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Neutrino Dark Energy in Grand Uni�ed TheoriesJitesh R. Bhatt1,∗ Pei-Hong Gu2,† Utpal Sarkar1,‡ and Santosh K. Singh1§

1Physi
al Resear
h Laboratory, Ahmedabad 380009, India
2The Abdus Salam International Centre for Theoreti
al Physi
s, Strada Costiera 11, 34014 Trieste, ItalyWe studied a left-right symmetri
 model that 
an a

ommodate the neutrino dark energy (νDE)proposal. Type III seesaw me
hanism is implemented to give masses to the neutrinos. After ex-plaining the model, we study the 
onsisten
y of the model by minimizing the s
alar potential andobtaining the 
onditions for the required va
uum expe
tation values of the di�erent s
alar �elds.This model is then embedded in an SO(10) grand uni�ed theory and the allowed symmetry breakings
ales are determined by the 
ondition of the gauge 
oupling uni�
ation. Although SU(2)R breakingis required to be high, its Abelian subgroup U(1)R is broken in the TeV range, whi
h 
an then givethe required neutrino masses and predi
ts new gauge bosons that 
ould be dete
ted at LHC. Theneutrino masses are studied in details in this model, whi
h shows that at least 3 singlet fermionsare required. Introdu
tionDuring the past 
ouple of de
ades, astrophysi
al observations has improved our knowledge of 
osmology tremen-dously. One of the most important dis
overy resulting from these observations is that of the dark energy[1℄. Natureof the dark energy(DE) is one of the most puzzling question of physi
s. The observations suggest that 
urrently ,i.e. around redshift z ∼ 1, the DE is 
ontributing around 70% of the total energy budget of the universe, while its
ontribution was sub-dominant in the past(z ≫ 1). Any proposed model of DE is required to satisfy these observa-tional 
onstraints. These models require the mass of the s
alar to be very light having s
ale same as Hubble s
ale(∼ 10−33eV ). There exist myriad of su
h models des
ribing the nature and the dynami
s of DE (for re
ent reviewssee Ref. [2℄℄. One of the very interesting proposal for the DE is based on the fa
t that typi
al energy s
ale of DE

ρΛ ∼ (3 × 10−3 eV)4 also 
oin
ides with the neutrino mass s
ale ρΛ ∼ m4
ν . This has led to several attempts to relatethe origin of the dark energy with the neutrino masses [3, 4, 5, 6℄ and this 
onne
tion 
an have many interesting
onsequen
es [7, 8℄. In this s
enario a s
alar �eld A 
alled the a

eleron 
ouples with the neutrinos and 
onsequentlymaking the neutrino mass mν fun
tion of A. Next, it is assumed that the dark energy ρDE 
an be written as

ρDE = ρν + V (A).Stationary 
ondition on ρDE then lead to varying the neutrino mass. These type of models are 
alled mass varyingneutrino (MaVaN) models [3, 4, 5℄. In a typi
al MaVaN s
enario, the standard model is extended by in
luding singletright-handed neutrinos Ni, i = 1, 2, 3, and giving a Majorana mass to the neutrinos whi
h varies with φa. At presentour understanding of MaVaN models is far from being 
omplete, several problems regarding nature origin and natureof the a

eleron �eld, about its stability [4, 9℄ et
. 
ontinue to remain. There has been a signi�
ant progress in solvingsome of these problems in the subsequent works [10, 11℄, but mu
h more needs to be done before this idea 
ould be
onsidered as a realisti
 one.Considering the di�
ulties involved in 
onstru
ting a reasonable MaVaNs model, most of the earlier models re-stri
ted themselves to start with the standard model and in
lude a singlet right-handed neutrino, or else, in
lude atriplet Higgs s
alar. Some time ba
k we 
onstru
ted a left-right symmetri
 model with right-handed neutrinos andtype-III seesaw neutrino masses, whi
h 
ould explain the dark energy with MaVaNs [12℄. In this arti
le we work outsome of the details of that model and embed the model in a grand uni�ed theory. The most important feature of thismodel is that the model justi�es the smallness of the very low s
ale, entering in this model. We have analyzed the
onsisten
y of the problem by minimizing the s
alar potential and then have found the 
onditions for the requiredminima that explains the required mass s
ales in this MaVaNs model. We also study the gauge 
oupling uni�
ationin the SO(10) GUT, in whi
h this model has been embedded. The neutrino masses have also been studied and some
onditions on the number of the singlet fermions have been worked out.The ModelOne of the problems with the original MaVaNs is that the 
ondition from naturalness requires the Majorana massesof the right-handed neutrinos, whi
h varies with the a

eleron �eld, to be in the range of eV. In su
h models of type

http://arxiv.org/abs/0812.1895v2


2I seesaw, the model be
omes void of any seesaw, sin
e the smallness of the neutrino masses 
an not be attributed toany large lepton number violating s
ale. Another restri
tions of this model is that the model 
annot be embeddedin any left-right symmetri
 extension of the standard model, be
ause the equal treatment of the left-handed andthe right-handed �elds would imply that if neutrino masses vary with the value of the a

eleron �eld, the 
hargedfermion masses would also vary and that would relate the s
ale of dark energy to the top quark mass s
ale, whi
h isuna

eptable. Although the 
onstraint from the naturalness 
ondition 
an be softened in the νDEmodels with tripletHiggs s
alars [11℄, this 
annot be embedded in a left-right symmetri
 model. We 
onsider here a left-right symmetri
model, where the neutrino masses originate from double seesaw or type III seesaw me
hanism and then show howthis model 
an be embedded in a grand uni�ed theory.In the left-right symmetri
 models, the standard model gauge group is extended to a left-right symmetri
 gaugegroup [13℄, GLR ≡ SU(3)c × SU(2)L × SU(2)R × U(1)B−L, so that the ele
tri
 
harge is de�ned in terms of thegenerators of the group as:
Q = T3L + T3R +

B − L

2
= T3L + Y . (1)The quarks and leptons transform under the left-right symmetri
 gauge group as:

QL =

(

uL
dL

)

≡ [3, 2, 1,
1

3
] , QR =

(

uR
dR

)

≡ [3, 1, 2,
1

3
] ,

ℓL =

(

νL
eL

)

≡ [1, 2, 1,−1] , ℓR =

(

NR
eR

)

≡ [1, 1, 2,−1] ,

SR ≡ [1, 1, 1, 0] . (2)The right-handed neutrinosNR is present in all the left-right symmetri
 model, whi
h is di
tated by the stru
ture of thefermion representations and the gauge group. However, in models with type III seesaw me
hanism for neutrino massesone introdu
es an additional singlet fermion SR. As the name left-right symmetri
 model, the model Lagrangian isinvariant under the left-right parity transformation given as:
SU(2)L ↔ SU(2)R ,

QL ↔ QR ,

ℓL ↔ ℓR .In this model we have introdu
ed the singlet �eld SR, but there is no SL. But still this model is 
onsistent withleft-right parity operation, sin
e the �eld SR transform to its CP 
onjugate state under the left-right parity as:
SR ↔ ScL. This also ensures that the Majorana mass term is invariant under the parity transformation, be
ause this�eld SR transform under the transformation SU(2)L ↔ SU(2)R to itself SR ≡ (1, 1, 1, 0) ↔ (1, 1, 1, 0).The gauge boson (ex
luding gluons) se
tor 
onsist of two triplet and one singlet as :

WµL =





W+
Lµ

W 0
Lµ

W−
Lµ



 ≡ (1, 3, 1, 0), WµR =





W+
Rµ

W 0
Rµ

W−
Rµ



 ≡ (1, 1, 3, 0), Bµ(B−L) ≡ (1, 1, 1, 0)There exists several 
hoi
es of the Higgs s
alars, and hen
e, the 
hoi
es of symmetry breaking 
hain. In the presentmodel, the 
ontent of the Higgs se
tor will be 
hosen a

ording to the following desired symmetry breaking pattern[14℄:
SU(3)c × SU(2)L × SU(2)R × U(1)(B−L) [G3221D]

MR→ SU(3)c × SU(2)L × U(1)R × U(1)(B−L) [G3211]
mr→ SU(3)c × SU(2)L × U(1)Y [G321]
mW→ SU(3)c × U(1)Q [Gem] .Breaking of the left-right symmetri
 group to G3211 requires a right triplet Higgs s
alars ∆R transforming as ∆R ≡

(1, 1, 3, 0). The triplet does not 
hange the rank of the gauge group and only breaks SU(2)R → U(1)R. Sin
e itdoes not 
arry any U(1)B−L quantum number, it 
annot give any Majorana masses to the neutral fermions. Forthe next symmetry breaking stage, U(1)R × U(1)B−L → U(1)Y , we introdu
e an SU(2)R doublet Higgs s
alar �eld
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χR ≡ (1, 1, 2, 1) [15, 16℄. The vev of χR 
ould also break [G3221D] → [G321], if the �eld ∆R were not present.The left-right parity would then require the existen
e of the �elds ∆L ≡ (1, 3, 1, 0) and χL ≡ (1, 2, 1, 1). Finally,the standard model symmetry breaking is mediated by a bi-doublet �eld Φ ≡ (1, 2, 2, 0), like in any other left-rightsymmetri
 model. This �eld has the Yukawa intera
tion with the standard model fermions and provide Dira
 massesto all of them. We shall introdu
e one more Higgs bi-doublet s
alar Ψ ≡ (1, 2, 2, 0) that is needed for the purpose ofour model. We also introdu
e another singlet s
alar �eld η ≡ (1, 1, 1, 0), whi
h a
quires a tiny vev of the order of thelight neutrino masses and generate the mass s
ale for the dark energy naturally.Now we write down the expli
it forms of all the s
alar �elds in terms of their 
omponents as

∆L =

(

∆0
L ∆+

L

∆−
L −∆0

L

)

, ∆R =

(

∆0
R ∆+

R

∆−
R −∆0

R

)

,

Φ =

(

φ0
1 φ+

1

φ−2 φ0
2

)

, Ψ =

(

ψ0
1 ψ+

1

ψ−
2 ψ0

2

)

,

χL =

(

χ+
L

χ0
L

)

, χR =

(

χ+
R

χ0
R

)

,The most general s
alar potential has to be 
onstru
ted in su
h a way that they respe
t the left-right parity transfor-mation of the s
alar �elds listed below:
χL ↔ χR , ∆L ↔ ∆R

Φ ↔ Φ† , Ψ ↔ Ψ†

. η ↔ η .Under the left-right gauge group transformation, the Higgs �elds transform as
∆L → UL ∆L U

†
L , ∆R → UR ∆R U †

R

Φ → UL Φ U †
R , Ψ → UL Ψ U †

R

χL → UL χL , χR → UR χR

η → η .In order to write down the s
alar potential we also 
onstru
t the �elds τ2Φ∗τ2 and τ2Ψ∗τ2 from Φ and Ψ whi
htransform in the same ways as Φ and Ψ. For 
onvenien
e, we represent Φ as φ1, τ2Φτ2 as φ2 (and similarly for Ψ)from now on. Potential MinimizationWe �rst write down the most general renormalizable gauge invariant s
alar potential respe
ting left-right parityand study details of potential minimization. Besides left-right parity, we impose following Z4 symmetry on only theHiggs potential to avoid few undesired terms
χL → iχL , χR → −iχR ,

∆L → −∆L , ∆R → −∆R ,
Φ → Φ , Ψ → −Ψ ,

η → η .

(3)



4We write the the Higgs potential as a sum of of various parts and write down ea
h part separately as:
V = Vφ + Vψ + V∆ + Vη + Vχ + V∆φψ + Vχφψ + Vηχ∆φψ

Vφ = −
∑

i,j

µ2
φij

2
tr(φ†iφj) +

∑

i,j,k,l

λφijkl
4

tr(φ†iφj) tr(φ
†
kφl)

+
∑

i,j,k,l

Λφijkl
4

tr(φ†iφjφ
†
kφl)

Vψ = −
∑

i,j

µ2
ψij

2
tr(ψ†

iψj) +
∑

i,j,k,l

λψijkl
4

tr(ψ†
iψj) tr(ψ

†
kψl)

+
∑

i,j,k,l

Λψijkl
4

tr(ψ†
iψjψ

†
kψl)

V∆ = −µ
2
∆

2
[tr(∆L∆L) + tr(∆R∆R)] +

λ∆

4
[tr(∆L∆L)2 + tr(∆R∆R)2]

+
Λ∆

4
[tr(∆L∆L∆L∆L) + tr(∆R∆R∆R∆R)]

+
g∆
2

[tr(∆L∆L) tr(∆R∆R)]

Vη =
M2
η

2
η2 +

λη
4
η4

Vχ = −
µ2
χ

2
[χ†
LχL + χ†

RχR] +
λχ
4

[(χ†
LχL)2 + (χ†

RχR)2]

+
gχ
2

[χ†
LχL χ

†
RχR]

V∆φψ =
∑

i,j

αφij [∆L∆L + ∆R∆R] tr(φ†iφj)

+
∑

i,j

αψij [∆L∆L + ∆R∆R] tr(ψ†
iψj)

+
∑

i,j

βφij [ tr(∆L∆Lφiφ
†
j) + tr(∆R∆Rφ

†
iφj)]

+
∑

i,j

βψij [ tr(∆L∆Lψiψ
†
j + tr(∆R∆Rψ

†
iψj)]

+
∑

i,j

h∆φij tr(∆Lφi∆Rφ
†
j) +

∑

i,j

h∆ψijtr(∆Lψi∆Rψ
†
j )

Vχφψ =
∑

i,j

hφχij [χ†
LχL + χ†

RχR] tr(φ†iφj)

+
∑

i,j

hψχij [χ†
LχL + χ†

RχR] tr(ψ†
iψj)

Vηχ∆φψ =
(

hηχ [χ†
LχL + χ†

RχR] + hη∆ [tr(∆L∆L) + tr(∆R∆R)]
)

η2

+





∑

i,j

hηφij tr(φ
†
iφj) +

∑

i,j

hηψij tr(ψ
†
iψj)



 η2

+
∑

i,j

hηij η [tr(φ†i∆Lψj) + tr(φi∆Rψ
†
j ) + h.c.]

+
∑

i

hχi η [χ†
LφiχR + h.c.] .



5We parametrize the true minima of the potential by giving va
uum expe
tation values to di�erent s
alar �elds asfollows.
φ1 =

(

v 0
0 v′

)

, φ2 =

(

v′ 0
0 v

)

, ψ1 =

(

w 0
0 w′

)

, ψ2 =

(

w′ 0
0 w

)

,

χL =

(

0
vL

)

, χR =

(

0
vR

)

, ∆L =

(

uL 0
0 −uL

)

, ∆R =

(

uR 0
0 −uR

)

η = u .Sin
e the phenomenologi
al 
onsisten
y requires v ≫ v′and w ≫ w′, we ignore potential terms involving v′and w′and write down the general s
alar potential in terms of va
uum expe
tation values of di�erent s
alar �elds
V = −

µ2
φ

2
v2 +

λφ
4
v4 −

µ2
ψ

2
w2 +

λψ
4
w4

−µ
2
∆

2
(u2
L + u2

R) +
λ∆

4

(

u4
L + u4

R

)

+
M2
η

2
u2 +

λη
4
u4

−
µ2
χ

2
(v2
L + v2

R) +
λχ
4

(v4
L + v4

R) +
gχ
2

(v2
L v

2
R)

+[(αφ + βφ)v
2 + (αψ + βψ)w2] (u2

L + u2
R) + (h∆φv

2 + h∆ψw
2) uLuR

+(hφχv
2 + hψχw

2) (v2
L + v2

R)

+[hηχ(v
2
L + v2

R) + hη∆(u2
L + u2

R) + hηφv
2 + hηψw

2] u2

+hη u(uL + uR)vw + hχ u(vLvR)v .For 
onvenien
e, we have repla
ed λφ + Λφ → λφ, λψ + Λψ → λψ, λ∆ + Λ∆ → λ∆. The minimization of thepotential is studied by taking partial derivatives with respe
t to vevs of all Higgs �elds and then separately equatingthem to zero. Solving all su
h equations will provide us the desired values. One of the minimization 
onditions
vL

(

∂V
∂vR

)

− vR

(

∂V
∂vL

)

= 0 leads to the following relation between vL and vR:
(v2
R − v2

L) [(λχ − gχ)vLvR − hχuv] = 0 .Sin
e (v2
R = v2

L) is not desirable phenomenologi
ally, we 
hose
vLvR =

hχuv

(λχ − gχ)
. (4)Using above relation in an another minimization 
ondition vL ( ∂V

∂vR

)

+ vR

(

∂V
∂vL

)

= 0, we get
v2
L + v2

R = −
µ2
χ

λχ
. (5)Parametrizing vL = A sin θ, vR = A cos θ and putting them in the two equations 4 and 5 , we �nd A = −µ2

χ/λχ

sin 2θ = 2θ =
2hχuv

(λχ−gχ) sin
e µχ is a large number 
ompared to the numerator. So we get
vR = A = 2

√

−µ2
χ/λχ ,

vL = Aθ =
λχhχ

(gχ − λχ)

uvvR
µ2
χ

.We have 
hosen the parametrization of vL and vR in su
h a way that vR gets value equal to breaking s
ale of G3211and vL gets a very small value. We 
ould have done other way around but that is not what is phenomenologi
ally



6allowed. Pro
eeding with the same kind of analysis for uL and uR, i.e., using two minimization 
onditions uL ( ∂V
∂uR

)

−

uR

(

∂V
∂uL

)

= 0 and uL ( ∂V
∂uR

)

+ uR

(

∂V
∂uL

)

= 0, we get
uR = 2

√

−µ2
∆/λ∆ ,

uL =
λ∆h∆

(g∆ − λ∆)

(h∆φv
2 + h∆ψw

2)uR
µ2

∆

.Now using equation 4, the η �eld 
an be shown to get vev only by term hηu(uL + uR) as only this term is linearin u. The term hχu(vLvR)v does not remain linear in u after we substitute the value of vLvR from equation 4. Sin
ethe mass term for η �eld is large and positive, we expe
t very small vev. So we 
an ignore some of the terms in thepotential while solving for u and 
an easily obtain
u =

hηvw(uL + uR)

M2
η − (hη∆µ2

∆/λ∆) − (hηχµ2
χ/λχ)

.After analyzing the 
omplete s
alar potential, we �nd a 
onsistent solution with ordering
uR ≫ vR > v > w ≫ u≫ vL . (6)At this stage we 
an assume the di�erent mass s
ales to explain the model. However, when we embed this model in an

SO(10) grand uni�ed theory, the gauge 
oupling uni�
ation will impose strong 
onstraints on the di�erent symmetrybreaking s
ales. The left-right parity and the SU(2)R breaking s
ale will 
ome out to be above 1011 GeV. So, we shallassume uR ∼ 1011 GeV. We also assume mη ∼ m∆ ∼ uR. However, it will be possible to keep the G3211 symmetrybreaking s
ale to be very low, and hen
e, we shall assume mχ ∼ vR ∼ TeV. We �nd the remaining mass s
ales to be
v ∼ mw ∼ 100 GeV, u ∼ uL ∼ eV and vL ∼ 10−2 eV.Embedding The Model In SO(10)GUTThe idea of Grand Uni�ed Theories (GUTs) has emerged as a very attra
tive idea to go beyond Standard Model(SM) for last three de
ades. It uni�es the three di�erent looking gauge 
oupling 
onstants of the SM, and in addition,redu
es the number of parti
le irredu
ible multiplets into lesser number of multiplets. The ad-ho
 looking hyper
hargeassignment in SM gets a predi
tive framework in GUTs, i.e, the 
harge quantization remains no more a surprise inGUTs. The smallest GUT SU(5), in its non-supersymmetri
 version, does not unify the three gauge 
oupling 
onstants.Out of the higher rank gauge groups 
ontaining SM gauge group as a subgroup, the rank four semi-simple group SO(10)has emerged as a very attra
tive 
andidate for GUT. It 
an a

ommodate the entire SM fermion 
ontent in its single16-dimensional 
omplex irredu
ible spinor representation in
luding the right handed neutrino with three 
opies forthe three families. Its all irredu
ible representations are anomaly free providing a natural predi
tive framework tounderstand the fermion masses and mixing. Also the seesaw stru
ture gets a natural embedding in SO(10). Theleft-right symmetry group 
an also be embedded in SO(10) GUT.We shall study here the embedding of the present model with all its Higgs 
ontent in SO(10) GUT. We 
onsiderthe following breaking pattern of SO(10) gauge group to �rst Pati-Salam gauge group SU(4) × SU(2)L × SU(2)R,next to the left-right gauge group and then to the SM gauge group

SO(10)
MU→ SU(4) × SU(2)L × SU(2)R [G422D]
MC→ SU(3)c × SU(2)L × SU(2)R × U(1)(B−L) [G3221D]

MR→ SU(3)c × SU(2)L × U(1)R × U(1)(B−L) [G3211]
mr→ SU(3)c × SU(2)L × U(1)Y [G321]
mW→ SU(3)c × U(1)Q [Gem] .The Higgs multiplets whi
h 
an provide the masses for all the SM fermions are limited as 16×16 = 10s+120a+126s.The 10 dimensional Higgs �eld HΦ de
omposes under left-right gauge group as

HΦ (10) = Φ(1, 2, 2; 0)⊕ (3, 1, 1;−1

3
) ⊕ (3, 1, 1;

1

3
) .



7One 
an easily identify the bi-doublet Φ(1, 2, 2; 0) appearing in the left-right model 
ontained in HΦ(10). To in
ludeanother bi-doublet Ψ(1, 2, 2; 0) present in the model, a se
ond Higgs �eld HΨ(10).Although the fermion and gauge se
tor of the SO(10) GUT model are quite simple, the Higgs se
tor is quite
ompli
ated sin
e it is not only required for generating fermion Masses, but an appropriate Higgs 
ontent is alsoneeded for systemati
 and 
onsistent breaking of the SO(10) gauge group down to the SM gauge group in one or moresteps. To break SO(10) gauge group to the Pati-Salam gauge group, one requires Higgs �eld either S(54) or Υ(210),whi
h de
ompose under Pati-Salam group as
S(54) = (1, 1, 1)⊕ (1, 3, 3) ⊕ (20, 1, 1)⊕ (6, 2, 2) ,

Υ(210) = (1, 1, 1)⊕ (15, 1, 1)⊕ (6, 2, 2)⊕ (15, 3, 1)

⊕(15, 1, 3)⊕ (10, 2, 2)⊕ (10, 2, 2) .Giving vev to either of the two �elds in the singlet dire
tion will serve the purpose of the desired breaking. The
(15, 1, 1) of Υ also has a singlet under the left-right gauge group whi
h 
an a
quire vev to break the Pati-Salam groupto the left-right group. The (15, 3, 1) and (15, 1, 3) Higgs multiplets of Υ also 
ontain the �elds ∆L(1, 3, 1, 0) and
∆R(1, 1, 3, 0) present the left-right model. Hoever, the Υ singlet under Pati-salam gauge group is odd under D-Parity.If we give vev to Υ singlet, the left-right symmetry will be broken at uni�
ation s
ale itself. Sin
e our model isleft-right symmetri
, we must avoid D-parity breaking until left-right group is broken.However, the singlet in S(54) �eld under Pati-Salam gauge group does respe
t and so 
an be used to break the GUTgroup to the Pati-Salam gauge group. But, the breaking with S(54) does not serve the purpose of further breakingto the left-right group. So for the next step breaking, a Higgs Field A(45) is needed along with S(54) whi
h has thede
omposition under the left-right group as

A(45) = (1, 1, 1; 0)⊕ ∆L(1, 3, 1; 0)⊕ ∆R(1, 1, 3; 0)

⊕(3, 1, 1;
4

3
) ⊕ (3, 1, 1;−4

3
) ⊕ (8, 1, 1; 0)

⊕(3, 2, 2;
2

3
) ⊕ (3, 2, 2;−2

3
) .The �rst row of the above de
omposition is of our interest as it 
ontains the �elds ∆L(1, 3, 1, 0) and ∆R(1, 1, 3, 0) ofour model along with the left-right group singlet. This singlet is even under D-parity and so the left-right symmetry isunbroken until ∆R a
quires vev along the singlet dire
tion to the SM gauge group. We will be following this approa
hin the remaining part of this se
tion.Now the �elds χL (1, 2, 2, 1) and χR(1, 1, 2, 1) are still left to be embedded in some tensors of SO(10). The desiredquantum numbers indi
ate that they 
an be embedded in the spinorial Higgs representation (C(16) ⊕ C(16)

) .De
omposition of the 16 ⊕ 16 spinor representation under left-right group are given as
C(16) = χ∗

L(1, 2, 1,−1)⊕ χR(1, 1, 2, 1)

⊕(3, 2, 1,
1

3
) ⊕ (3, 1, 2,−1

3
) ,

C(16) = χL(1, 2, 1, 1)⊕ χ∗
R(1, 1, 2,−1)

⊕(3, 1, 2,
1

3
) ⊕ (3, 2, 1,−1

3
) .Having embedded all the Higgs �elds of our model into SO(10) tensor �elds, we now write va
uum expe
tationvalues along the three singlet dire
tion under the SM group of the �elds A(45) and S(54) as

〈A〉 = MCÂC +MRÂR ,

〈S〉 = MU Ŝ ,where ÂC , ÂR and Ŝ are the singlet dire
tions under the SM gauge group given as
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ÂC =

(

Â56 + Â78 + Â910

)

ÂR =
(

Â12 + Â34

)

Ŝ = 3 ×
4
∑

a=1

Ŝaa − 2 ×
10
∑

a=5

Ŝaa .The indi
es (1, 2, 3, 4 ) belong to SO(4) and (5, 6, 7, 8, 9, 10) belong to SO(6) subgroup of the group SO(10). We havenot taken 
are of the normalization fa
tors while writing the dire
tions of the singlets as they are not mu
h relevantfor the present dis
ussion. However, we 
an assume that the normalization fa
tors are absorbed in the 
orresponding
vev values and 
an pro
eed without worrying about them for an approximate analysis.Let us denote HΦ = h, HΨ = H for simpli
ity in notations. Now we write the most general SO(10) invariant Higgspotential:

V = µ2
AAabAba + µ2

S SabSba + µ2
h haha + µ2

H HaHa + µ2
C

(

C̄C
)

+ µ2
η η

2 + λη η
4

+ λA A
2A2 + λ′AA

4 + λS S
4 + λh h

4 + λH H
4 + λc

(

C̄C
)2

+ λ
′

c

(

C4 + C̄4
)

+ gASA
2S2 + g′ASAabAbcScdSda + g′′ASAabSbcAcdSda

+ ha (ghAAabAbc + ghSSabSbc)hc +
(

g′hAA
2 + g′hSS

2
)

h2

+ Ha (gHAAabAbc + gHSSabSbc)Hc +
(

g′HAA
2 + g′HSS

2
)

H2

+
(

ghCh
2 + gHCH

2 + gACA
2 + gSCS

2
)

C̄C + gηHCη h
(

CC + C̄C̄
)

.The Z4 symmetry (expression 3) used while writing the Higgs potential invariant under left-right gauge group has alsobeen imposed here on the 
orresponding SO(10) Higgs multiplets. Moreover, we have prevented some of the termsby applying the dis
rete symmetry S → −S. The realization of the �rst three symmetry breaking steps is possible bytaking the following stru
ture of the vev assignments to the �elds A(45) and S(54):
〈A〉 = iτ2 ⊗ diag (MR, MR, MC , MC , MC)

〈S〉 = I ⊗ diag

(

−3

2
MU , −

3

2
MU , MU , MU , MU

)

.For the matter of 
onvenien
e we have just repla
ed the vevs with the 
orresponding breaking s
ales. The potential ,in terms of the vev values of A and S, will be approximately given as
V = µ2

A

(

6M2
C + 4M2

R

)

+ µ2
S 15M2

U +
(

µ2
C + gAC6M2

C + gSC 15M2
U

)

C̄C

+
(

µ2
h + ghS9M2

U

)

haha (a = 1 − 4) +
(

µ2
h + ghA6M2

C + ghS6M2
U

)

haha (a = 5 − 10)

+
(

µ2
H + gHS9M2

U

)

HaHa (a = 1 − 4) +
(

µ2
H + gHA6M2

C + gHS6M2
U

)

HaHa (a = 5 − 10)

+ λA
(

6M2
C + 4M2

R

)2
+ λ′A

(

6M4
C + 4M4

R

)

+ λSM
4
U + gASM

2
U

(

6M2
C + 9M2

R

)

+ λhh
4 + λHH

4 + gηHCη h
(

CC + C̄C̄
)

+ λc
(

C̄C
)2

+ λ′c
(

C4 + C̄4
)

+ λη η
4We have assumed MR ≪ MU ∼ MC while writing the �nal form of the potential. In order to give desired masses(of the order of MW ) to the two left-right bi-doublets , µh and µH will have to be �ne-tuned at the order ofs
ale of MU . The �ne-tuning 
an produ
e very large masses to the triplets of h( or H) provided the 
ondition

(

ghA6M2
C − hhS3M2

U

)

∼
(

+M2
U

) is satis�ed. Another �ne-tuning is required in the mass parameter µ2
C to providethe desired TeV s
ale masses to the Higgs �elds C(16) ⊕ C(16). Before ending this se
tion, we would like to noti
ean important point. If we take the gSA 
oupling to be very small, we 
an argue that the appearan
e of the similar
ombination (6M2

C + 4M2
R

) everywhere in the potential allows MC and MR to take quite di�erent values withoutdisturbing other part of the potential. So the s
ale ofMC andMR 
an be 
hosen to be di�erent by orders of magnitudeto get the desirable breaking.



9Gauge Coupling EvolutionIn the present se
tion, we will be studying the set of two-loop renormalization group (RG) equations for the evolutionof the 
oupling 
onstants and will be verifying the 
onsisten
y of the 
hosen vev for di�erent Higgs �elds in the 
ontextof SO(10) GUT. For simpli
ity, we assume that the s
ale MU and MC are very 
lose and we ignore the evolution ofthe 
oupling 
onstants between the two s
ales. This is quite preferable as we will see later that the uni�
ation s
aleis very tightly 
onstrained by the 
urrent proton de
ay bound [17℄ and any substantial di�eren
e between the twobreaking s
ales would make it even worse. We start with the following equation for the two-loop evaluation of the
oupling 
onstant αi
dα−1

i (t)

dt
= − ai

2π
− bij

8π2

(

1

α−1
j

) (7)where t = ln (Mµ) andMµ is the desired energy s
ale where the 
ouplings 
onstants, αi's, are be determined. The ai'sand bij 's are the one-loop and two-loop beta fun
tions governing the evolution of αi's and in
lude the 
ontributionsfrom gauge bosons, fermions and s
alars in the model.The fermion 
ontribution to the beta fun
tion is taken right from the starting, the ele
troweak s
ale (100GeV). The
ontributions of the gauge bosons to beta fun
tions are straightforward to 
ompute as one 
an easily determine theexpe
ted mass s
ales of the heavy gauge bosons 
orresponding to any given gauge group. However, the 
ontribution
oming from the Higgs 
ontent is not so 
lear be
ause the heavy Higgs modes 
an have various possible mass spe
trums.We will use the extended survival hypothesis to �x this un
ertainty. The extended survival hypothesis is based onthe assumption that only minimal number of �ne-tunings of the parameters in the Higgs potential are imposed toensure the hierar
hy in various gauge boson masses. A

ording to the extended survival hypothesis, only those s
alarmultiplets are present at any given intermediate breaking s
aleMI of a intermediate gauge group GI whi
h are eitherrequired for breaking the gauge group GI or needed to further break any other intermediate gauge group below s
ale
MI .A list of Higgs multiplets surviving at the breaking s
ale of a intermediate group GI , using the extended survival hy-pothesis, are given in table. A list of both one-loop and two-loop beta 
oe�
ients, whi
h in
lude all the 
ontributions,that govern the evolution above the breaking s
ale of GI to the next intermediate s
ale are also listed.Sin
e our model 
ontains intermediate steps, we require appropriate mat
hing 
onditions at the 
orrespondingbreaking s
ales. For the tow-loop RG running of the 
oupling 
onstants, the mat
hing 
onditions have been derivedin [18, 19℄. Suppose a gauge group G is spontaneously broken into a sub-group ∏iGi with several individual fa
tors
Gi, then the following mat
hing 
ondition need to be satis�ed for the two-loop analysis

α−1
G (MI) −

C (G)

12π
= α−1

Gi
(MI) −

C (Gi)

12π
, (8)where C(G/Gi) is the quadrati
 Casimir invariant for the group G/Gi. We 
hoose initial starting values of theabove three 
oupling 
onstants ( 
entral values) at s
ale MW to be α−1

1Y (MW ) = 59.38, α−1
2L (MW ) = 29.93, and

α−1
3c (MW ) = 8.47. Now let us write theThe boundary 
onditions at various breaking s
ales, using the expression 8, 
an be written as1. At s
ale mr:

α−1
1Y (mr) =

3

5
α−1

1R (mr) +
2

5
α−1

1(B−L)(mr) .2. At s
ale MR:
α−1

1R (MR) = α−1
2R (MR) − 2

12π
,

α−1
2R (MR) = α−1

2L (MR) .
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ATable I: Higgs multiplets at di�erent intermediate breaking s
ales along with the both one-loop and two-loop beta 
oe�
ientss,in
luding all the 
ontributions from fermions, gauge bosons and Higgs bosons, whi
h govern the evolution of 
oupling 
onstantsabove breaking s
ale of GI to the next breakings
ale.3. At the uni�
ation s
ale MU

α−1
2L (MU ) − 2

12π
= α−1

2R (MU ) − 2

12π

= α−1
U (MU ) − 8

12π
,

α−1
3c (MU ) − 3

12π
= α−1

U (MU ) − 8

12π
,

α−1
B−L (MU ) = α−1

U (MU ) − 8

12π
.The mat
hing 
onditions at the uni�
ation s
ale have been written by assuming the Pati-Salam s
ale to be almost
lose to the uni�
ation s
ale.Using the above boundary 
onditions we have numeri
ally solved the equation 7 for the two-loop RG evolution for allthe 
oupling 
onstants. We have taken the breaking s
ale of the gauge group G3211 to be around 1TeV. The uni�
ations
ale 
omes out to be MU = 1015.4GeV and the 
orresponding 
oupling 
onstant is estimated as α−1

U (MU ) = 43.4.Also the breaking s
ale of left-right symmetri
 gauge group, i.e., G3221D turns out to beMR = 1011.6GeV. The runningof the various 
oupling 
onstants with energy s
ale are shown in �gure 1.However, we �nd that the s
ale of the uni�
ation along with the αU − 1 are not satisfying the most re
ent boundson proton de
ay, although very 
lose to the limit. The 
urrent experimental lower bound of the partial life time for
p → e+π0 is τp > 8.2 × 1033 years and for p → µ+π0 is τp > 6.6 × 1033 years [17℄. The theoreti
al de
ay rate of theproton 
an be estimated as:

Γp ≃ α2
GUT

m5
p

M4
X,Y

.
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Figure 1: Evolution of 
oupling 
onstants
SO(10) Higgs

Representation

Higgs multiplets contributing

to threshold uncertainty

(Decomposed underG3211)

˘

a3c, a2L, a1R, a1(B−L)

¯

16

`

1, 1, 1
2
, 1

2

´

16
⊕

`

1, 1, − 1
2
, − 1

2

´

16
`

1, 2, 0, − 1
2

´

16
⊕

`

1, 2, 0, 1
2

´

16

˘

0, 1, 1
2
, 9

4

¯

45 (1, 3, 1, 0)45 {0, 2, 0, 0}Table II: Threshold 
ontribution at left-right breaking s
aleThis 
an be used to estimate the lower limit of the Heavy gauge boson masses. If the mass s
ale of super heavygauge bosons are given as MX ≃ 10nGeV, the above proton de
ay bound is equivalent to
κ =

(αGUT
45

)

× 102(n−15) & 11.8 . (9)What we obtain for the value of κ in our analysis is κ = 6.07. This is below the lower limit allowed by the protonde
ay bound as spe
i�ed in the right-hand side of the expression 9. However, the value of κ is very 
lose to theallowed lower limit and so we will try to explore the viability of our model by allowing threshold un
ertainty in theHiggs spe
trum at various intermediate breaking s
ales. It is important to remark at this point that we 
ould get thereported value of κ to be 
lose to the limit only when we optimized 
ertain degrees of freedom in the Higgs se
tor.For instan
e, the Higgs-bidoublet Φ has been asumed to arise from a real 10-dimensional SO(10) Higgs HΦ. So Φwould not be equivalent to two SM Higgs doublets at the ele
troweak s
ale but will be equivalent to only one su
hdoublet. Similar asuumption has been also taken for Ψ. However, we would like to emphasize that the results anddis
ussion of the potential minimization will remain almost same.The threshold un
ertainty in the Higgs spe
trum arises form the fa
t that the Higgs bosons be
oming heavy ata given breaking s
ale may not get exa
tly same masses equal to the energy 
orresponding to the breaking s
ale.However, the Higgs mass spe
trum is expe
ted to be s
attered around the energy of the breaking s
ale within ansmall width. For our analysis, we follow a similar approa
h dis
ussed in [21℄. We assume that the masses of the Higgsbosons are s
attered around the breaking s
ale within the fa
tor of 1
30 to 30. So if the mass of a Higgs multiplet at
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Representation
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⊕
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⊕

`
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´

10′
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`
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⊕
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`
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16
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45

`
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`
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`
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`
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3
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54

(1, 3, 3, 0)54
(8, 1, 1, 0)54

{8, 6, 6, 8}Table III: Threshold 
ontribution at the uni�
ation s
alethe given breaking s
ale MI is MH , then we expe
t
1

30
.
MH

MI

. 30 .To in
lude the threshold un
ertainty at a given breaking s
ale, we need to slightly modify our mat
hing 
onditionsat that s
ale. The mat
hing 
ondition given in expression 8 is modi�ed as
α−1
G (MI) −

C (G)

12π
= α−1

Gi
(MI) −

C (Gi)

12π
− λi

12π
,where λi = ailn

MH

MI
. So the threshold un
ertainty has been in
luded in the mat
hing 
ondition due to presen
e of theterm involving ln (MH/MI).To avoid any over estimation of the threshold un
ertainty we assume that all the Higgs multiplets, belonging to asingle 
ommon irredu
ible Higgs representation of SO(10), be
oming heavy at a given breaking s
ale will have thesame mass s
ale around the breaking s
ale.The threshold un
ertainty at the breaking s
ale of gauge group G3211is vanishing. The Higgs multiplets, 
omingfrom di�erent SO(10) irredu
ible Higgs, 
ontributing to the threshold un
ertainty at remaining two intermediates
ales, the left-right breaking s
ale and the uni�
ation s
ale, are listed in the table II and III, respe
tively. The
orresponding 
al
ulated beta-
oe�
ents, (ai)'s, whi
h in
lude the 
ontribution from all the Higgs multiplets 
omingfrom the same SO(10) irredu
ible representation (as their masses are assumed to be same), are also shown for thetwo breaking s
ales.Now using these 
al
ulated ai's and in
luding un
ertainty inMH/MI , as dis
ussed before, we have shown a s
atterd-plot between 
oupling 
onstant α−1

U and the 
orresponding uni�
ation s
ale MU in �gure 2. We have numeri
allyobtained the values for α−1
U and MU for randomally 
hosen values for MH/MI between the range ( 1

30 − 30
). Therandom values for all the Higgs multiplets belonging to the same SO(10) iredu
ible Higgs are taken to be same atone perti
ular breaking s
ale but di�erent at the other breaking s
ale.Moreover, we have aslo plotted the 
urve 
orersponding to the most re
ent proton de
ay bound (red solid 
urve)[17℄ and relatively older proton de
ay bound (blue dashed 
urve) [22℄ in �gure 2 to show the allowed region in α−1
U -MUplane. Only the right part of the 
urve is allowed by the bound. It is worth noting that the allowed parameter spa
eis more and more 
onstrained as more updated data on proton de
ay bound is available. However, we get a resonableallowed region in the �gure 2, although small, even after allowing the most 
onservative threshold un
ertainty. Sowe expe
t our model to be satisfa
tory within the tolerable amount of threshold un
ertainty as far as proton de
aybound is 
on
erned.
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Figure 2: Threshold un
ertainty in the uni�
aton s
ale.Yukawa Se
tor And Neutrino MassesIn the present se
tion, we dis
uss the origin of neutrino masses in the model. Before pro
eding further we would liketo make it 
lear that the dis
ussion about neutrino masses in the present se
tion will only move around the left-rightsymmetri
 model with few inputs from the SO(10) GUT in motivating about 
ertain patterns for taken Dira
 massmatri
es for fermions in our analysis. Moreover, the dis
ussion will be mainly fo
used on the matrix stru
ture of lowenergy neurino mass matrix allowed with 
ertain assumptions. We will aslo argue, in what follows, that the 
onsistentneutrino mass spe
trum is not possible within pi
ture of one or two SO(10) singlet fermions S. We start by writingthe Yukawa se
tor of the model as
LY = Yij ℓLi ℓRjΦ + Y ′

ij ℓLi ℓRjΨ + (FL)in SRn ℓLiχL + (FR)in S
c
LnℓRi χR (10)

+
1

2
MmnηScLmSRn (11)The Yukawa 
ouplings Y and Y ′ are 3 × 3 matrix, while FL and FR are 3 × n matri
es, if we assume that there are

n singlet fermions S. So M is a n × n matrix. Our study of 
onsistent embedding of the model in SO(10) GUTrequires same stru
ture for both FL and FR up to the s
ale of left-right symmetry breaking whi
h, after RG running,
an produ
e small di�eren
e at the weak s
ale. For the present dis
ussion we assume it to be small enough so that it
an be safely ignored.The Dira
 masses for all the SM fermions in
luding neutrinos are generated form the the �rst two terms by giving
vev to the bi-doublets as in any other left-right symmetri
 model. Sin
e Φ and Ψ are 
oming from two independentand real SO(10) 10-dimensional Higgs, the Dira
 mass matrix for neutrinos and 
harged leptons are independent.However, the Dira
 mass matrix for the up-type quarks have the same stru
ture as the Dira
 mass matrix for theneutrinos and similarily the Dira
 mass matrix for the down-type quarks will have similar stru
ture as the Dira
mass matrix for the 
harged leptons (simply be
ause all SM fermions are assigned to a multiplet of SO(10) GUT).Although, these similarities in the stru
tures are exa
t only at the GUT s
ale, we expe
t some of its features to bemore or less same even at the low s
ale. So we 
an well assume that the Dira
 mass matrix of the neutrinos wouldalmost appear diagonal in the basis where the 
harged lepton mass matrix is diagonal. The assumption is basedon the observation that the up-type and down-type quarks are simultaneously diagonal in the a basis as the quarkmixing matrix is very 
lose to unity. So we borrow the pattern from the quark se
tor to the lepton se
tor where thestru
ture of Dira
 mass matrix of the neutrinos is not dire
tly known unless neutrinos are Dira
 fermions. We expe
tthe following pattern of the Dira
 mass matrix of neutrinos in the diagonal basis of the 
harged leptons
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MνD = vYlepton

(

mt

mb

)

=







me 0 0

0 mµ 0

0 0 mτ







(

mt

mb

)

≃ v







0.0001 0 0

0 0.02 0

0 0 0.3






,where mt and mb are masses of top and bottom quarks and me, mµ, mτ are masses of ele
tron, muon and tau leptons.The part of the Lagrangian relevant for the neutrino mass generation is given as follows,

Lν mass =
(

ν, N c, S
)

L
. X .







ν

N c

S







L

+H.C. (12)
=
(

νi, N
c
i , Sm

)

L







0 Yijv FinvL
(Yij)

T
v 0 FinvR

FTmjvL FTmjvR Mmnu













νj
N c
j

Sn







L

+H.C (13)Our �rst task is to analyze the mass spe
trum provided by the matrix X in 
ase of one generation of all fermions.We write the eigenvalue equation as (eigenvalue: λ):
λ3 −Mu λ2 − F 2v2

Rλ− 2Y F 2vvLvR −MY 2uv2 = 0Case 1: λ >> v, we get
λ (λ+ FvR) (λ− FvR) = 0The above eigenvalue equation predi
ts two TeV s
ale Majorana fermions. The massless solution 
ontradi
ts with the
ondition we started with, and so is unphysi
al.Case 2: λ << v, we get
λ = −2Y vvL

vR
+
MY 2uv2

F 2v2
R

(14)whi
h is of order of eV. So the two Majorana fermions pi
k up masses of the order as high as TeV and one remainssu�
iently light (∼ eV) to be identi�ed as light neutrino.To make the dis
ussion some more general, we take three generations for all the SM fermions in
luding the left andright handed neutrinos but only one generation for the singlet S. We look for a possibility whether it 
an a

ountfor the existing pi
ture of three light a
tive neutrinos. To sear
h for any su
h possibility, we try to �nd out the massspe
trum, within this s
enario, by solving for the eigenvalues of the matrix X . To simplify further, we take all theeigenvalues of the matrix MνD to be same with a 
ommon value equal to the largest one for initial analysis. Thisenable us to fa
tor out (λ2 − z2v2
)2 from the algebrai
 expression of Det (X) predi
ting four Majorana fermions ofs
ale around 10 GeV. The rest of the fa
tors have got the same form as the expression of determinant in 
ase of onegeneration of all SM fermions, as dis
ussed earlier, leading to the two TeV and one eV s
ale Majorana fermions. Thes
enario provides us only one light neutrino and, hen
e, 
an not a

ount for the observed neutrino mass spe
trum. Toexplore the e�e
t of some possible hierar
hy present in the eigenvalues of the Dira
 mass matrix of the neutrino likeone present in the 
harged lepton mass matrix, we take two of the eigenvalues to be same and vary their s
ale belowthe third one. We are still able to expli
itly get two of the Majorana fermions having mass s
ale equal to me

(

mt

mb

).One may think that the remaining two Majorana fermions might get mass s
ale as light as eV leading to three lightneutrinos. To rule out any su
h possibility, we have plotted the masses of the two remaining Majorana fermions(whi
h 
omes out to be same) with the ratio of the two mass s
ales of the eigenvalues of the Dira
 mass mass matrixof the neutrinos in �gure 3. We �nd that the masses do not go below the lightest mass s
ale of the eigenvalues of
mνD. Even in two generation s
enario of S fermions, there is not mu
h progress ex
ept we get two eV s
ale Majoranafermions whi
h is still not su�
ient.We now turn to the 
ase of three generation for S fermions. One obviously expe
ts to get the three light neutrinos.The basi
 way to get the low energy neutrino mass matrix has been outlined in [15℄ whi
h is given as
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Figure 3: Variation of mass
mν = −

(

vvL
vR

)

(

Y + Y T
)

+

(

uv2

v2
R

)

Y
(

FM−1FT
)−1

Y T ,

= −
(

vvL
vR

)

[

(

Y + Y T
)

+ rY
(

FM−1FT
)−1

Y T
]

, (15)as we have uv2 = r vvLvR in our model (expression 4 ) where r = (λχ − gχ) /hχ.The �rst term is the type-III seesaw 
ontribution [23℄ and the se
ond term is the double seesaw 
ontribution. Withthe 
hoi
e of the vevs, it is obvious that this s
enario provides us with three eV neutrinos.Now we will try to explore the limits of the expression 15 for low energy neutrino mass matrix to 
he
k its 
onsiten
ywith 
urrent data on neutrino masses and mixing by allowing some very simple form for matrixM . In the basis where
harged lepton mass matrix is diagonal, the neutrino mixing matrix (UPMNS) is just the matrix that diagonalizes the
mν :

(UPMNS)T mνUPMNS = mDiag
ν = Diag (m1,m2,m3) .The UPMNS mixing matrix is usually parametrized in the literature as

UPMNS = R23 (θ23)R13 (θ13, δ)R12 (θ12) .Dag
(

eiη1 , eiη2 , 1
)

,where Rij are the rotation matri
es in the ij plane with angle θij . δ is the CP violating phase asso
iated with 1-3rotation and η's are the Majorana phases appearing only in the 
ase of Majorana neutrinos. To date, two mass squaredi�eren
es and three angle have been measured while CP violation is 
ompletely unknown in the leptoni
 se
tor. Wetake the following observed values for three mixing angle and two mass square di�eren
es at 90% 
on�den
e levelfrom parti
le data group [24℄ as:
∆m2

21 = m2
2 −m2

1 = (8.0 ± 0.3) × 10−5 eV2

∆m2
21 = m2

2 −m2
1 = 1.9 to 3.0 × 10−3 eV2

sin2 (2θ12) = 0.86+0.03
−0.04

sin2 (θ23) > 0.92

sin2 (θ13) < 0.19We will be mainly using the mean values of the observed parameters in our analysis.



16In its most general form, it is straight forward to argue that mν 
an a

ommodate the existing data on neutrinomasses and mixing simply due to the presen
e of enough number parameters in F and M unless type III termdominates signi�
antly. An interesting thing would be to 
onsider some simpler form of the neutrino mass matrixby redu
ing appropriate number of parameters with some tolerable assumptions. The basi
 idea is to explore thepossibility of any su
h simpler stru
ture in light of the 
urrent neutrino os
illation data.We start with the assumption that the three singlet fermions S are blind to their generation within themselvesleading to the following demo
rati
 stru
ture of matrix M :
M =







1 1 1

1 1 1

1 1 1






uThe stru
ture allows us to believe that there is no indu
ed mixing between the left-right neutrinos and the singlets.So, F matrix 
an be written as produ
t of a unitary matrix and a diagonal matrix. The unitary matrix 
onne
ts thebasis of the demo
rati
 stru
ture to the basis where the 
harged lepton mass matrix be
omes diagonal. To get somemore simpli
ity, we are driven to assume that the two basis are identi
al, i.e., the unitary mass matrix is identitymatrix. It leads to the following stru
ture of the low energy neutrino mass matrix:

mν =
vvL
vR







α2 − 2mt

mb
me αβ αγ

αβ β2 − 2mt

mb
mµ βγ

αγ βγ γ2 − 2mt

mb
mτ






,where α, β and γ are the �nal parameters appearing in the neutrino mass matrix after absorbing all the parameterspresent in F , M and Y . We take the following familiar tri-bimaximal form of [25℄ of the UPMNS mixing matrix forour dis
ussion and attempt to diagonalize mν having above stru
ture:

UPMNS = Utbm =
1√
6







2
√

2 0

−1
√

2
√

3

1 −
√

2
√

3






,where θ23 = π/4, θ13 = 0, and sin2 θ12 = 1/3.We attempt to diagonalize mν with the tri-biamaximal form of the mixing matrix whi
h requires the followingrelation of the parameters α, β and γ with masses of the 
harged leptons as:

α = 0

β ≃ mµ
√

mb

2mt
(mτ +mµ)

≃ 0.05

γ ≃ − mτ
√

mb

2mt
(mτ +mµ)

≃ −0.75The diagonal neutrino mass matrix 
omes out of the form:
mDaig
ν ≃ −2mt

mb







me 0 0

0 me 0

0 0 2
mµmτ

(mµ+mτ )







(

vvL
vR

)So the present form of mν and UPMNS produ
es degenerate masses for the two light neutrinos whi
h is likely to be
ured on
e we slightly deviate from tri-bimaximal form of UPMNS . The deviation 
an be realized either by takingnon-maximal value of θ23 or non vanishing value of θ13 or both. We take only non-zero value of θ13 to be the solerealization of the deviation for our purpose. The deviated form of tri-baimaximal matrix for very small value of θ13
an be parametrized as:
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UPMNS =

1√
6







2
√

2 θ13
−1 −

√
2θ13

√
2 − θ13

√
3

1 −
√

2θ13 −
√

2 − θ13
√

3





While trying to diagonalize themν , numeri
al methods are used to �nd out the desired values of the free parameters.We �nd that the degenera
y en
ountered in the 
ase of tri-bimaximal mixing matrix disappears as soon as �nite valueof θ13 is introdu
ed. This �nite value is determined by imposing the 
ondition ∆m2
21/∆m

2
31 ≃ 0.033 whi
h leads tofollowing value of sin θ13

sin θ13 = 0.11.The value is well within the allowed value for θ13 from os
illation data. The 
orre
t s
ale of the mass square di�eren
esis easily a
hieved by adjusting the over all s
ale of the neutrino mass matrix. The 
orresponding values of the otherparameters 
ome out to be
α = 0.02

β = 0.06

γ = −0.75The point we would like to emphasize is that even the simple stru
ture of the mass matrix taken in our analysisis able to a

ount for the existing framework of three a
tive light neutrinos even though the assumptions may not
orrespond to any real underlying symmetry. Dark EnergyWe shall now show how the model 
an a

ommodate the proposal of the mass varying neutrinos (MaVaNs) [3, 4℄.The basi
 idea behind the mass varying neutrinos is that some s
alar �eld, the a

eleron, a
quires a value of the orderof 10−3 eV, whi
h gives an e�e
tive potential that 
ontributes to the dark energy with the equation of state ω = −1.However, till re
ently the neutrino masses were 
ontributing to the e�e
tive potential mu
h more strongly and the
ombined �uid of the ba
kground neutrinos and the a

elerons were behaving as dark matter with the equation ofstate ω = 0. As the neutrino masses were varying with time, the 
ontribution of the ba
kground neutrino density tothe e�e
tive potential were 
hanging. Only in the re
ent past, the 
ontribution of the a

eleron �eld to the e�e
tivepotential be
ame stronger than the ba
kground neutrinos, 
hanging the equation of state of the 
ombined �uid, andthe universe started a

elerating with dark energy domination. This 
an then explain why the s
ale asso
iated withthe amount of dark energy is 
omparable to the neutrino masses, why the amount of dark energy is 
omparable tothe ordinary matter, and why the universe is dominated by dark energy only now and for the rest of the time in thepast the evolution of the universe was governed by matter.In spite of these advantages, the MaVaNs s
enario are not free of problems. We shall now try to explain howthe MaVaNs s
enario 
an be a

ommodated in a grand uni�ed theory. After des
ribing the generi
 features of theMaVaNs, following the original proposal [4℄, we shall explain how our present model answer this question. We shallnot restri
t ourselves to any parti
ular 
hoi
e for the a

eleron �eld, and hen
e, 
onsider the potential for the a

eleron�eld to be same as that 
onsidered in the original proposal. At the end we shall mention how the present model 
anbe extended to allow a milli-eV mass pseudo-Nambu-Goldstone Boson (pNGB), whi
h 
an be
ome the a

eleron �eld.We shall now mention this possible origin of the a

eleron �eld in an extension of our model. Following thepres
ription followed in ref. [8℄, we introdu
e three η and several Higgs doublets. The vevs of the �elds η would thengive rise to global symmetries, whi
h are allowed by all the Yukawa 
ouplings due to the 
hoi
e of quantum numbersof the Higgs doublets under these global symmetries. However, when the Higgs doublets a
quire vevs, the globalsymmetries will be broken and there will be pNGBs, whi
h 
ouple to the neutrino masses. Although the dynami
s ofthe pNGBs are not spe
i�ed, the masses and the potentials of the pNGBs are determined by the Coleman-Weinbergpotential, as demonstrated in ref. [8℄. Sin
e the introdu
tion of several Higgs doublets may not allow the the gauge
oupling uni�
ation, we shall not dis
uss this extension any further. Moreover, there 
ould be some other origin ofthe a

eleron �eld, so from now on we shall only mention the generi
 features of this model.



18In a generi
 MaVaNs models, the 
oupling between neutrino mass and A indu
es the following e�e
tive potential
V = (ρν − 3Pν) + V0(mν) (16)Here the s
alar potential V0(mν) is due to the a

eleron �eld (written as a fun
tion of neutrino mass) and Pν ispressure of the neutrino �uid. In the late time evolution the non-relativisti
 limit i.e. mν ≫ T is of parti
ularinterest. In this 
ase Pν ∼ 0 and one 
an write the e�e
tive potential as,
V = mνnν + V0(mν) . (17)The a

eleron �eld will be trapped at the minima of the potential, whi
h ensures that as the neutrino mass varies, thevalue of the a

eleron �eld will tra
k the varying neutrino mass. One 
an write equation of state in the non-relativisti

ase for a 
ombined �uid of neutrino + a

eleron;

w = P/ρ =
PA

mνnν + ρA
(18)One generi
 feature of this solution is that it gives ω ≈ −1 at present. The most important feature of this s
enariois that the energy s
ale for the dark energy gets related to the neutrino mass, whi
h is highly desirable. This alsoexplains why the universe enters an a

elerating phase now [26℄.We shall now dis
uss the implementation of the νDE me
hanism in our model. For simpli
ity, we 
onsider onlyone-generation s
enario. The e�e
tive s
alar �eld potential of the s
alar is of the Coleman-Weinberg type i.e.

V0 = Λ4 log(1 + |Ms(A)/µ̄| (19)where, Ms is the singlet fermion mass. We assume that Ms(A)/µ̄ ≫ 1.
Ms = M〈η〉 = M udepends on the a

eleron �eld A. Thus the neutrino mass be
omes a dynami
al quantity. When the neutrinos be
omenon-relativisti
 the dependen
e of Ms on A governs the dynami
s of the dark energy. Λ is 
hosen in su
h a way toyield the dark energy density ΩDE ≈ 0.7. This type of potentials are extensively used in the dark energy literature[3, 27℄. Now we 
an write the e�e
tive low-energy Lagrangian in our model

− Leff = Ms(A)
Y 2

F 2

v2

v2
R

νiνj +H.c.+ Λ4 log(1 + |Ms(A)/µ̄|) , (20)From the 
hoi
es we have made about the vevs, we have retained only the dominant double seesaw term 14 inthe e�e
tive Lagrangian. As u ∼ O(eV ), the mass parameter Ms is of the order of eV. Sin
e the ratio (v/vR)2 ∼
10−2 − 10−3, the Yukawa 
ouplings 
oupling to be of order unity. Thus the �rst two terms in equation (14) are
omparable to the last term des
ribing the dark energy potential.The Majorana mass of neutrino varies with the a

eleron �eld through the parameterMs and the mass s
ale of thisparameter remains near the s
ale of dark energy naturally. The interesting feature of our model is that we do notneed any unnaturally small Yukawa 
ouplings or symmetry breaking s
ale to a
hieve this naturalness requirement.Also the variation of Ms does not a�e
t 
harged fermion masses in the model. Moreover, the ele
troweak symmetrybreaking s
ale v and the U(1)R breaking s
ales are 
omparable and hen
e the new gauge boson 
orresponding to thegroup U(1)R will have usual mixing with Z and should be a

essible at LHC.Sin
e the lo
al minimum of the potential relates the neutrino mass to a derivative of the a

eleron potential, thevalue of the a

eleron �eld gets related to the neutrino mass. The a

eleron �eld provide an e�e
tive attra
tive for
ebetween the neutrinos. When this e�e
tive for
e is stronger than the gravity, perturbations in the neutrino-a

eleron�uid be
ome unstable. The sour
e of the free-energy 
omes from the attra
tive intera
tion between the neutrino andthe a

eleron �eld. The instability is similar to that of the Jeans instability found in a self-gravitating system. Theinstability 
an lead to inhomogeneity and stru
ture formation; the instability would grow till the degenera
y pressureof the neutrinos would arrest the growth. The �nal state of the instability would produ
e neutrino lumps or nuggets[27, 28℄. The neutrino lumps would then behave as dark matter and will not a�e
t the dynami
s of the a

eleron �eld[28℄. This instability is a generi
 feature of MaVaNs s
enario, however it 
an be suppressed if the neutrino be
omesuper�uid [29℄ or if the MaVaNs perturbations be
ome non-adiabati
.



19Con
lusionsWe have 
onstru
ted a left-right symmetri
 model of νDE that 
an be embedded in an SO(10) GUT. Afterdis
ussing the Higgs 
ontent needed for the model, details of potential minimization have been 
arried out 
onsideringall possible allowed terms. In parti
ular, we have tried to explore the possibility of 
hoosing the minima su
h thatonly neutral Higgs 
omponents get vev without 
onstraining the 
ouplings 
onstants. But it turns out that some su
h
onstraints are needed in most general form of the potential. The 
omplete analysis allows the desired ordering of the
vevs. Then we study the embedding of this left-right symmetri
 model in SO (10) GUT. We show that SO (10) GUTwith Higgs multiplets S(54), A(45), two H(10), C(16) ⊕ C(16), η(1) along with an additional fermion singlet is ableto a

ommodate the left-right symmetri
 model. The embedding allows the Pati-Salam and the left-right symmetrygroup breaking s
ales to be di�erent by orders of magnitudes. We have studied the one loop RG running of various
ouplings 
onstant and have found that the desired assignment for vev values for di�erent Higgs �elds is 
onsistentwith the gauge uni�
ation. Then the origin and possible stru
ture of neutrino masses and matrix have been dis
ussedin detail. It has been shown that generation of three light a
tive neutrinos of eV s
ale is not possible in s
enariowith one or two SO(10) singlets fermions. In the generi
 
ase of three singlets, we have taken a simple stru
ture ofneutrino mass matrix with some tolerable assumptions and shown that the stru
ture is 
onsistent with 
urrent dataon neutrino masses and mixing. Then we des
ribed implementation of νDE in the model. The model allows themass parameter of the singlet, whi
h varies with the a

eleron �eld, to have the same s
ale as the s
ale of dark energysatisfying the desired naturalness requirement.
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