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We studied a left-right symmetric model that can accommodate the neutrino dark energy (vDE)
proposal. Type III seesaw mechanism is implemented to give masses to the neutrinos. After ex-
plaining the model, we study the consistency of the model by minimizing the scalar potential and
obtaining the conditions for the required vacuum expectation values of the different scalar fields.
This model is then embedded in an SO(10) grand unified theory and the allowed symmetry breaking
scales are determined by the condition of the gauge coupling unification. Although SU(2)r breaking
is required to be high, its Abelian subgroup U(1)r is broken in the TeV range, which can then give
the required neutrino masses and predicts new gauge bosons that could be detected at LHC. The
neutrino masses are studied in details in this model, which shows that at least 3 singlet fermions
are required.

Introduction

During the past couple of decades, astrophysical observations has improved our knowledge of cosmology tremen-
dously. One of the most important discovery resulting from these observations is that of the dark energy|l]. Nature
of the dark energy(DE) is one of the most puzzling question of physics. The observations suggest that currently ,
i.e. around redshift z ~ 1, the DE is contributing around 70% of the total energy budget of the universe, while its
contribution was sub-dominant in the past(z > 1). Any proposed model of DE is required to satisfy these observa-
tional constraints. These models require the mass of the scalar to be very light having scale same as Hubble scale
(~ 10733eV). There exist myriad of such models describing the nature and the dynamics of DE (for recent reviews
see Ref. E]] One of the very interesting proposal for the DE is based on the fact that typical energy scale of DE
pa ~ (3 X 103 eV)4 also coincides with the neutrino mass scale py ~ m;‘j. This has led to several attempts to relate
the origin of the dark energy with the neutrino masses B, @, B, ] and this connection can have many interesting
consequences ﬂ, ] In this scenario a scalar field A called the acceleron couples with the neutrinos and consequently
making the neutrino mass m, function of A. Next, it is assumed that the dark energy ppp can be written as

ppE = py + V(A).

Stationary condition on ppg then lead to varying the neutrino mass. These type of models are called mass varying
neutrino (MaVaN) models B, 4, B] In a typical MaVaN scenario, the standard model is extended by including singlet
right-handed neutrinos N;,7 = 1,2, 3, and giving a Majorana mass to the neutrinos which varies with ¢,. At present
our understanding of MaVaN models is far from being complete, several problems regarding nature origin and nature
of the acceleron field, about its stability M, @] etc. continue to remain. There has been a significant progress in solving
some of these problems in the subsequent works m, |J__J.|], but much more needs to be done before this idea could be
considered as a realistic one.

Considering the difficulties involved in constructing a reasonable MaVaNs model, most of the earlier models re-
stricted themselves to start with the standard model and include a singlet right-handed neutrino, or else, include a
triplet Higgs scalar. Some time back we constructed a left-right symmetric model with right-handed neutrinos and
type-III seesaw neutrino masses, which could explain the dark energy with MaVaNs M] In this article we work out
some of the details of that model and embed the model in a grand unified theory. The most important feature of this
model is that the model justifies the smallness of the very low scale, entering in this model. We have analyzed the
consistency of the problem by minimizing the scalar potential and then have found the conditions for the required
minima that explains the required mass scales in this MaVaNs model. We also study the gauge coupling unification
in the SO(10) GUT, in which this model has been embedded. The neutrino masses have also been studied and some
conditions on the number of the singlet fermions have been worked out.

The Model

One of the problems with the original MaVaNs is that the condition from naturalness requires the Majorana masses
of the right-handed neutrinos, which varies with the acceleron field, to be in the range of eV. In such models of type
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I seesaw, the model becomes void of any seesaw, since the smallness of the neutrino masses can not be attributed to
any large lepton number violating scale. Another restrictions of this model is that the model cannot be embedded
in any left-right symmetric extension of the standard model, because the equal treatment of the left-handed and
the right-handed fields would imply that if neutrino masses vary with the value of the acceleron field, the charged
fermion masses would also vary and that would relate the scale of dark energy to the top quark mass scale, which is
unacceptable. Although the constraint from the naturalness condition can be softened in the v D EFmodels with triplet
Higgs scalars [11], this cannot be embedded in a left-right symmetric model. We consider here a left-right symmetric
model, where the neutrino masses originate from double seesaw or type III seesaw mechanism and then show how
this model can be embedded in a grand unified theory.

In the left-right symmetric models, the standard model gauge group is extended to a left-right symmetric gauge
group |13|, Grr = SU3). x SU(2)r, x SU(2)r x U(1)p_r, so that the electric charge is defined in terms of the
generators of the group as:

Q=T +T5r+ =T, +Y. (1)

The quarks and leptons transform under the left-right symmetric gauge group as:
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The right-handed neutrinos N is present in all the left-right symmetric model, which is dictated by the structure of the
fermion representations and the gauge group. However, in models with type III seesaw mechanism for neutrino masses
one introduces an additional singlet fermion Sg. As the name left-right symmetric model, the model Lagrangian is
invariant under the left-right parity transformation given as:

SU(2), < SU(2)r,
QL < Qr,

EL — fR.

In this model we have introduced the singlet field Sg, but there is no Sr. But still this model is consistent with
left-right parity operation, since the field Sgr transform to its C'P conjugate state under the left-right parity as:
Sgr < S°. This also ensures that the Majorana mass term is invariant under the parity transformation, because this
field Sk transform under the transformation SU(2)r, < SU(2)g to itself Sg = (1,1,1,0) < (1,1,1,0).

The gauge boson (excluding gluons) sector consist of two triplet and one singlet as :

Wi, Wg,
Wy = ng =(1,3,1,0), Wyr = W}%M =(1,1,3,0), Byp-r1) = (1,1,1,0)
Wi, Wg,

There exists several choices of the Higgs scalars, and hence, the choices of symmetry breaking chain. In the present
model, the content of the Higgs sector will be chosen according to the following desired symmetry breaking pattern|14]:
SU(?))C X SU(2)L X SU(Q)R X U(l)(B,L) [G3221D]
e SUB)e x SU@)L x UM r x U(1) 51y [Ga211]
0 SU3)e x SU(2)L x U(1)y [G321]
"W SU(3). x U(1)g [Gem] -
Breaking of the left-right symmetric group to Gsa11 requires a right triplet Higgs scalars Ag transforming as Ar =
(1,1,3,0). The triplet does not change the rank of the gauge group and only breaks SU(2)g — U(1)gr. Since it

does not carry any U(1l)p_; quantum number, it cannot give any Majorana masses to the neutral fermions. For
the next symmetry breaking stage, U(1)g X U(1)p—r — U(1)y, we introduce an SU(2)r doublet Higgs scalar field



xr = (1,1,2,1) |15, [16]. The vev of xg could also break [Gzao1p] — [Gs21], if the field Ap were not present.
The left-right parity would then require the existence of the fields Ap, = (1,3,1,0) and x1 = (1,2,1,1). Finally,
the standard model symmetry breaking is mediated by a bi-doublet field ® = (1,2,2,0), like in any other left-right
symmetric model. This field has the Yukawa interaction with the standard model fermions and provide Dirac masses
to all of them. We shall introduce one more Higgs bi-doublet scalar ¥ = (1,2,2,0) that is needed for the purpose of
our model. We also introduce another singlet scalar field n = (1,1, 1,0), which acquires a tiny vev of the order of the
light neutrino masses and generate the mass scale for the dark energy naturally.
Now we write down the explicit forms of all the scalar fields in terms of their components as
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The most general scalar potential has to be constructed in such a way that they respect the left-right parity transfor-
mation of the scalar fields listed below:

XL < XR , AL < Ag
¢ ot | U ol
nen.
Under the left-right gauge group transformation, the Higgs fields transform as

AL—>UL AL Uz y ARHURAR U}T%
UL UL , UV —UL, VU
xL = UL xr » xr = Ur XRr
n—n.
In order to write down the scalar potential we also construct the fields 72®*72 and 72U*72 from ® and ¥ which

transform in the same ways as ® and W. For convenience, we represent ® as ¢1, 72®72 as ¢ (and similarly for @)
from now on.

Potential Minimization

We first write down the most general renormalizable gauge invariant scalar potential respecting left-right parity
and study details of potential minimization. Besides left-right parity, we impose following Z, symmetry on only the
Higgs potential to avoid few undesired terms

XL —1i1XL, XR — —IXR,
AL - _AL; AR—> _ARa (3)
b — P U — -0,
n—n.



We write the the Higgs potential as a sum of of various parts and write down each part separately as:
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We parametrize the true minima of the potential by giving vacuum expectation values to different scalar fields as

follows.
v 0 v 0 w 0 w' 0
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n=u.

Since the phenomenological consistency requires v > v'and w > w’, we ignore potential terms involving v'and w’
and write down the general scalar potential in terms of vacuum expectation values of different scalar fields
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For convenience, we have replaced Ay + Ay — Ay, Ay + Ay — Ay, Aa + Ax — Aa. The minimization of the

potential is studied by taking partial derivatives with respect to vewvs of all Higgs fields and then separately equating
them to zero. Solving all such equations will provide us the desired values. One of the minimization conditions

vr, (887‘;) — UR (gTVL) = 0 leads to the following relation between vy, and vg:

(U?% - Ui) [(Ax = 9x)vLvr — hywv] = 0.
Since (U% = v%) is not desirable phenomenologically, we chose
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Using above relation in an another minimization condition vz, ( ) + vR ( g ) =0, we get

W
v%—l—v%:—)\—x. (5)
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Parametrizing vy, = A sinf, vg = A cosf and putting them in the two equations M and [l , we find A = —ui/)\x

sin 26 = 20 = 2hauv

00 since py is a large number compared to the numerator. So we get

vp = A= {/—ui/)\,
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We have chosen the parametrization of v, and vg in such a way that vg gets value equal to breaking scale of G3911
and vy, gets a very small value. We could have done other way around but that is not what is phenomenologically
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allowed. Proceeding with the same kind of analysis for uy, and ug, i.e., using two minimization conditions wuy, (%) —

uR(QBVL> =0 and uy, (a )—i—uR(&—VL) =0, we get
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Now using equation M the 7 field can be shown to get vev only by term h,u(ur + ur) as only this term is linear
in u. The term h,u(vrvgr)v does not remain linear in u after we substitute the value of vivg from equation [ Since
the mass term for 7 field is large and positive, we expect very small vev. So we can ignore some of the terms in the
potential while solving for » and can easily obtain

hpvw(ur, + ur)
M% - (hnANQA/)‘A) - (hnxﬂi/)‘x) '

After analyzing the complete scalar potential, we find a consistent solution with ordering

u =

UR > VR >V > WS> US> L. (6)

At this stage we can assume the different mass scales to explain the model. However, when we embed this model in an
SO(10) grand unified theory, the gauge coupling unification will impose strong constraints on the different symmetry
breaking scales. The left-right parity and the SU(2)r breaking scale will come out to be above 10! GeV. So, we shall
assume up ~ 101 GeV. We also assume m, ~ ma ~ ugr. However, it will be possible to keep the Gsz11 symmetry
breaking scale to be very low, and hence, we shall assume m, ~ vg ~ TeV. We find the remaining mass scales to be
vV~ My ~ 100 GeV, u ~ ur, ~ eV and vy, ~ 1072 eV.

Embedding The Model In SO(10)GUT

The idea of Grand Unified Theories (GUTs) has emerged as a very attractive idea to go beyond Standard Model
(SM) for last three decades. It unifies the three different looking gauge coupling constants of the SM, and in addition,
reduces the number of particle irreducible multiplets into lesser number of multiplets. The ad-hoc looking hypercharge
assignment in SM gets a predictive framework in GUTs, i.e, the charge quantization remains no more a surprise in
GUTs. The smallest GUT SU(5), in its non-supersymmetric version, does not unify the three gauge coupling constants.
Out of the higher rank gauge groups containing SM gauge group as a subgroup, the rank four semi-simple group SO(10)
has emerged as a very attractive candidate for GUT. It can accommodate the entire SM fermion content in its single
16-dimensional complex irreducible spinor representation including the right handed neutrino with three copies for
the three families. Its all irreducible representations are anomaly free providing a natural predictive framework to
understand the fermion masses and mixing. Also the seesaw structure gets a natural embedding in SO(10). The
left-right symmetry group can also be embedded in SO(10) GUT.

We shall study here the embedding of the present model with all its Higgs content in SO(10) GUT. We consider
the following breaking pattern of SO(10) gauge group to first Pati-Salam gauge group SU(4) x SU(2)r, x SU(2)g,
next to the left-right gauge group and then to the SM gauge group

My

SO(10) = SU(4) x SU(2)p, x SU(2)r [Ga22p]
% SU@3)e x SU@2) x SU2)r x UQ)(5-1) [Ga221p]
HESUB)e x SU@)L x UWr x U)p-1)  [Gaani]
t SU(3). x SU(2)r x U(1)y [G321]
W SU3). x Ul)g G -

The Higgs multiplets which can provide the masses for all the SM fermions are limited as 16 x 16 = 10, + 120, + 126,.
The 10 dimensional Higgs field He decomposes under left-right gauge group as

1

1 _
H<I> (10) = @(1727 270) D (37 17 1; _g) @ (37 17 1; g) .



One can easily identify the bi-doublet ®(1,2,2;0) appearing in the left-right model contained in Hg(10). To include
another bi-doublet ¥(1,2,2;0) present in the model, a second Higgs field Hy (10).

Although the fermion and gauge sector of the SO(10) GUT model are quite simple, the Higgs sector is quite
complicated since it is not only required for generating fermion Masses, but an appropriate Higgs content is also
needed for systematic and consistent breaking of the SO(10) gauge group down to the SM gauge group in one or more
steps. To break SO(10) gauge group to the Pati-Salam gauge group, one requires Higgs field either S(54) or T(210),
which decompose under Pati-Salam group as

S(54) = (1,1,1) @ (1,3,3) @ (20,1,1) @ (6,2,2),

(1,1,1) & (15,1,1) @ (6,2,2) & (15,3,1)
a(15,1,3) & (10,2,2) & (10,2,2) .

)
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Giving vev to either of the two fields in the singlet direction will serve the purpose of the desired breaking. The
(15,1,1) of T also has a singlet under the left-right gauge group which can acquire vev to break the Pati-Salam group
to the left-right group. The (15,3,1) and (15,1,3) Higgs multiplets of YT also contain the fields Ay (1,3,1,0) and
ARg(1,1,3,0) present the left-right model. Hoever, the T singlet under Pati-salam gauge group is odd under D-Parity.
If we give vev to Y singlet, the left-right symmetry will be broken at unification scale itself. Since our model is
left-right symmetric, we must avoid D-parity breaking until left-right group is broken.

However, the singlet in S(54) field under Pati-Salam gauge group does respect and so can be used to break the GUT
group to the Pati-Salam gauge group. But, the breaking with S(54) does not serve the purpose of further breaking
to the left-right group. So for the next step breaking, a Higgs Field A(45) is needed along with S(54) which has the
decomposition under the left-right group as

A(45) = (1,1,1;0)® A(1,3,1;0) @ Ar(1, 1,3; 0)
4 - 4

2 = 2
D(3,2,2; 3) @ (3,2,2 3) .
The first row of the above decomposition is of our interest as it contains the fields Ay (1,3,1,0) and Ag(1,1,3,0) of
our model along with the left-right group singlet. This singlet is even under D-parity and so the left-right symmetry is
unbroken until Ar acquires vev along the singlet direction to the SM gauge group. We will be following this approach
in the remaining part of this section.
Now the fields xr (1,2,2,1) and xg(1,1,2,1) are still left to be embedded in some tensors of SO(10). The desired

quantum numbers indicate that they can be embedded in the spinorial Higgs representation (0(16) @ C(16)>

Decomposition of the 16 @ 16 spinor representation under left-right group are given as

c(16) = x1.(1,2,1,-1)® xr(1,1,2,1)
1 _
3,2,1, - 3,1,2, — -
@( ) ) 73)@( ) ) ) 3)7
C(16) = xr(1,2,1,1)® xR(1,1,2,-1)
1 = 1
3,1,2, - 3,2,1,—-).
69( Y ) ’3)69( Y ) Y 3)

Having embedded all the Higgs fields of our model into SO(10) tensor fields, we now write vacuum expectation
values along the three singlet direction under the SM group of the fields A(45) and S(54) as

McAc + MpAg,

(4)

($) = MyS,

where Ac, Ar and S are the singlet directions under the SM gauge group given as



Ac = (A56 + Azg + AQIO)

Ap = (12112 +A34)
4 10
S 3><Z§aa—2><25'aa.
a=1 a=5

The indices (1, 2, 3, 4 ) belong to SO(4) and (5, 6, 7, 8, 9, 10) belong to SO(6) subgroup of the group SO(10). We have
not taken care of the normalization factors while writing the directions of the singlets as they are not much relevant
for the present discussion. However, we can assume that the normalization factors are absorbed in the corresponding
vev values and can proceed without worrying about them for an approximate analysis.

Let us denote Hy = h, Hy = H for simplicity in notations. Now we write the most general SO(10) invariant Higgs
potential:

V' = p% AavAva + 115 SavSva + 17 haha + pf HaHo + pg (CC) + pin? + Ayt

F A AZAZ VAT £ g ST N B+ A HE 40 (CO) + A, (CH+CY)

+ gasA*S? + ghgAab AbcScaSaa + 95 AabSbcAcaSda

+ ha (gnaAabAve + grsSabSec) he + (gha A% + g4sS%) h*

+ Ho(gradAaAve + gusSaSec) He + (9 aA® + gy s5°) H?

+ (gnch® + gucH? + gacA® + gscS?) CC + gyuenh (CC +CO) .
The Z, symmetry (expressionB]) used while writing the Higgs potential invariant under left-right gauge group has also
been imposed here on the corresponding SO(10) Higgs multiplets. Moreover, we have prevented some of the terms

by applying the discrete symmetry S — —S. The realization of the first three symmetry breaking steps is possible by
taking the following structure of the vev assignments to the fields A(45) and S(54):

{A4)
(S)

ity ® diag (Mg, Mg, Mc, Mc, Mc)

3 3
I® diag <_§MU’ —§MU7 My, My, MU) .

For the matter of convenience we have just replaced the vevs with the corresponding breaking scales. The potential ,
in terms of the vev values of A and S, will be approximately given as

Vo= i (6ME +4ME) + p§ 15M{ + (ug + gac6ME + gsc 15Mp) CC
+ (ph + gnsIME) haha (a =1 —4) + (pj + gnabMg + grs6M) haha (a = 5 — 10)
+ (uh + gusIMG) HoHo (a =1 —4) + (0 + ga6ME + gus6M{) HoH, (a = 5 — 10)
+ Aa (6M2 +4M2)° + N,y (6ME +4ME) + As M + gasME (6MZ + 9M2)
+ Bt + A HY + gouenh (CC+CC) + A, (CO)° + X, (C*+C*) + A\, n*

We have assumed Mpr < My ~ M while writing the final form of the potential. In order to give desired masses
(of the order of M) to the two left-right bi-doublets , u, and pm will have to be fine-tuned at the order of
scale of My. The fine-tuning can produce very large masses to the triplets of h( or H) provided the condition
(ghA6M% — hh53M[2,) ~ (+M5) is satisfied. Another fine-tuning is required in the mass parameter u% to provide

the desired TeV scale masses to the Higgs fields C(16) & C(16). Before ending this section, we would like to notice
an important point. If we take the gg4 coupling to be very small, we can argue that the appearance of the similar
combination (6MZ + 4M3) everywhere in the potential allows Mc and Mg to take quite different values without
disturbing other part of the potential. So the scale of M and Mg can be chosen to be different by orders of magnitude
to get the desirable breaking.



Gauge Coupling Evolution

In the present section, we will be studying the set of two-loop renormalization group (RG) equations for the evolution
of the coupling constants and will be verifying the consistency of the chosen vev for different Higgs fields in the context
of SO(10) GUT. For simplicity, we assume that the scale My and M¢ are very close and we ignore the evolution of
the coupling constants between the two scales. This is quite preferable as we will see later that the unification scale
is very tightly constrained by the current proton decay bound [17] and any substantial difference between the two
breaking scales would make it even worse. We start with the following equation for the two-loop evaluation of the
coupling constant

doi () _ o by (1 0
dt 2 872 \ oo

J

where ¢ = In (M,,) and M, is the desired energy scale where the couplings constants, «;’s, are be determined. The a;’s
and b;;’s are the one-loop and two-loop beta functions governing the evolution of a;’s and include the contributions
from gauge bosons, fermions and scalars in the model.

The fermion contribution to the beta function is taken right from the starting, the electroweak scale (100GeV). The
contributions of the gauge bosons to beta functions are straightforward to compute as one can easily determine the
expected mass scales of the heavy gauge bosons corresponding to any given gauge group. However, the contribution
coming from the Higgs content is not so clear because the heavy Higgs modes can have various possible mass spectrums.
We will use the extended survival hypothesis to fix this uncertainty. The extended survival hypothesis is based on
the assumption that only minimal number of fine-tunings of the parameters in the Higgs potential are imposed to
ensure the hierarchy in various gauge boson masses. According to the extended survival hypothesis, only those scalar
multiplets are present at any given intermediate breaking scale M; of a intermediate gauge group G which are either
required for breaking the gauge group G or needed to further break any other intermediate gauge group below scale
Mj.

A list of Higgs multiplets surviving at the breaking scale of a intermediate group G, using the extended survival hy-
pothesis, are given in table. A list of both one-loop and two-loop beta coefficients, which include all the contributions,
that govern the evolution above the breaking scale of G to the next intermediate scale are also listed.

Since our model contains intermediate steps, we require appropriate matching conditions at the corresponding
breaking scales. For the tow-loop RG running of the coupling constants, the matching conditions have been derived
in |18, [19]. Suppose a gauge group G is spontaneously broken into a sub-group [ [, G; with several individual factors
G, then the following matching condition need to be satisfied for the two-loop analysis

ag! (Mp) - % =ag! (M;) -

C(Gi)
127

(8)

where C(G/G;) is the quadratic Casimir invariant for the group G/G;. We choose initial starting values of the
above three coupling constants ( central values) at scale My, to be ajy (Mw) = 59.38, ay) (Mw) = 29.93, and
ozt (My) = 8.47. Now let us write the

The boundary conditions at various breaking scales, using the expression[§ can be written as

1. At scale m,.:

2. At scale Mg:
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Group Gr Higgs content a b
=7 9 11
-26 3 15
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G ) bl ) 2 16 b ) ’ 2 16
L2 ) e (L2 —y)n | s 123 % 3
(1,1,3,0),4 :
27 27 23
(17 37 17 0)45 % 4 2 2 21

Table I: Higgs multiplets at different intermediate breaking scales along with the both one-loop and two-loop beta coefficientss,
including all the contributions from fermions, gauge bosons and Higgs bosons, which govern the evolution of coupling constants
above breaking scale of G'1 to the next breakingscale.

3. At the unification scale M

gy, (My) Ton = 0‘5}% (My) —
= a{]l (My) —

1 3 1
az. (My) — or ay (My) —
agl, (My) = aj' (My) -

The matching conditions at the unification scale have been written by assuming the Pati-Salam scale to be almost

close to the unification scale.

Using the above boundary conditions we have numerically solved the equation[dfor the two-loop RG evolution for all
the coupling constants. We have taken the breaking scale of the gauge group Gs211 to be around 1TeV. The unification
scale comes out to be My = 10'5-GeV and the corresponding coupling constant is estimated as a,}l (My) = 43.4.
Also the breaking scale of left-right symmetric gauge group, i.e., Gaa21p turns out to be Mg = 101*6GeV. The running
of the various coupling constants with energy scale are shown in figure [I}

However, we find that the scale of the unification along with the ay — 1 are not satisfying the most recent bounds
on proton decay, although very close to the limit. The current experimental lower bound of the partial life time for
p— etrYis 7, > 8.2 x 10% years and for p — p7% is 7, > 6.6 x 1033 years [17]. The theoretical decay rate of the

proton can be estimated as:

5
Mp

~ 2
Fp - aGUT M4 .
X, Y
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SO(10) Higgs Higgs multiplets con.tributing
. to threshold uncertainty {a3¢:7 Qa2r; 1R, al(BfL)}
Representation
(Decomposed under G3211)
1 11
16 (1’ L, 2 %)16 @ (1’ L, T2 _E)ﬁ {07 1, 17 2}
(17 27 07 _% 16 D (17 27 07 % 16 2
45 (1,3,1,0),; {0, 2, 0, 0}

Table II: Threshold contribution at left-right breaking scale

This can be used to estimate the lower limit of the Heavy gauge boson masses. If the mass scale of super heavy
gauge bosons are given as Mx ~ 10"GeV, the above proton decay bound is equivalent to

K= (M) x 10219 > 118, (9)
45

What we obtain for the value of k in our analysis is kK = 6.07. This is below the lower limit allowed by the proton
decay bound as specified in the right-hand side of the expression @l However, the value of x is very close to the
allowed lower limit and so we will try to explore the viability of our model by allowing threshold uncertainty in the
Higgs spectrum at various intermediate breaking scales. It is important to remark at this point that we could get the
reported value of k to be close to the limit only when we optimized certain degrees of freedom in the Higgs sector.
For instance, the Higgs-bidoublet ® has been asumed to arise from a real 10-dimensional SO(10) Higgs He. So ®
would not be equivalent to two SM Higgs doublets at the electroweak scale but will be equivalent to only one such
doublet. Similar asuumption has been also taken for W. However, we would like to emphasize that the results and
discussion of the potential minimization will remain almost same.

The threshold uncertainty in the Higgs spectrum arises form the fact that the Higgs bosons becoming heavy at
a given breaking scale may not get exactly same masses equal to the energy corresponding to the breaking scale.
However, the Higgs mass spectrum is expected to be scattered around the energy of the breaking scale within an
small width. For our analysis, we follow a similar approach discussed in [21]. We assume that the masses of the Higgs
bosons are scattered around the breaking scale within the factor of % to 30. So if the mass of a Higgs multiplet at
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Higgs multiplets contributing

IS:{O(m) H;gfs to threshold uncertainty {a307 a2L, G2R, al(B*L)}
epresentation (Decomposed under G3221p)
10 (3’ 11— %)10 & (3_’ 11, %)10 {2,0,0,2}
G- Do @11,
16 (37 1 %)16 & (37 2, 1, _%)T {47 3, 3, 1}
( s Ly 7_%)1669 312 6)1_
N (3,22 1), ®(3,22 1), (7,6, 6, 4}

(87 17 17 0)45

(67 17 17 _%)54 57 (67 17 17 %)54

54 (1,3,3,0)5 {8, 6, 6, 8}
(87 1,1, 0)54

Table III: Threshold contribution at the unification scale

the given breaking scale M7 is My, then we expect

1 My

30 ~ M;
To include the threshold uncertainty at a given breaking scale, we need to slightly modify our matching conditions
at that scale. The matching condition given in expression [§ is modified as

- c@G C@G) N
ag (Mr) - 1é7r) = ag, (Mr) - 1(271') T 1on’

where \; = ailn%. So the threshold uncertainty has been included in the matching condition due to presence of the

term involving In (IMH/MI).

To avoid any over estimation of the threshold uncertainty we assume that all the Higgs multiplets, belonging to a
single common irreducible Higgs representation of SO(10), becoming heavy at a given breaking scale will have the
same mass scale around the breaking scale.

The threshold uncertainty at the breaking scale of gauge group G3211is vanishing. The Higgs multiplets, coming
from different SO(10) irreducible Higgs, contributing to the threshold uncertainty at remaining two intermediate
scales, the left-right breaking scale and the unification scale, are listed in the table [ and [II respectively. The
corresponding calculated beta-coefficents, (a;)’s, which include the contribution from all the Higgs multiplets coming
from the same SO(10) irreducible representation (as their masses are assumed to be same), are also shown for the
two breaking scales.

Now using these calculated a;’s and including uncertainty in My /M7, as discussed before, we have shown a scatterd-
plot between coupling constant aal and the corresponding unification scale My in figure 2l We have numerically
obtained the values for aal and My for randomally chosen values for My /My between the range (% — 30). The
random values for all the Higgs multiplets belonging to the same SO(10) ireducible Higgs are taken to be same at
one perticular breaking scale but different at the other breaking scale.

Moreover, we have aslo plotted the curve corersponding to the most recent proton decay bound (red solid curve)
[L7] and relatively older proton decay bound (blue dashed curve) [22] in figure@lto show the allowed region in ag;'-Mys
plane. Only the right part of the curve is allowed by the bound. It is worth noting that the allowed parameter space
is more and more constrained as more updated data on proton decay bound is available. However, we get a resonable
allowed region in the figure 2 although small, even after allowing the most conservative threshold uncertainty. So
we expect our model to be satisfactory within the tolerable amount of threshold uncertainty as far as proton decay
bound is concerned.



13

R
c
N

46
Older proton P Recent proton

45 decay bound

44
43
42

41

40 | | | L | | | J Loglo(MU)
14.6 14.8 15.0 15.2 15.4 15.6 15.8 16.0 16.2

Figure 2: Threshold uncertainty in the unificaton scale.

Yukawa Sector And Neutrino Masses

In the present section, we discuss the origin of neutrino masses in the model. Before proceding further we would like
to make it clear that the discussion about neutrino masses in the present section will only move around the left-right
symmetric model with few inputs from the SO(10) GUT in motivating about certain patterns for taken Dirac mass
matrices for fermions in our analysis. Moreover, the discussion will be mainly focused on the matrix structure of low
energy neurino mass matrix allowed with certain assumptions. We will aslo argue, in what follows, that the consistent
neutrino mass spectrum is not possible within picture of one or two SO(10) singlet fermions S. We start by writing
the Yukawa sector of the model as

Ly = Yy i lri® + Y, Cri LriY + (F1);,, Srn Lrixe + (FRr)y, S§,.0ri XR (10)

1 -
+ §annSCLmsRn (11)

The Yukawa couplings Y and Y’ are 3 x 3 matrix, while F, and Fr are 3 X n matrices, if we assume that there are
n singlet fermions S. So M is a n x n matrix. Our study of consistent embedding of the model in SO(10) GUT
requires same structure for both Fj and Fr up to the scale of left-right symmetry breaking which, after RG running,
can produce small difference at the weak scale. For the present discussion we assume it to be small enough so that it
can be safely ignored.

The Dirac masses for all the SM fermions including neutrinos are generated form the the first two terms by giving
vev to the bi-doublets as in any other left-right symmetric model. Since ® and ¥ are coming from two independent
and real SO(10) 10-dimensional Higgs, the Dirac mass matrix for neutrinos and charged leptons are independent.
However, the Dirac mass matrix for the up-type quarks have the same structure as the Dirac mass matrix for the
neutrinos and similarily the Dirac mass matrix for the down-type quarks will have similar structure as the Dirac
mass matrix for the charged leptons (simply because all SM fermions are assigned to a multiplet of SO(10) GUT).
Although, these similarities in the structures are exact only at the GUT scale, we expect some of its features to be
more or less same even at the low scale. So we can well assume that the Dirac mass matrix of the neutrinos would
almost appear diagonal in the basis where the charged lepton mass matrix is diagonal. The assumption is based
on the observation that the up-type and down-type quarks are simultaneously diagonal in the a basis as the quark
mixing matrix is very close to unity. So we borrow the pattern from the quark sector to the lepton sector where the
structure of Dirac mass matrix of the neutrinos is not directly known unless neutrinos are Dirac fermions. We expect
the following pattern of the Dirac mass matrix of neutrinos in the diagonal basis of the charged leptons
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m me 0 0 m 0.0001 0 O
M,p = ’Uleepton (EZ) = 0 my, 0 (EZ) =~ 0 0.02 0 )
0 0 m, 0 0 0.3

where m; and m; are masses of top and bottom quarks and m., m,, m, are masses of electron, muon and tau leptons.
The part of the Lagrangian relevant for the neutrino mass generation is given as follows,

124
El/ mass — (V, NC, S)LX N¢ + H.C. (]_2)
S L
0 Yijv  Fiavr vj
= (v N Sm)L Vi)Tv 0 Fag || N¢ | +HC (13)
Fg;j’UL FnI’Z;jUR anu Sn L

Our first task is to analyze the mass spectrum provided by the matrix X in case of one generation of all fermions.
We write the eigenvalue equation as (eigenvalue: \):

N — Mu N — F203\ — 2Y F2vupog — MY ?uv? =0
Case 1: A >> v, we get
AA+ Fvg) (A\—Fug)=0

The above eigenvalue equation predicts two TeV scale Majorana fermions. The massless solution contradicts with the
condition we started with, and so is unphysical.
Case 2: )\ << v, we get

2Yvvr,  MY?uw?

A pu—
VR F2p3

(14)

which is of order of eV. So the two Majorana fermions pick up masses of the order as high as TeV and one remains
sufficiently light (~ eV) to be identified as light neutrino.

To make the discussion some more general, we take three generations for all the SM fermions including the left and
right handed neutrinos but only one generation for the singlet S. We look for a possibility whether it can account
for the existing picture of three light active neutrinos. To search for any such possibility, we try to find out the mass
spectrum, within this scenario, by solving for the eigenvalues of the matrix X. To simplify further, we take all the
eigenvalues of the matrix M,p to be same with a common value equal to the largest one for initial analysis. This
enable us to factor out (A\? — 221)2)2 from the algebraic expression of Det (X) predicting four Majorana fermions of
scale around 10 GeV. The rest of the factors have got the same form as the expression of determinant in case of one
generation of all SM fermions, as discussed earlier, leading to the two TeV and one eV scale Majorana fermions. The
scenario provides us only one light neutrino and, hence, can not account for the observed neutrino mass spectrum. To
explore the effect of some possible hierarchy present in the eigenvalues of the Dirac mass matrix of the neutrino like
one present in the charged lepton mass matrix, we take two of the eigenvalues to be same and vary their scale below
the third one. We are still able to explicitly get two of the Majorana fermions having mass scale equal to m. (%)
One may think that the remaining two Majorana fermions might get mass scale as light as eV leading to three light
neutrinos. To rule out any such possibility, we have plotted the masses of the two remaining Majorana fermions
(which comes out to be same) with the ratio of the two mass scales of the eigenvalues of the Dirac mass mass matrix
of the neutrinos in figure Bl We find that the masses do not go below the lightest mass scale of the eigenvalues of
myp. Even in two generation scenario of S fermions, there is not much progress except we get two eV scale Majorana
fermions which is still not sufficient.

We now turn to the case of three generation for S fermions. One obviously expects to get the three light neutrinos.
The basic way to get the low energy neutrino mass matrix has been outlined in [15] which is given as
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R

as we have uwv? = r vugvg in our model (expression d) where r = (A, — gy) /hy-

The first term is the type-III seesaw contribution [23] and the second term is the double seesaw contribution. With
the choice of the vewvs, it is obvious that this scenario provides us with three eV neutrinos.

Now we will try to explore the limits of the expression [I5]for low energy neutrino mass matrix to check its consitency
with current data on neutrino masses and mixing by allowing some very simple form for matrix M. In the basis where
charged lepton mass matrix is diagonal, the neutrino mixing matrix (Upasns) is just the matrix that diagonalizes the
my:

(Upnns)” myUpnns = mP@9 = Diag (my, ma, m3) .

The Uppsns mixing matrix is usually parametrized in the literature as

Upnmns = Ras (623) Rz (613, 0) Riz (612) .Dag (e", €', 1)

where R;; are the rotation matrices in the ij plane with angle 6;;. J is the CP violating phase associated with 1-3
rotation and 7’s are the Majorana phases appearing only in the case of Majorana neutrinos. To date, two mass square
differences and three angle have been measured while CP violation is completely unknown in the leptonic sector. We
take the following observed values for three mixing angle and two mass square differences at 90% confidence level
from particle data group [24] as:

Am3; =m2—m? = (8.0+0.3) x 10 %eV?
Am3, =m2—m? = 1.910 3.0 x 1073 eV?
sin? (2612) = 0.8670 53
sin? (923) > 0.92
sin® (013) < 0.19

We will be mainly using the mean values of the observed parameters in our analysis.
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In its most general form, it is straight forward to argue that m, can accommodate the existing data on neutrino
masses and mixing simply due to the presence of enough number parameters in F' and M unless type III term
dominates significantly. An interesting thing would be to consider some simpler form of the neutrino mass matrix
by reducing appropriate number of parameters with some tolerable assumptions. The basic idea is to explore the
possibility of any such simpler structure in light of the current neutrino oscillation data.

We start with the assumption that the three singlet fermions S are blind to their generation within themselves
leading to the following democratic structure of matrix M :

111
M=1111|u
111

The structure allows us to believe that there is no induced mixing between the left-right neutrinos and the singlets.
So, F' matrix can be written as product of a unitary matrix and a diagonal matrix. The unitary matrix connects the
basis of the democratic structure to the basis where the charged lepton mass matrix becomes diagonal. To get some
more simplicity, we are driven to assume that the two basis are identical, i.e., the unitary mass matrix is identity
matrix. It leads to the following structure of the low energy neutrino mass matrix:

2 :
or a® — 22—;7716 af vy
m, = 2L a8 B-2mem, By ,
VR 2 mg
ay By v = 20km,

where «, § and « are the final parameters appearing in the neutrino mass matrix after absorbing all the parameters
present in F', M and Y. We take the following familiar tri-bimaximal form of [25] of the Upjsns mixing matrix for
our discussion and attempt to diagonalize m, having above structure:

) 2 V2 0
Upvins = Upm = % -1 v2 V31,
1 —vV2 V3

where 923 = 7T/4, 913 = 0, and sin2 912 = 1/3
We attempt to diagonalize m, with the tri-biamaximal form of the mixing matrix which requires the following
relation of the parameters «, 8 and v with masses of the charged leptons as:

a =0
8 ~ M ~ 0.05
27?,;1 (mr +my)
N My ~ —0.75
2%} (mr +my,)

The diagonal neutrino mass matrix comes out of the form:

me 0 0
mbais o 2 [y <_L>
mp mymar VR
0 0 27

So the present form of m, and Upprns produces degenerate masses for the two light neutrinos which is likely to be
cured once we slightly deviate from tri-bimaximal form of Upysns. The deviation can be realized either by taking
non-maximal value of 623 or non vanishing value of 613 or both. We take only non-zero value of 613 to be the sole
realization of the deviation for our purpose. The deviated form of tri-baimaximal matrix for very small value of 6,3
can be parametrized as:
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1 2 V2 013
Upmns = 7 —1—-V2013 V2—-0613 V3
1—v2013 —V2—013 V3

While trying to diagonalize the m, , numerical methods are used to find out the desired values of the free parameters.
We find that the degeneracy encountered in the case of tri-bimaximal mixing matrix disappears as soon as finite value
of 613 is introduced. This finite value is determined by imposing the condition Am3,/Am3; ~ 0.033 which leads to
following value of sin 613

sin 6‘13 =0.11.
The value is well within the allowed value for 63 from oscillation data. The correct scale of the mass square differences

is easily achieved by adjusting the over all scale of the neutrino mass matrix. The corresponding values of the other
parameters come out to be

a = 0.02
B = 0.06
Ny = —0.75

The point we would like to emphasize is that even the simple structure of the mass matrix taken in our analysis
is able to account for the existing framework of three active light neutrinos even though the assumptions may not
correspond to any real underlying symmetry.

Dark Energy

We shall now show how the model can accommodate the proposal of the mass varying neutrinos (MaVaNs) |3, [4].
The basic idea behind the mass varying neutrinos is that some scalar field, the acceleron, acquires a value of the order
of 1072 eV, which gives an effective potential that contributes to the dark energy with the equation of state w = —1.
However, till recently the neutrino masses were contributing to the effective potential much more strongly and the
combined fluid of the background neutrinos and the accelerons were behaving as dark matter with the equation of
state w = 0. As the neutrino masses were varying with time, the contribution of the background neutrino density to
the effective potential were changing. Ounly in the recent past, the contribution of the acceleron field to the effective
potential became stronger than the background neutrinos, changing the equation of state of the combined fluid, and
the universe started accelerating with dark energy domination. This can then explain why the scale associated with
the amount of dark energy is comparable to the neutrino masses, why the amount of dark energy is comparable to
the ordinary matter, and why the universe is dominated by dark energy only now and for the rest of the time in the
past the evolution of the universe was governed by matter.

In spite of these advantages, the MaVaNs scenario are not free of problems. We shall now try to explain how
the MaVaNs scenario can be accommodated in a grand unified theory. After describing the generic features of the
MaVaNs, following the original proposal [4], we shall explain how our present model answer this question. We shall
not restrict ourselves to any particular choice for the acceleron field, and hence, consider the potential for the acceleron
field to be same as that considered in the original proposal. At the end we shall mention how the present model can
be extended to allow a milli-eV mass pseudo-Nambu-Goldstone Boson (pNGB), which can become the acceleron field.

We shall now mention this possible origin of the acceleron field in an extension of our model. Following the
prescription followed in ref. 8], we introduce three 1 and several Higgs doublets. The vevs of the fields 7 would then
give rise to global symmetries, which are allowed by all the Yukawa couplings due to the choice of quantum numbers
of the Higgs doublets under these global symmetries. However, when the Higgs doublets acquire vevs, the global
symmetries will be broken and there will be pNGBs, which couple to the neutrino masses. Although the dynamics of
the pNGBs are not specified, the masses and the potentials of the pNGBs are determined by the Coleman-Weinberg
potential, as demonstrated in ref. [8]. Since the introduction of several Higgs doublets may not allow the the gauge
coupling unification, we shall not discuss this extension any further. Moreover, there could be some other origin of
the acceleron field, so from now on we shall only mention the generic features of this model.
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In a generic MaVaNs models, the coupling between neutrino mass and A induces the following effective potential
V= (pp —3PF,) + Vo(my) (16)

Here the scalar potential Vp(m, ) is due to the acceleron field (written as a function of neutrino mass) and P, is
pressure of the neutrino fluid. In the late time evolution the non-relativistic limit i.e. m, > T is of particular
interest. In this case P, ~ 0 and one can write the effective potential as,

V =myn, + Vo(m,). (17)

The acceleron field will be trapped at the minima of the potential, which ensures that as the neutrino mass varies, the
value of the acceleron field will track the varying neutrino mass. One can write equation of state in the non-relativistic
case for a combined fluid of neutrino + acceleron;
w=Plp= —A (18)
myny, + pa

One generic feature of this solution is that it gives w ~ —1 at present. The most important feature of this scenario
is that the energy scale for the dark energy gets related to the neutrino mass, which is highly desirable. This also
explains why the universe enters an accelerating phase now [26].

We shall now discuss the implementation of the vDE mechanism in our model. For simplicity, we consider only
one-generation scenario. The effective scalar field potential of the scalar is of the Coleman-Weinberg type i.e.

Vo = A* log(1 + |M,(A)/l (19)
where, M; is the singlet fermion mass. We assume that M (A)/m > 1.
My=M{n)=Mu

depends on the acceleron field A. Thus the neutrino mass becomes a dynamical quantity. When the neutrinos become
non-relativistic the dependence of M, on A governs the dynamics of the dark energy. A is chosen in such a way to
yield the dark energy density Qpg ~ 0.7. This type of potentials are extensively used in the dark energy literature
[3,127]. Now we can write the effective low-energy Lagrangian in our model

2,2

—Lepp = MS(A)ﬁ% viv; + H.c. + A log(1 + | M,(A)/qal), (20)

From the choices we have made about the vevs, we have retained only the dominant double seesaw term [14] in
the effective Lagrangian. As u ~ O(eV), the mass parameter Mj is of the order of eV. Since the ratio (v/vg)? ~
1072 — 1073, the Yukawa couplings coupling to be of order unity. Thus the first two terms in equation (14) are
comparable to the last term describing the dark energy potential.

The Majorana mass of neutrino varies with the acceleron field through the parameter M, and the mass scale of this
parameter remains near the scale of dark energy naturally. The interesting feature of our model is that we do not
need any unnaturally small Yukawa couplings or symmetry breaking scale to achieve this naturalness requirement.
Also the variation of My does not affect charged fermion masses in the model. Moreover, the electroweak symmetry
breaking scale v and the U(1)g breaking scales are comparable and hence the new gauge boson corresponding to the
group U(1)g will have usual mixing with Z and should be accessible at LHC.

Since the local minimum of the potential relates the neutrino mass to a derivative of the acceleron potential, the
value of the acceleron field gets related to the neutrino mass. The acceleron field provide an effective attractive force
between the neutrinos. When this effective force is stronger than the gravity, perturbations in the neutrino-acceleron
fluid become unstable. The source of the free-energy comes from the attractive interaction between the neutrino and
the acceleron field. The instability is similar to that of the Jeans instability found in a self-gravitating system. The
instability can lead to inhomogeneity and structure formation; the instability would grow till the degeneracy pressure
of the neutrinos would arrest the growth. The final state of the instability would produce neutrino lumps or nuggets
|27, [28]. The neutrino lumps would then behave as dark matter and will not affect the dynamics of the acceleron field
[28]. This instability is a generic feature of MaVaNs scenario, however it can be suppressed if the neutrino become
superfluid [29] or if the MaVaNs perturbations become non-adiabatic.
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Conclusions

We have constructed a left-right symmetric model of vDE that can be embedded in an SO(10) GUT. After
discussing the Higgs content needed for the model, details of potential minimization have been carried out considering
all possible allowed terms. In particular, we have tried to explore the possibility of choosing the minima such that
only neutral Higgs components get vev without constraining the couplings constants. But it turns out that some such
constraints are needed in most general form of the potential. The complete analysis allows the desired ordering of the
vevs. Then we study the embedding of this left-right symmetric model in SO (10) GUT. We show that SO (10) GUT
with Higgs multiplets S(54), A(45), two H(10), C(16) @& C(16), (1) along with an additional fermion singlet is able
to accommodate the left-right symmetric model. The embedding allows the Pati-Salam and the left-right symmetry
group breaking scales to be different by orders of magnitudes. We have studied the one loop RG running of various
couplings constant and have found that the desired assignment for vev values for different Higgs fields is consistent
with the gauge unification. Then the origin and possible structure of neutrino masses and matrix have been discussed
in detail. It has been shown that generation of three light active neutrinos of eV scale is not possible in scenario
with one or two SO(10) singlets fermions. In the generic case of three singlets, we have taken a simple structure of
neutrino mass matrix with some tolerable assumptions and shown that the structure is consistent with current data
on neutrino masses and mixing. Then we described implementation of ¥DFE in the model. The model allows the
mass parameter of the singlet, which varies with the acceleron field, to have the same scale as the scale of dark energy
satisfying the desired naturalness requirement.
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