUT and see how they can

affect the predictions of αs. At the one loop level the gauge coupling, evaluated at the Z

mass ~α−1 ≡ ~α−1(mZ) ≡ (α1
−1, α2

−1, α3
−1) will be related to the GUT scale (MG) gauge

coupling constant
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Then, following Hall and Sarid1 the modified unification equations are given by
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where Mtr is the mass of the color triplet higgs.

Subtracting one of the equations in (3) from the other we obtain an equation for Mtr

which can be written as
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Defining, x = Mtr/λ5M̂P we can rewrite the first eqn in (3) as
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We now numerically solve eqn.(4) for t and then use eqn.(5) to calculate αs. We use the

same mass spectrum and ranges of parameters (s2, m0, m 1

2

, µ, mH2
,λ5,λ24,c) as in Ref.1.

In other words we vary the light superpartner masses and the second higgs doublet mass

between 100 GeV and 1 TeV, s2 between 0.2314 and 0.2324 5, λ5 and λ24 between .1 and 3

while we constrain |c| < 1. The co-effecients d1, d2 and d3 are unknown, but we see from

eqn.(4) and eqn.(5) that only d1 and d3 contribute to the equations for Mtr and αs. We

also observe from eqn.(4) that d3 has a much larger coefficient . We can now consider two

scenarios, one with |d1| < 1; d3 = 0 and |d1| = 0; |d3| < 1. There may be multiple solutions to

eqn.(3) and we have chosen the lowest solution in our analysis. To select the lowest solution

we define two critical solutions t1 and t2 which are given by

t1 =
tex
2

[1 +
√

(1 − 2y)] (6)

t2 =
tex
2

[1 −
√

(1 − 2y)] (7)
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where tex = −w2/2w1 , a = 84/5π and y = a/w1t
2
ex. For w2 = 0 we have one critical solution

tcr given by

tcr =

√

−a

2w1
(8)

The critical solutions correspond to points where the tangent to the logarathmic function

on the left hand side of eqn.(4) equals the tangent to the parabola on the right hand side

of eqn.(4). When t1 and t2 are both real and positive and distinct from one another we

can have at most three solutions, one below t1, one between t1 and t2 and one above t2. If

instead the critical solutions are real and positive, but equal then we can have at most two

solutions. For w1 < 0 there is always one real positive critical solution and so there can be

up to two solutions one on either side of the critical solution. When there is no real, positive

critical solution there can be up to one solution to eqn.(4). For w1 = 0, as observed in Ref.1,

there can be only one solution for w2 greater than 0 while for w2 less than 0 there can be

upto two solutions lying on either side of the critical solution tcritical = −a/w2.

Results For the case where |d1| < 1; d3 = 0, the effect of dimension 6 operators are

found to be negligible. However for the case where |d1| = 0; |d3| < 1, the effect of dimension

six operator can be significant. In fig.1 (a) we show a plot of the solutions in the αs − Mtr

plane. Although we cut off the figure at αs = 1, we mention that there are solutions for

larger values of αs
1. In table.1 we show the ranges of αs for different Mtr. Fig.1 (b) is a

blow up of fig.1 (a) for αs ≤ 0.12. Here, we have used a much smaller grid size for λ5 in

our numerical computation; as a result, some solutions that do not show up in fig.1 (a) now

appear in fig.1 (b). We observe that for Mtr ≥ 7 × 1016 GeV the range of the solutions for

αs is greatly increased. We also note that with dimension 6 operators it is now possible

to get values of αs below 0.11 which was not possible with pure dimension 5 term. This

could be of interest if in the future the central value of αs = 0.120 ± 0.007 ± 0.002 5 shifts

down by ∼ 1.5σ. ( It is interesting to note that such a low value of αs (0.108 ± 0.004) is

indeed obtained in an analysis of LEP data by Maxwell et al. 6 where it is claimed that

the standard perturbative QCD analyses used to extract αs from LEP data do not correctly

take into account higher order NNLO corrections which can be sizeable for some of the LEP

observables used in the determination of αs.) We found that solutions with large values of

αs and small values of αs ( less than 0.11) correspond to small values of λ5 in the range 0.1

to 0.3 indicating a high value for MX (or x) and consequently large gravitational corrections.

1Of course, the equations themselves cease to be valid if αs is too large.
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When the unification scale is close to the Planck scale the magnitude of the terms induced

by the higher dimensional operators in eqn.(5) can become comparable to the combination

of the first two terms, resulting in a much wider range for αs. In our calculations we have

constrained the heavy masses to be less than M̂P . To compare to the results with only the

dimension five operator included, we note that in that case, the parameter x always is of the

order of 10−2. However the inclusion of the dimension six operators allows x to be an order of

magnitude higher indicating a higher unification scale close to M̂P (Note MX

M̂P

=
√

8παGx ∼ x

for αG = 1
25

; where MX is the vector boson mass) and therefore it is not surprising that the

effects of the higher dimensional operators are significant.

In summary, we have shown that the inclusion of dimension 6 operators may totally wash

out the predictions for the strong coupling constant and further, that the correlation between

αs and Mtr is also destroyed unless we constrain the triplet higgs mass Mtr < 7 × 1016 GeV

because as we see from Table.1 the range of αs increases significantly from the point Mtr =

7× 1016 GeV onwards. Turning this around, if we require that SUSY-GUT make calculable

predictions at the electroweak scale in the presence of gravity induced non-renormalizable

operators we may infer more restrictive bounds on the triplet higgs mass than are available

in the literature 7.
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0.1 Figure Captions

• fig.1 (a): The predictions for αs in minmal SU(5) SUSY GUT as a function of the

color-triplet higgs mass Mtr in GeV.

• fig.1 (b): Predictions for αs below 0.12. The numerical calculations for this figure is

done with a smaller grid size for λ5 than was used for fig.1 (a).
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