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Neutrino Dark Energy in Grand Uni�ed TheoriesJitesh R. Bhatt1,∗ Pei-Hong Gu2,† Utpal Sarkar1,‡ and Santosh K. Singh1§

1Physial Researh Laboratory, Ahmedabad 380009, India
2The Abdus Salam International Centre for Theoretial Physis, Strada Costiera 11, 34014 Trieste, ItalyWe studied a left-right symmetri model that an aommodate the neutrino dark energy (νDE)proposal. Type III seesaw mehanism is implemented to give masses to the neutrinos. After ex-plaining the model, we study the onsisteny of the model by minimizing the salar potential andobtaining the onditions for the required vauum expetation values of the di�erent salar �elds.This model is then embedded in an SO(10) grand uni�ed theory and the allowed symmetry breakingsales are determined by the ondition of the gauge oupling uni�ation. Although SU(2)R breakingis required to be high, its Abelian subgroup U(1)R is broken in the TeV range, whih an then givethe required neutrino masses and predits new gauge bosons that ould be deteted at LHC. Theneutrino masses are studied in details in this model, whih shows that at least 3 singlet fermionsare required. IntrodutionDuring the past ouple of deades, astrophysial observations has improved our knowledge of osmology tremen-dously. One of the most important disovery resulting from these observations is that of the dark energy[1℄. Natureof the dark energy(DE) is one of the most puzzling question of physis. The observations suggest that urrently ,i.e. around redshift z ∼ 1, the DE is ontributing around 70% of the total energy budget of the universe, while itsontribution was sub-dominant in the past(z ≫ 1). Any proposed model of DE is required to satisfy these observa-tional onstraints. These models require the mass of the salar to be very light having sale same as Hubble sale(∼ 10−33eV ). There exist myriad of suh models desribing the nature and the dynamis of DE (for reent reviewssee Ref. [2℄℄. One of the very interesting proposal for the DE is based on the fat that typial energy sale of DE

ρΛ ∼ (3 × 10−3 eV)4 also oinides with the neutrino mass sale ρΛ ∼ m4
ν . This has led to several attempts to relatethe origin of the dark energy with the neutrino masses [3, 4, 5, 6℄ and this onnetion an have many interestingonsequenes [7, 8℄. In this senario a salar �eld A alled the aeleron ouples with the neutrinos and onsequentlymaking the neutrino mass mν funtion of A. Next, it is assumed that the dark energy ρDE an be written as

ρDE = ρν + V (A).Stationary ondition on ρDE then lead to varying the neutrino mass. These type of models are alled mass varyingneutrino (MaVaN) models [3, 4, 5℄. In a typial MaVaN senario, the standard model is extended by inluding singletright-handed neutrinos Ni, i = 1, 2, 3, and giving a Majorana mass to the neutrinos whih varies with φa. At presentour understanding of MaVaN models is far from being omplete, several problems regarding nature origin and natureof the aeleron �eld, about its stability [4, 9℄ et. ontinue to remain. There has been a signi�ant progress in solvingsome of these problems in the subsequent works [10, 11℄, but muh more needs to be done before this idea ould beonsidered as a realisti one.Considering the di�ulties involved in onstruting a reasonable MaVaNs model, most of the earlier models re-strited themselves to start with the standard model and inlude a singlet right-handed neutrino, or else, inlude atriplet Higgs salar. Some time bak we onstruted a left-right symmetri model with right-handed neutrinos andtype-III seesaw neutrino masses, whih ould explain the dark energy with MaVaNs [12℄. In this artile we work outsome of the details of that model and embed the model in a grand uni�ed theory. The most important feature of thismodel is that the model justi�es the smallness of the very low sale, entering in this model. We have analyzed theonsisteny of the problem by minimizing the salar potential and then have found the onditions for the requiredminima that explains the required mass sales in this MaVaNs model. We also study the gauge oupling uni�ationin the SO(10) GUT, in whih this model has been embedded. The neutrino masses have also been studied and someonditions on the number of the singlet fermions have been worked out.The ModelOne of the problems with the original MaVaNs is that the ondition from naturalness requires the Majorana massesof the right-handed neutrinos, whih varies with the aeleron �eld, to be in the range of eV. In suh models of type
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2I seesaw, the model beomes void of any seesaw, sine the smallness of the neutrino masses an not be attributed toany large lepton number violating sale. Another restritions of this model is that the model annot be embeddedin any left-right symmetri extension of the standard model, beause the equal treatment of the left-handed andthe right-handed �elds would imply that if neutrino masses vary with the value of the aeleron �eld, the hargedfermion masses would also vary and that would relate the sale of dark energy to the top quark mass sale, whih isunaeptable. Although the onstraint from the naturalness ondition an be softened in the νDEmodels with tripletHiggs salars [11℄, this annot be embedded in a left-right symmetri model. We onsider here a left-right symmetrimodel, where the neutrino masses originate from double seesaw or type III seesaw mehanism and then show howthis model an be embedded in a grand uni�ed theory.In the left-right symmetri models, the standard model gauge group is extended to a left-right symmetri gaugegroup [13℄, GLR ≡ SU(3)c × SU(2)L × SU(2)R × U(1)B−L, so that the eletri harge is de�ned in terms of thegenerators of the group as:
Q = T3L + T3R +

B − L

2
= T3L + Y . (1)The quarks and leptons transform under the left-right symmetri gauge group as:

QL =

(

uL
dL

)

≡ [3, 2, 1,
1

3
] , QR =

(

uR
dR

)

≡ [3, 1, 2,
1

3
] ,

ℓL =

(

νL
eL

)

≡ [1, 2, 1,−1] , ℓR =

(

NR
eR

)

≡ [1, 1, 2,−1] ,

SR ≡ [1, 1, 1, 0] . (2)The right-handed neutrinosNR is present in all the left-right symmetri model, whih is ditated by the struture of thefermion representations and the gauge group. However, in models with type III seesaw mehanism for neutrino massesone introdues an additional singlet fermion SR. As the name left-right symmetri model, the model Lagrangian isinvariant under the left-right parity transformation given as:
SU(2)L ↔ SU(2)R ,

QL ↔ QR ,

ℓL ↔ ℓR .In this model we have introdued the singlet �eld SR, but there is no SL. But still this model is onsistent withleft-right parity operation, sine the �eld SR transform to its CP onjugate state under the left-right parity as:
SR ↔ ScL. This also ensures that the Majorana mass term is invariant under the parity transformation, beause this�eld SR transform under the transformation SU(2)L ↔ SU(2)R to itself SR ≡ (1, 1, 1, 0) ↔ (1, 1, 1, 0).The gauge boson (exluding gluons) setor onsist of two triplet and one singlet as :

WµL =





W+
Lµ

W 0
Lµ

W−
Lµ



 ≡ (1, 3, 1, 0), WµR =





W+
Rµ

W 0
Rµ

W−
Rµ



 ≡ (1, 1, 3, 0), Bµ(B−L) ≡ (1, 1, 1, 0)There exists several hoies of the Higgs salars, and hene, the hoies of symmetry breaking hain. In the presentmodel, the ontent of the Higgs setor will be hosen aording to the following desired symmetry breaking pattern[14℄:
SU(3)c × SU(2)L × SU(2)R × U(1)(B−L) [G3221D]

MR→ SU(3)c × SU(2)L × U(1)R × U(1)(B−L) [G3211]
mr→ SU(3)c × SU(2)L × U(1)Y [G321]
mW→ SU(3)c × U(1)Q [Gem] .Breaking of the left-right symmetri group to G3211 requires a right triplet Higgs salars ∆R transforming as ∆R ≡

(1, 1, 3, 0). The triplet does not hange the rank of the gauge group and only breaks SU(2)R → U(1)R. Sine itdoes not arry any U(1)B−L quantum number, it annot give any Majorana masses to the neutral fermions. Forthe next symmetry breaking stage, U(1)R × U(1)B−L → U(1)Y , we introdue an SU(2)R doublet Higgs salar �eld



3
χR ≡ (1, 1, 2, 1) [15, 16℄. The vev of χR ould also break [G3221D] → [G321], if the �eld ∆R were not present.The left-right parity would then require the existene of the �elds ∆L ≡ (1, 3, 1, 0) and χL ≡ (1, 2, 1, 1). Finally,the standard model symmetry breaking is mediated by a bi-doublet �eld Φ ≡ (1, 2, 2, 0), like in any other left-rightsymmetri model. This �eld has the Yukawa interation with the standard model fermions and provide Dira massesto all of them. We shall introdue one more Higgs bi-doublet salar Ψ ≡ (1, 2, 2, 0) that is needed for the purpose ofour model. We also introdue another singlet salar �eld η ≡ (1, 1, 1, 0), whih aquires a tiny vev of the order of thelight neutrino masses and generate the mass sale for the dark energy naturally.Now we write down the expliit forms of all the salar �elds in terms of their omponents as

∆L =

(

∆0
L ∆+

L

∆−
L −∆0

L

)

, ∆R =

(

∆0
R ∆+

R

∆−
R −∆0

R

)

,

Φ =

(

φ0
1 φ+

1

φ−2 φ0
2

)

, Ψ =

(

ψ0
1 ψ+

1

ψ−
2 ψ0

2

)

,

χL =

(

χ+
L

χ0
L

)

, χR =

(

χ+
R

χ0
R

)

,The most general salar potential has to be onstruted in suh a way that they respet the left-right parity transfor-mation of the salar �elds listed below:
χL ↔ χR , ∆L ↔ ∆R

Φ ↔ Φ† , Ψ ↔ Ψ†

. η ↔ η .Under the left-right gauge group transformation, the Higgs �elds transform as
∆L → UL ∆L U

†
L , ∆R → UR ∆R U †

R

Φ → UL Φ U †
R , Ψ → UL Ψ U †

R

χL → UL χL , χR → UR χR

η → η .In order to write down the salar potential we also onstrut the �elds τ2Φ∗τ2 and τ2Ψ∗τ2 from Φ and Ψ whihtransform in the same ways as Φ and Ψ. For onveniene, we represent Φ as φ1, τ2Φτ2 as φ2 (and similarly for Ψ)from now on. Potential MinimizationWe �rst write down the most general renormalizable gauge invariant salar potential respeting left-right parityand study details of potential minimization. Besides left-right parity, we impose following Z4 symmetry on only theHiggs potential to avoid few undesired terms
χL → iχL , χR → −iχR ,

∆L → −∆L , ∆R → −∆R ,
Φ → Φ , Ψ → −Ψ ,

η → η .

(3)



4We write the the Higgs potential as a sum of of various parts and write down eah part separately as:
V = Vφ + Vψ + V∆ + Vη + Vχ + V∆φψ + Vχφψ + Vηχ∆φψ

Vφ = −
∑

i,j

µ2
φij

2
tr(φ†iφj) +

∑

i,j,k,l

λφijkl
4

tr(φ†iφj) tr(φ
†
kφl)

+
∑

i,j,k,l

Λφijkl
4

tr(φ†iφjφ
†
kφl)

Vψ = −
∑

i,j

µ2
ψij

2
tr(ψ†

iψj) +
∑

i,j,k,l

λψijkl
4

tr(ψ†
iψj) tr(ψ

†
kψl)

+
∑

i,j,k,l

Λψijkl
4

tr(ψ†
iψjψ

†
kψl)

V∆ = −µ
2
∆

2
[tr(∆L∆L) + tr(∆R∆R)] +

λ∆

4
[tr(∆L∆L)2 + tr(∆R∆R)2]

+
Λ∆

4
[tr(∆L∆L∆L∆L) + tr(∆R∆R∆R∆R)]

+
g∆
2

[tr(∆L∆L) tr(∆R∆R)]

Vη =
M2
η

2
η2 +

λη
4
η4

Vχ = −
µ2
χ

2
[χ†
LχL + χ†

RχR] +
λχ
4

[(χ†
LχL)2 + (χ†

RχR)2]

+
gχ
2

[χ†
LχL χ

†
RχR]

V∆φψ =
∑

i,j

αφij [∆L∆L + ∆R∆R] tr(φ†iφj)

+
∑

i,j

αψij [∆L∆L + ∆R∆R] tr(ψ†
iψj)

+
∑

i,j

βφij [ tr(∆L∆Lφiφ
†
j) + tr(∆R∆Rφ

†
iφj)]

+
∑

i,j

βψij [ tr(∆L∆Lψiψ
†
j + tr(∆R∆Rψ

†
iψj)]

+
∑

i,j

h∆φij tr(∆Lφi∆Rφ
†
j) +

∑

i,j

h∆ψijtr(∆Lψi∆Rψ
†
j )

Vχφψ =
∑

i,j

hφχij [χ†
LχL + χ†

RχR] tr(φ†iφj)

+
∑

i,j

hψχij [χ†
LχL + χ†

RχR] tr(ψ†
iψj)

Vηχ∆φψ =
(

hηχ [χ†
LχL + χ†

RχR] + hη∆ [tr(∆L∆L) + tr(∆R∆R)]
)

η2

+





∑

i,j

hηφij tr(φ
†
iφj) +

∑

i,j

hηψij tr(ψ
†
iψj)



 η2

+
∑

i,j

hηij η [tr(φ†i∆Lψj) + tr(φi∆Rψ
†
j ) + h.c.]

+
∑

i

hχi η [χ†
LφiχR + h.c.] .



5We parametrize the true minima of the potential by giving vauum expetation values to di�erent salar �elds asfollows.
φ1 =

(

v 0
0 v′

)

, φ2 =

(

v′ 0
0 v

)

, ψ1 =

(

w 0
0 w′

)

, ψ2 =

(

w′ 0
0 w

)

,

χL =

(

0
vL

)

, χR =

(

0
vR

)

, ∆L =

(

uL 0
0 −uL

)

, ∆R =

(

uR 0
0 −uR

)

η = u .Sine the phenomenologial onsisteny requires v ≫ v′and w ≫ w′, we ignore potential terms involving v′and w′and write down the general salar potential in terms of vauum expetation values of di�erent salar �elds
V = −

µ2
φ

2
v2 +

λφ
4
v4 −

µ2
ψ

2
w2 +

λψ
4
w4

−µ
2
∆

2
(u2
L + u2

R) +
λ∆

4

(

u4
L + u4

R

)

+
M2
η

2
u2 +

λη
4
u4

−
µ2
χ

2
(v2
L + v2

R) +
λχ
4

(v4
L + v4

R) +
gχ
2

(v2
L v

2
R)

+[(αφ + βφ)v
2 + (αψ + βψ)w2] (u2

L + u2
R) + (h∆φv

2 + h∆ψw
2) uLuR

+(hφχv
2 + hψχw

2) (v2
L + v2

R)

+[hηχ(v
2
L + v2

R) + hη∆(u2
L + u2

R) + hηφv
2 + hηψw

2] u2

+hη u(uL + uR)vw + hχ u(vLvR)v .For onveniene, we have replaed λφ + Λφ → λφ, λψ + Λψ → λψ, λ∆ + Λ∆ → λ∆. The minimization of thepotential is studied by taking partial derivatives with respet to vevs of all Higgs �elds and then separately equatingthem to zero. Solving all suh equations will provide us the desired values. One of the minimization onditions
vL

(

∂V
∂vR

)

− vR

(

∂V
∂vL

)

= 0 leads to the following relation between vL and vR:
(v2
R − v2

L) [(λχ − gχ)vLvR − hχuv] = 0 .Sine (v2
R = v2

L) is not desirable phenomenologially, we hose
vLvR =

hχuv

(λχ − gχ)
. (4)Using above relation in an another minimization ondition vL ( ∂V

∂vR

)

+ vR

(

∂V
∂vL

)

= 0, we get
v2
L + v2

R = −
µ2
χ

λχ
. (5)Parametrizing vL = A sin θ, vR = A cos θ and putting them in the two equations 4 and 5 , we �nd A = −µ2

χ/λχ

sin 2θ = 2θ =
2hχuv

(λχ−gχ) sine µχ is a large number ompared to the numerator. So we get
vR = A = 2

√

−µ2
χ/λχ ,

vL = Aθ =
λχhχ

(gχ − λχ)

uvvR
µ2
χ

.We have hosen the parametrization of vL and vR in suh a way that vR gets value equal to breaking sale of G3211and vL gets a very small value. We ould have done other way around but that is not what is phenomenologially



6allowed. Proeeding with the same kind of analysis for uL and uR, i.e., using two minimization onditions uL ( ∂V
∂uR

)

−

uR

(

∂V
∂uL

)

= 0 and uL ( ∂V
∂uR

)

+ uR

(

∂V
∂uL

)

= 0, we get
uR = 2

√

−µ2
∆/λ∆ ,

uL =
λ∆h∆

(g∆ − λ∆)

(h∆φv
2 + h∆ψw

2)uR
µ2

∆

.Now using equation 4, the η �eld an be shown to get vev only by term hηu(uL + uR) as only this term is linearin u. The term hχu(vLvR)v does not remain linear in u after we substitute the value of vLvR from equation 4. Sinethe mass term for η �eld is large and positive, we expet very small vev. So we an ignore some of the terms in thepotential while solving for u and an easily obtain
u =

hηvw(uL + uR)

M2
η − (hη∆µ2

∆/λ∆) − (hηχµ2
χ/λχ)

.After analyzing the omplete salar potential, we �nd a onsistent solution with ordering
uR ≫ vR > v > w ≫ u≫ vL . (6)At this stage we an assume the di�erent mass sales to explain the model. However, when we embed this model in an

SO(10) grand uni�ed theory, the gauge oupling uni�ation will impose strong onstraints on the di�erent symmetrybreaking sales. The left-right parity and the SU(2)R breaking sale will ome out to be above 1011 GeV. So, we shallassume uR ∼ 1011 GeV. We also assume mη ∼ m∆ ∼ uR. However, it will be possible to keep the G3211 symmetrybreaking sale to be very low, and hene, we shall assume mχ ∼ vR ∼ TeV. We �nd the remaining mass sales to be
v ∼ mw ∼ 100 GeV, u ∼ uL ∼ eV and vL ∼ 10−2 eV.Embedding The Model In SO(10)GUTThe idea of Grand Uni�ed Theories (GUTs) has emerged as a very attrative idea to go beyond Standard Model(SM) for last three deades. It uni�es the three di�erent looking gauge oupling onstants of the SM, and in addition,redues the number of partile irreduible multiplets into lesser number of multiplets. The ad-ho looking hyperhargeassignment in SM gets a preditive framework in GUTs, i.e, the harge quantization remains no more a surprise inGUTs. The smallest GUT SU(5), in its non-supersymmetri version, does not unify the three gauge oupling onstants.Out of the higher rank gauge groups ontaining SM gauge group as a subgroup, the rank four semi-simple group SO(10)has emerged as a very attrative andidate for GUT. It an aommodate the entire SM fermion ontent in its single16-dimensional omplex irreduible spinor representation inluding the right handed neutrino with three opies forthe three families. Its all irreduible representations are anomaly free providing a natural preditive framework tounderstand the fermion masses and mixing. Also the seesaw struture gets a natural embedding in SO(10). Theleft-right symmetry group an also be embedded in SO(10) GUT.We shall study here the embedding of the present model with all its Higgs ontent in SO(10) GUT. We onsiderthe following breaking pattern of SO(10) gauge group to �rst Pati-Salam gauge group SU(4) × SU(2)L × SU(2)R,next to the left-right gauge group and then to the SM gauge group

SO(10)
MU→ SU(4) × SU(2)L × SU(2)R [G422D]
MC→ SU(3)c × SU(2)L × SU(2)R × U(1)(B−L) [G3221D]

MR→ SU(3)c × SU(2)L × U(1)R × U(1)(B−L) [G3211]
mr→ SU(3)c × SU(2)L × U(1)Y [G321]
mW→ SU(3)c × U(1)Q [Gem] .The Higgs multiplets whih an provide the masses for all the SM fermions are limited as 16×16 = 10s+120a+126s.The 10 dimensional Higgs �eld HΦ deomposes under left-right gauge group as

HΦ (10) = Φ(1, 2, 2; 0)⊕ (3, 1, 1;−1

3
) ⊕ (3, 1, 1;

1

3
) .



7One an easily identify the bi-doublet Φ(1, 2, 2; 0) appearing in the left-right model ontained in HΦ(10). To inludeanother bi-doublet Ψ(1, 2, 2; 0) present in the model, a seond Higgs �eld HΨ(10).Although the fermion and gauge setor of the SO(10) GUT model are quite simple, the Higgs setor is quiteompliated sine it is not only required for generating fermion Masses, but an appropriate Higgs ontent is alsoneeded for systemati and onsistent breaking of the SO(10) gauge group down to the SM gauge group in one or moresteps. To break SO(10) gauge group to the Pati-Salam gauge group, one requires Higgs �eld either S(54) or Υ(210),whih deompose under Pati-Salam group as
S(54) = (1, 1, 1)⊕ (1, 3, 3) ⊕ (20, 1, 1)⊕ (6, 2, 2) ,

Υ(210) = (1, 1, 1)⊕ (15, 1, 1)⊕ (6, 2, 2)⊕ (15, 3, 1)

⊕(15, 1, 3)⊕ (10, 2, 2)⊕ (10, 2, 2) .Giving vev to either of the two �elds in the singlet diretion will serve the purpose of the desired breaking. The
(15, 1, 1) of Υ also has a singlet under the left-right gauge group whih an aquire vev to break the Pati-Salam groupto the left-right group. The (15, 3, 1) and (15, 1, 3) Higgs multiplets of Υ also ontain the �elds ∆L(1, 3, 1, 0) and
∆R(1, 1, 3, 0) present the left-right model. Hoever, the Υ singlet under Pati-salam gauge group is odd under D-Parity.If we give vev to Υ singlet, the left-right symmetry will be broken at uni�ation sale itself. Sine our model isleft-right symmetri, we must avoid D-parity breaking until left-right group is broken.However, the singlet in S(54) �eld under Pati-Salam gauge group does respet and so an be used to break the GUTgroup to the Pati-Salam gauge group. But, the breaking with S(54) does not serve the purpose of further breakingto the left-right group. So for the next step breaking, a Higgs Field A(45) is needed along with S(54) whih has thedeomposition under the left-right group as

A(45) = (1, 1, 1; 0)⊕ ∆L(1, 3, 1; 0)⊕ ∆R(1, 1, 3; 0)

⊕(3, 1, 1;
4

3
) ⊕ (3, 1, 1;−4

3
) ⊕ (8, 1, 1; 0)

⊕(3, 2, 2;
2

3
) ⊕ (3, 2, 2;−2

3
) .The �rst row of the above deomposition is of our interest as it ontains the �elds ∆L(1, 3, 1, 0) and ∆R(1, 1, 3, 0) ofour model along with the left-right group singlet. This singlet is even under D-parity and so the left-right symmetry isunbroken until ∆R aquires vev along the singlet diretion to the SM gauge group. We will be following this approahin the remaining part of this setion.Now the �elds χL (1, 2, 2, 1) and χR(1, 1, 2, 1) are still left to be embedded in some tensors of SO(10). The desiredquantum numbers indiate that they an be embedded in the spinorial Higgs representation (C(16) ⊕ C(16)

) .Deomposition of the 16 ⊕ 16 spinor representation under left-right group are given as
C(16) = χ∗

L(1, 2, 1,−1)⊕ χR(1, 1, 2, 1)

⊕(3, 2, 1,
1

3
) ⊕ (3, 1, 2,−1

3
) ,

C(16) = χL(1, 2, 1, 1)⊕ χ∗
R(1, 1, 2,−1)

⊕(3, 1, 2,
1

3
) ⊕ (3, 2, 1,−1

3
) .Having embedded all the Higgs �elds of our model into SO(10) tensor �elds, we now write vauum expetationvalues along the three singlet diretion under the SM group of the �elds A(45) and S(54) as

〈A〉 = MCÂC +MRÂR ,

〈S〉 = MU Ŝ ,where ÂC , ÂR and Ŝ are the singlet diretions under the SM gauge group given as
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ÂC =

(

Â56 + Â78 + Â910

)

ÂR =
(

Â12 + Â34

)

Ŝ = 3 ×
4
∑

a=1

Ŝaa − 2 ×
10
∑

a=5

Ŝaa .The indies (1, 2, 3, 4 ) belong to SO(4) and (5, 6, 7, 8, 9, 10) belong to SO(6) subgroup of the group SO(10). We havenot taken are of the normalization fators while writing the diretions of the singlets as they are not muh relevantfor the present disussion. However, we an assume that the normalization fators are absorbed in the orresponding
vev values and an proeed without worrying about them for an approximate analysis.Let us denote HΦ = h, HΨ = H for simpliity in notations. Now we write the most general SO(10) invariant Higgspotential:

V = µ2
AAabAba + µ2

S SabSba + µ2
h haha + µ2

H HaHa + µ2
C

(

C̄C
)

+ µ2
η η

2 + λη η
4

+ λA A
2A2 + λ′AA

4 + λS S
4 + λh h

4 + λH H
4 + λc

(

C̄C
)2

+ λ
′

c

(

C4 + C̄4
)

+ gASA
2S2 + g′ASAabAbcScdSda + g′′ASAabSbcAcdSda

+ ha (ghAAabAbc + ghSSabSbc)hc +
(

g′hAA
2 + g′hSS

2
)

h2

+ Ha (gHAAabAbc + gHSSabSbc)Hc +
(

g′HAA
2 + g′HSS

2
)

H2

+
(

ghCh
2 + gHCH

2 + gACA
2 + gSCS

2
)

C̄C + gηHCη h
(

CC + C̄C̄
)

.The Z4 symmetry (expression 3) used while writing the Higgs potential invariant under left-right gauge group has alsobeen imposed here on the orresponding SO(10) Higgs multiplets. Moreover, we have prevented some of the termsby applying the disrete symmetry S → −S. The realization of the �rst three symmetry breaking steps is possible bytaking the following struture of the vev assignments to the �elds A(45) and S(54):
〈A〉 = iτ2 ⊗ diag (MR, MR, MC , MC , MC)

〈S〉 = I ⊗ diag

(

−3

2
MU , −

3

2
MU , MU , MU , MU

)

.For the matter of onveniene we have just replaed the vevs with the orresponding breaking sales. The potential ,in terms of the vev values of A and S, will be approximately given as
V = µ2

A

(

6M2
C + 4M2

R

)

+ µ2
S 15M2

U +
(

µ2
C + gAC6M2

C + gSC 15M2
U

)

C̄C

+
(

µ2
h + ghS9M2

U

)

haha (a = 1 − 4) +
(

µ2
h + ghA6M2

C + ghS6M2
U

)

haha (a = 5 − 10)

+
(

µ2
H + gHS9M2

U

)

HaHa (a = 1 − 4) +
(

µ2
H + gHA6M2

C + gHS6M2
U

)

HaHa (a = 5 − 10)

+ λA
(

6M2
C + 4M2

R

)2
+ λ′A

(

6M4
C + 4M4

R

)

+ λSM
4
U + gASM

2
U

(

6M2
C + 9M2

R

)

+ λhh
4 + λHH

4 + gηHCη h
(

CC + C̄C̄
)

+ λc
(

C̄C
)2

+ λ′c
(

C4 + C̄4
)

+ λη η
4We have assumed MR ≪ MU ∼ MC while writing the �nal form of the potential. In order to give desired masses(of the order of MW ) to the two left-right bi-doublets , µh and µH will have to be �ne-tuned at the order ofsale of MU . The �ne-tuning an produe very large masses to the triplets of h( or H) provided the ondition

(

ghA6M2
C − hhS3M2

U

)

∼
(

+M2
U

) is satis�ed. Another �ne-tuning is required in the mass parameter µ2
C to providethe desired TeV sale masses to the Higgs �elds C(16) ⊕ C(16). Before ending this setion, we would like to notiean important point. If we take the gSA oupling to be very small, we an argue that the appearane of the similarombination (6M2

C + 4M2
R

) everywhere in the potential allows MC and MR to take quite di�erent values withoutdisturbing other part of the potential. So the sale ofMC andMR an be hosen to be di�erent by orders of magnitudeto get the desirable breaking.



9Gauge Coupling EvolutionIn the present setion, we will be studying the set of two-loop renormalization group (RG) equations for the evolutionof the oupling onstants and will be verifying the onsisteny of the hosen vev for di�erent Higgs �elds in the ontextof SO(10) GUT. For simpliity, we assume that the sale MU and MC are very lose and we ignore the evolution ofthe oupling onstants between the two sales. This is quite preferable as we will see later that the uni�ation saleis very tightly onstrained by the urrent proton deay bound [17℄ and any substantial di�erene between the twobreaking sales would make it even worse. We start with the following equation for the two-loop evaluation of theoupling onstant αi
dα−1

i (t)

dt
= − ai

2π
− bij

8π2

(

1

α−1
j

) (7)where t = ln (Mµ) andMµ is the desired energy sale where the ouplings onstants, αi's, are be determined. The ai'sand bij 's are the one-loop and two-loop beta funtions governing the evolution of αi's and inlude the ontributionsfrom gauge bosons, fermions and salars in the model.The fermion ontribution to the beta funtion is taken right from the starting, the eletroweak sale (100GeV). Theontributions of the gauge bosons to beta funtions are straightforward to ompute as one an easily determine theexpeted mass sales of the heavy gauge bosons orresponding to any given gauge group. However, the ontributionoming from the Higgs ontent is not so lear beause the heavy Higgs modes an have various possible mass spetrums.We will use the extended survival hypothesis to �x this unertainty. The extended survival hypothesis is based onthe assumption that only minimal number of �ne-tunings of the parameters in the Higgs potential are imposed toensure the hierarhy in various gauge boson masses. Aording to the extended survival hypothesis, only those salarmultiplets are present at any given intermediate breaking saleMI of a intermediate gauge group GI whih are eitherrequired for breaking the gauge group GI or needed to further break any other intermediate gauge group below sale
MI .A list of Higgs multiplets surviving at the breaking sale of a intermediate group GI , using the extended survival hy-pothesis, are given in table. A list of both one-loop and two-loop beta oe�ients, whih inlude all the ontributions,that govern the evolution above the breaking sale of GI to the next intermediate sale are also listed.Sine our model ontains intermediate steps, we require appropriate mathing onditions at the orrespondingbreaking sales. For the tow-loop RG running of the oupling onstants, the mathing onditions have been derivedin [18, 19℄. Suppose a gauge group G is spontaneously broken into a sub-group ∏iGi with several individual fators
Gi, then the following mathing ondition need to be satis�ed for the two-loop analysis

α−1
G (MI) −

C (G)

12π
= α−1

Gi
(MI) −

C (Gi)

12π
, (8)where C(G/Gi) is the quadrati Casimir invariant for the group G/Gi. We hoose initial starting values of theabove three oupling onstants ( entral values) at sale MW to be α−1

1Y (MW ) = 59.38, α−1
2L (MW ) = 29.93, and

α−1
3c (MW ) = 8.47. Now let us write theThe boundary onditions at various breaking sales, using the expression 8, an be written as1. At sale mr:

α−1
1Y (mr) =

3

5
α−1

1R (mr) +
2

5
α−1

1(B−L)(mr) .2. At sale MR:
α−1

1R (MR) = α−1
2R (MR) − 2

12π
,

α−1
2R (MR) = α−1

2L (MR) .



10Group GI Higgs ontent a b
G321

`

1, 2, 1
2

´

10
⊕

`

1, 2, − 1
2

´

10`

1, 2, 1
2

´

10′
⊕

`

1, 2, − 1
2

´

10′

0

B

B

B

B

B

@

−7

−3

21
5

1

C

C

C

C

C

A

0

B

B

B

@

−26 9
2

11
10

12 8 6
5

44
5

18
5

104
25

1

C

C

C

A

G3211

`

1, 2, 1
2

0
´

10
⊕

`

1, 2, − 1
2

0
´

10`

1, 2, , 1
2

0
´

10′
⊕

`

1, 2, − 1
2
, 0

´

10′`

1, 1, − 1
2
, 1

2

´

16
+

`

1, 1, 1
2
, − 1

2

´

16

0

B

B

B

B

B

B

B

@

−7

−3

53
12

33
8

1

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

@

−26 9
2

3
2

1
2

12 8 1 3
2

12 3 17
4

15
8

4 9
2

15
8

65
16

1

C

C

C

C

C

C

C

A

G3221D

(1, 2, 2, 0)10
(1, 2, 2, 0)10′
`

1, 2, 1, − 1
2

´

16
⊕

`

1, 2, 1, 1
2

´

16`

1, 1, 2, 1
2

´

16
⊕

`

1, 1, 2, − 1
2

´

16
(1, 1, 3, 0)45
(1, 3, 1, 0)45

0

B

B

B

B

B

B

B

@

−7

− 5
2

− 5
2

9
2

1

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

@

−26 9
2

9
2

1
2

12 39
2

3 9
4

12 3 39
2

9
4

4 27
4

27
4

23
4

1

C

C

C

C

C

C

C

C

C

ATable I: Higgs multiplets at di�erent intermediate breaking sales along with the both one-loop and two-loop beta oe�ientss,inluding all the ontributions from fermions, gauge bosons and Higgs bosons, whih govern the evolution of oupling onstantsabove breaking sale of GI to the next breakingsale.3. At the uni�ation sale MU

α−1
2L (MU ) − 2

12π
= α−1

2R (MU ) − 2

12π

= α−1
U (MU ) − 8

12π
,

α−1
3c (MU ) − 3

12π
= α−1

U (MU ) − 8

12π
,

α−1
B−L (MU ) = α−1

U (MU ) − 8

12π
.The mathing onditions at the uni�ation sale have been written by assuming the Pati-Salam sale to be almostlose to the uni�ation sale.Using the above boundary onditions we have numerially solved the equation 7 for the two-loop RG evolution for allthe oupling onstants. We have taken the breaking sale of the gauge group G3211 to be around 1TeV. The uni�ationsale omes out to be MU = 1015.4GeV and the orresponding oupling onstant is estimated as α−1

U (MU ) = 43.4.Also the breaking sale of left-right symmetri gauge group, i.e., G3221D turns out to beMR = 1011.6GeV. The runningof the various oupling onstants with energy sale are shown in �gure 1.However, we �nd that the sale of the uni�ation along with the αU − 1 are not satisfying the most reent boundson proton deay, although very lose to the limit. The urrent experimental lower bound of the partial life time for
p → e+π0 is τp > 8.2 × 1033 years and for p → µ+π0 is τp > 6.6 × 1033 years [17℄. The theoretial deay rate of theproton an be estimated as:

Γp ≃ α2
GUT

m5
p

M4
X,Y

.
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Figure 1: Evolution of oupling onstants
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45 (1, 3, 1, 0)45 {0, 2, 0, 0}Table II: Threshold ontribution at left-right breaking saleThis an be used to estimate the lower limit of the Heavy gauge boson masses. If the mass sale of super heavygauge bosons are given as MX ≃ 10nGeV, the above proton deay bound is equivalent to
κ =

(αGUT
45

)

× 102(n−15) & 11.8 . (9)What we obtain for the value of κ in our analysis is κ = 6.07. This is below the lower limit allowed by the protondeay bound as spei�ed in the right-hand side of the expression 9. However, the value of κ is very lose to theallowed lower limit and so we will try to explore the viability of our model by allowing threshold unertainty in theHiggs spetrum at various intermediate breaking sales. It is important to remark at this point that we ould get thereported value of κ to be lose to the limit only when we optimized ertain degrees of freedom in the Higgs setor.For instane, the Higgs-bidoublet Φ has been asumed to arise from a real 10-dimensional SO(10) Higgs HΦ. So Φwould not be equivalent to two SM Higgs doublets at the eletroweak sale but will be equivalent to only one suhdoublet. Similar asuumption has been also taken for Ψ. However, we would like to emphasize that the results anddisussion of the potential minimization will remain almost same.The threshold unertainty in the Higgs spetrum arises form the fat that the Higgs bosons beoming heavy ata given breaking sale may not get exatly same masses equal to the energy orresponding to the breaking sale.However, the Higgs mass spetrum is expeted to be sattered around the energy of the breaking sale within ansmall width. For our analysis, we follow a similar approah disussed in [21℄. We assume that the masses of the Higgsbosons are sattered around the breaking sale within the fator of 1
30 to 30. So if the mass of a Higgs multiplet at
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{8, 6, 6, 8}Table III: Threshold ontribution at the uni�ation salethe given breaking sale MI is MH , then we expet
1

30
.
MH

MI

. 30 .To inlude the threshold unertainty at a given breaking sale, we need to slightly modify our mathing onditionsat that sale. The mathing ondition given in expression 8 is modi�ed as
α−1
G (MI) −

C (G)

12π
= α−1

Gi
(MI) −

C (Gi)

12π
− λi

12π
,where λi = ailn

MH

MI
. So the threshold unertainty has been inluded in the mathing ondition due to presene of theterm involving ln (MH/MI).To avoid any over estimation of the threshold unertainty we assume that all the Higgs multiplets, belonging to asingle ommon irreduible Higgs representation of SO(10), beoming heavy at a given breaking sale will have thesame mass sale around the breaking sale.The threshold unertainty at the breaking sale of gauge group G3211is vanishing. The Higgs multiplets, omingfrom di�erent SO(10) irreduible Higgs, ontributing to the threshold unertainty at remaining two intermediatesales, the left-right breaking sale and the uni�ation sale, are listed in the table II and III, respetively. Theorresponding alulated beta-oe�ents, (ai)'s, whih inlude the ontribution from all the Higgs multiplets omingfrom the same SO(10) irreduible representation (as their masses are assumed to be same), are also shown for thetwo breaking sales.Now using these alulated ai's and inluding unertainty inMH/MI , as disussed before, we have shown a satterd-plot between oupling onstant α−1

U and the orresponding uni�ation sale MU in �gure 2. We have numeriallyobtained the values for α−1
U and MU for randomally hosen values for MH/MI between the range ( 1

30 − 30
). Therandom values for all the Higgs multiplets belonging to the same SO(10) ireduible Higgs are taken to be same atone pertiular breaking sale but di�erent at the other breaking sale.Moreover, we have aslo plotted the urve orersponding to the most reent proton deay bound (red solid urve)[17℄ and relatively older proton deay bound (blue dashed urve) [22℄ in �gure 2 to show the allowed region in α−1
U -MUplane. Only the right part of the urve is allowed by the bound. It is worth noting that the allowed parameter spaeis more and more onstrained as more updated data on proton deay bound is available. However, we get a resonableallowed region in the �gure 2, although small, even after allowing the most onservative threshold unertainty. Sowe expet our model to be satisfatory within the tolerable amount of threshold unertainty as far as proton deaybound is onerned.
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Figure 2: Threshold unertainty in the uni�aton sale.Yukawa Setor And Neutrino MassesIn the present setion, we disuss the origin of neutrino masses in the model. Before proeding further we would liketo make it lear that the disussion about neutrino masses in the present setion will only move around the left-rightsymmetri model with few inputs from the SO(10) GUT in motivating about ertain patterns for taken Dira massmatries for fermions in our analysis. Moreover, the disussion will be mainly foused on the matrix struture of lowenergy neurino mass matrix allowed with ertain assumptions. We will aslo argue, in what follows, that the onsistentneutrino mass spetrum is not possible within piture of one or two SO(10) singlet fermions S. We start by writingthe Yukawa setor of the model as
LY = Yij ℓLi ℓRjΦ + Y ′

ij ℓLi ℓRjΨ + (FL)in SRn ℓLiχL + (FR)in S
c
LnℓRi χR (10)

+
1

2
MmnηScLmSRn (11)The Yukawa ouplings Y and Y ′ are 3 × 3 matrix, while FL and FR are 3 × n matries, if we assume that there are

n singlet fermions S. So M is a n × n matrix. Our study of onsistent embedding of the model in SO(10) GUTrequires same struture for both FL and FR up to the sale of left-right symmetry breaking whih, after RG running,an produe small di�erene at the weak sale. For the present disussion we assume it to be small enough so that itan be safely ignored.The Dira masses for all the SM fermions inluding neutrinos are generated form the the �rst two terms by giving
vev to the bi-doublets as in any other left-right symmetri model. Sine Φ and Ψ are oming from two independentand real SO(10) 10-dimensional Higgs, the Dira mass matrix for neutrinos and harged leptons are independent.However, the Dira mass matrix for the up-type quarks have the same struture as the Dira mass matrix for theneutrinos and similarily the Dira mass matrix for the down-type quarks will have similar struture as the Diramass matrix for the harged leptons (simply beause all SM fermions are assigned to a multiplet of SO(10) GUT).Although, these similarities in the strutures are exat only at the GUT sale, we expet some of its features to bemore or less same even at the low sale. So we an well assume that the Dira mass matrix of the neutrinos wouldalmost appear diagonal in the basis where the harged lepton mass matrix is diagonal. The assumption is basedon the observation that the up-type and down-type quarks are simultaneously diagonal in the a basis as the quarkmixing matrix is very lose to unity. So we borrow the pattern from the quark setor to the lepton setor where thestruture of Dira mass matrix of the neutrinos is not diretly known unless neutrinos are Dira fermions. We expetthe following pattern of the Dira mass matrix of neutrinos in the diagonal basis of the harged leptons
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MνD = vYlepton

(

mt

mb

)
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me 0 0

0 mµ 0

0 0 mτ
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mt

mb

)

≃ v







0.0001 0 0

0 0.02 0

0 0 0.3






,where mt and mb are masses of top and bottom quarks and me, mµ, mτ are masses of eletron, muon and tau leptons.The part of the Lagrangian relevant for the neutrino mass generation is given as follows,

Lν mass =
(

ν, N c, S
)

L
. X .







ν

N c

S







L

+H.C. (12)
=
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νi, N
c
i , Sm

)

L
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(Yij)

T
v 0 FinvR

FTmjvL FTmjvR Mmnu













νj
N c
j

Sn







L

+H.C (13)Our �rst task is to analyze the mass spetrum provided by the matrix X in ase of one generation of all fermions.We write the eigenvalue equation as (eigenvalue: λ):
λ3 −Mu λ2 − F 2v2

Rλ− 2Y F 2vvLvR −MY 2uv2 = 0Case 1: λ >> v, we get
λ (λ+ FvR) (λ− FvR) = 0The above eigenvalue equation predits two TeV sale Majorana fermions. The massless solution ontradits with theondition we started with, and so is unphysial.Case 2: λ << v, we get
λ = −2Y vvL

vR
+
MY 2uv2

F 2v2
R

(14)whih is of order of eV. So the two Majorana fermions pik up masses of the order as high as TeV and one remainssu�iently light (∼ eV) to be identi�ed as light neutrino.To make the disussion some more general, we take three generations for all the SM fermions inluding the left andright handed neutrinos but only one generation for the singlet S. We look for a possibility whether it an aountfor the existing piture of three light ative neutrinos. To searh for any suh possibility, we try to �nd out the massspetrum, within this senario, by solving for the eigenvalues of the matrix X . To simplify further, we take all theeigenvalues of the matrix MνD to be same with a ommon value equal to the largest one for initial analysis. Thisenable us to fator out (λ2 − z2v2
)2 from the algebrai expression of Det (X) prediting four Majorana fermions ofsale around 10 GeV. The rest of the fators have got the same form as the expression of determinant in ase of onegeneration of all SM fermions, as disussed earlier, leading to the two TeV and one eV sale Majorana fermions. Thesenario provides us only one light neutrino and, hene, an not aount for the observed neutrino mass spetrum. Toexplore the e�et of some possible hierarhy present in the eigenvalues of the Dira mass matrix of the neutrino likeone present in the harged lepton mass matrix, we take two of the eigenvalues to be same and vary their sale belowthe third one. We are still able to expliitly get two of the Majorana fermions having mass sale equal to me

(

mt

mb

).One may think that the remaining two Majorana fermions might get mass sale as light as eV leading to three lightneutrinos. To rule out any suh possibility, we have plotted the masses of the two remaining Majorana fermions(whih omes out to be same) with the ratio of the two mass sales of the eigenvalues of the Dira mass mass matrixof the neutrinos in �gure 3. We �nd that the masses do not go below the lightest mass sale of the eigenvalues of
mνD. Even in two generation senario of S fermions, there is not muh progress exept we get two eV sale Majoranafermions whih is still not su�ient.We now turn to the ase of three generation for S fermions. One obviously expets to get the three light neutrinos.The basi way to get the low energy neutrino mass matrix has been outlined in [15℄ whih is given as
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mν = −

(

vvL
vR

)

(

Y + Y T
)

+

(

uv2

v2
R

)

Y
(

FM−1FT
)−1

Y T ,

= −
(

vvL
vR

)

[

(

Y + Y T
)

+ rY
(

FM−1FT
)−1

Y T
]

, (15)as we have uv2 = r vvLvR in our model (expression 4 ) where r = (λχ − gχ) /hχ.The �rst term is the type-III seesaw ontribution [23℄ and the seond term is the double seesaw ontribution. Withthe hoie of the vevs, it is obvious that this senario provides us with three eV neutrinos.Now we will try to explore the limits of the expression 15 for low energy neutrino mass matrix to hek its onsitenywith urrent data on neutrino masses and mixing by allowing some very simple form for matrixM . In the basis whereharged lepton mass matrix is diagonal, the neutrino mixing matrix (UPMNS) is just the matrix that diagonalizes the
mν :

(UPMNS)T mνUPMNS = mDiag
ν = Diag (m1,m2,m3) .The UPMNS mixing matrix is usually parametrized in the literature as

UPMNS = R23 (θ23)R13 (θ13, δ)R12 (θ12) .Dag
(

eiη1 , eiη2 , 1
)

,where Rij are the rotation matries in the ij plane with angle θij . δ is the CP violating phase assoiated with 1-3rotation and η's are the Majorana phases appearing only in the ase of Majorana neutrinos. To date, two mass squaredi�erenes and three angle have been measured while CP violation is ompletely unknown in the leptoni setor. Wetake the following observed values for three mixing angle and two mass square di�erenes at 90% on�dene levelfrom partile data group [24℄ as:
∆m2

21 = m2
2 −m2

1 = (8.0 ± 0.3) × 10−5 eV2

∆m2
21 = m2

2 −m2
1 = 1.9 to 3.0 × 10−3 eV2

sin2 (2θ12) = 0.86+0.03
−0.04

sin2 (θ23) > 0.92

sin2 (θ13) < 0.19We will be mainly using the mean values of the observed parameters in our analysis.



16In its most general form, it is straight forward to argue that mν an aommodate the existing data on neutrinomasses and mixing simply due to the presene of enough number parameters in F and M unless type III termdominates signi�antly. An interesting thing would be to onsider some simpler form of the neutrino mass matrixby reduing appropriate number of parameters with some tolerable assumptions. The basi idea is to explore thepossibility of any suh simpler struture in light of the urrent neutrino osillation data.We start with the assumption that the three singlet fermions S are blind to their generation within themselvesleading to the following demorati struture of matrix M :
M =







1 1 1

1 1 1

1 1 1






uThe struture allows us to believe that there is no indued mixing between the left-right neutrinos and the singlets.So, F matrix an be written as produt of a unitary matrix and a diagonal matrix. The unitary matrix onnets thebasis of the demorati struture to the basis where the harged lepton mass matrix beomes diagonal. To get somemore simpliity, we are driven to assume that the two basis are idential, i.e., the unitary mass matrix is identitymatrix. It leads to the following struture of the low energy neutrino mass matrix:

mν =
vvL
vR







α2 − 2mt

mb
me αβ αγ

αβ β2 − 2mt

mb
mµ βγ

αγ βγ γ2 − 2mt

mb
mτ






,where α, β and γ are the �nal parameters appearing in the neutrino mass matrix after absorbing all the parameterspresent in F , M and Y . We take the following familiar tri-bimaximal form of [25℄ of the UPMNS mixing matrix forour disussion and attempt to diagonalize mν having above struture:

UPMNS = Utbm =
1√
6







2
√

2 0

−1
√

2
√

3

1 −
√

2
√

3






,where θ23 = π/4, θ13 = 0, and sin2 θ12 = 1/3.We attempt to diagonalize mν with the tri-biamaximal form of the mixing matrix whih requires the followingrelation of the parameters α, β and γ with masses of the harged leptons as:

α = 0

β ≃ mµ
√

mb

2mt
(mτ +mµ)

≃ 0.05

γ ≃ − mτ
√

mb

2mt
(mτ +mµ)

≃ −0.75The diagonal neutrino mass matrix omes out of the form:
mDaig
ν ≃ −2mt

mb







me 0 0

0 me 0

0 0 2
mµmτ

(mµ+mτ )







(

vvL
vR

)So the present form of mν and UPMNS produes degenerate masses for the two light neutrinos whih is likely to beured one we slightly deviate from tri-bimaximal form of UPMNS . The deviation an be realized either by takingnon-maximal value of θ23 or non vanishing value of θ13 or both. We take only non-zero value of θ13 to be the solerealization of the deviation for our purpose. The deviated form of tri-baimaximal matrix for very small value of θ13an be parametrized as:
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UPMNS =

1√
6







2
√

2 θ13
−1 −

√
2θ13

√
2 − θ13

√
3

1 −
√

2θ13 −
√

2 − θ13
√

3





While trying to diagonalize themν , numerial methods are used to �nd out the desired values of the free parameters.We �nd that the degeneray enountered in the ase of tri-bimaximal mixing matrix disappears as soon as �nite valueof θ13 is introdued. This �nite value is determined by imposing the ondition ∆m2
21/∆m

2
31 ≃ 0.033 whih leads tofollowing value of sin θ13

sin θ13 = 0.11.The value is well within the allowed value for θ13 from osillation data. The orret sale of the mass square di�erenesis easily ahieved by adjusting the over all sale of the neutrino mass matrix. The orresponding values of the otherparameters ome out to be
α = 0.02

β = 0.06

γ = −0.75The point we would like to emphasize is that even the simple struture of the mass matrix taken in our analysisis able to aount for the existing framework of three ative light neutrinos even though the assumptions may notorrespond to any real underlying symmetry. Dark EnergyWe shall now show how the model an aommodate the proposal of the mass varying neutrinos (MaVaNs) [3, 4℄.The basi idea behind the mass varying neutrinos is that some salar �eld, the aeleron, aquires a value of the orderof 10−3 eV, whih gives an e�etive potential that ontributes to the dark energy with the equation of state ω = −1.However, till reently the neutrino masses were ontributing to the e�etive potential muh more strongly and theombined �uid of the bakground neutrinos and the aelerons were behaving as dark matter with the equation ofstate ω = 0. As the neutrino masses were varying with time, the ontribution of the bakground neutrino density tothe e�etive potential were hanging. Only in the reent past, the ontribution of the aeleron �eld to the e�etivepotential beame stronger than the bakground neutrinos, hanging the equation of state of the ombined �uid, andthe universe started aelerating with dark energy domination. This an then explain why the sale assoiated withthe amount of dark energy is omparable to the neutrino masses, why the amount of dark energy is omparable tothe ordinary matter, and why the universe is dominated by dark energy only now and for the rest of the time in thepast the evolution of the universe was governed by matter.In spite of these advantages, the MaVaNs senario are not free of problems. We shall now try to explain howthe MaVaNs senario an be aommodated in a grand uni�ed theory. After desribing the generi features of theMaVaNs, following the original proposal [4℄, we shall explain how our present model answer this question. We shallnot restrit ourselves to any partiular hoie for the aeleron �eld, and hene, onsider the potential for the aeleron�eld to be same as that onsidered in the original proposal. At the end we shall mention how the present model anbe extended to allow a milli-eV mass pseudo-Nambu-Goldstone Boson (pNGB), whih an beome the aeleron �eld.We shall now mention this possible origin of the aeleron �eld in an extension of our model. Following thepresription followed in ref. [8℄, we introdue three η and several Higgs doublets. The vevs of the �elds η would thengive rise to global symmetries, whih are allowed by all the Yukawa ouplings due to the hoie of quantum numbersof the Higgs doublets under these global symmetries. However, when the Higgs doublets aquire vevs, the globalsymmetries will be broken and there will be pNGBs, whih ouple to the neutrino masses. Although the dynamis ofthe pNGBs are not spei�ed, the masses and the potentials of the pNGBs are determined by the Coleman-Weinbergpotential, as demonstrated in ref. [8℄. Sine the introdution of several Higgs doublets may not allow the the gaugeoupling uni�ation, we shall not disuss this extension any further. Moreover, there ould be some other origin ofthe aeleron �eld, so from now on we shall only mention the generi features of this model.



18In a generi MaVaNs models, the oupling between neutrino mass and A indues the following e�etive potential
V = (ρν − 3Pν) + V0(mν) (16)Here the salar potential V0(mν) is due to the aeleron �eld (written as a funtion of neutrino mass) and Pν ispressure of the neutrino �uid. In the late time evolution the non-relativisti limit i.e. mν ≫ T is of partiularinterest. In this ase Pν ∼ 0 and one an write the e�etive potential as,
V = mνnν + V0(mν) . (17)The aeleron �eld will be trapped at the minima of the potential, whih ensures that as the neutrino mass varies, thevalue of the aeleron �eld will trak the varying neutrino mass. One an write equation of state in the non-relativistiase for a ombined �uid of neutrino + aeleron;

w = P/ρ =
PA

mνnν + ρA
(18)One generi feature of this solution is that it gives ω ≈ −1 at present. The most important feature of this senariois that the energy sale for the dark energy gets related to the neutrino mass, whih is highly desirable. This alsoexplains why the universe enters an aelerating phase now [26℄.We shall now disuss the implementation of the νDE mehanism in our model. For simpliity, we onsider onlyone-generation senario. The e�etive salar �eld potential of the salar is of the Coleman-Weinberg type i.e.

V0 = Λ4 log(1 + |Ms(A)/µ̄| (19)where, Ms is the singlet fermion mass. We assume that Ms(A)/µ̄ ≫ 1.
Ms = M〈η〉 = M udepends on the aeleron �eld A. Thus the neutrino mass beomes a dynamial quantity. When the neutrinos beomenon-relativisti the dependene of Ms on A governs the dynamis of the dark energy. Λ is hosen in suh a way toyield the dark energy density ΩDE ≈ 0.7. This type of potentials are extensively used in the dark energy literature[3, 27℄. Now we an write the e�etive low-energy Lagrangian in our model

− Leff = Ms(A)
Y 2

F 2

v2

v2
R

νiνj +H.c.+ Λ4 log(1 + |Ms(A)/µ̄|) , (20)From the hoies we have made about the vevs, we have retained only the dominant double seesaw term 14 inthe e�etive Lagrangian. As u ∼ O(eV ), the mass parameter Ms is of the order of eV. Sine the ratio (v/vR)2 ∼
10−2 − 10−3, the Yukawa ouplings oupling to be of order unity. Thus the �rst two terms in equation (14) areomparable to the last term desribing the dark energy potential.The Majorana mass of neutrino varies with the aeleron �eld through the parameterMs and the mass sale of thisparameter remains near the sale of dark energy naturally. The interesting feature of our model is that we do notneed any unnaturally small Yukawa ouplings or symmetry breaking sale to ahieve this naturalness requirement.Also the variation of Ms does not a�et harged fermion masses in the model. Moreover, the eletroweak symmetrybreaking sale v and the U(1)R breaking sales are omparable and hene the new gauge boson orresponding to thegroup U(1)R will have usual mixing with Z and should be aessible at LHC.Sine the loal minimum of the potential relates the neutrino mass to a derivative of the aeleron potential, thevalue of the aeleron �eld gets related to the neutrino mass. The aeleron �eld provide an e�etive attrative forebetween the neutrinos. When this e�etive fore is stronger than the gravity, perturbations in the neutrino-aeleron�uid beome unstable. The soure of the free-energy omes from the attrative interation between the neutrino andthe aeleron �eld. The instability is similar to that of the Jeans instability found in a self-gravitating system. Theinstability an lead to inhomogeneity and struture formation; the instability would grow till the degeneray pressureof the neutrinos would arrest the growth. The �nal state of the instability would produe neutrino lumps or nuggets[27, 28℄. The neutrino lumps would then behave as dark matter and will not a�et the dynamis of the aeleron �eld[28℄. This instability is a generi feature of MaVaNs senario, however it an be suppressed if the neutrino beomesuper�uid [29℄ or if the MaVaNs perturbations beome non-adiabati.



19ConlusionsWe have onstruted a left-right symmetri model of νDE that an be embedded in an SO(10) GUT. Afterdisussing the Higgs ontent needed for the model, details of potential minimization have been arried out onsideringall possible allowed terms. In partiular, we have tried to explore the possibility of hoosing the minima suh thatonly neutral Higgs omponents get vev without onstraining the ouplings onstants. But it turns out that some suhonstraints are needed in most general form of the potential. The omplete analysis allows the desired ordering of the
vevs. Then we study the embedding of this left-right symmetri model in SO (10) GUT. We show that SO (10) GUTwith Higgs multiplets S(54), A(45), two H(10), C(16) ⊕ C(16), η(1) along with an additional fermion singlet is ableto aommodate the left-right symmetri model. The embedding allows the Pati-Salam and the left-right symmetrygroup breaking sales to be di�erent by orders of magnitudes. We have studied the one loop RG running of variousouplings onstant and have found that the desired assignment for vev values for di�erent Higgs �elds is onsistentwith the gauge uni�ation. Then the origin and possible struture of neutrino masses and matrix have been disussedin detail. It has been shown that generation of three light ative neutrinos of eV sale is not possible in senariowith one or two SO(10) singlets fermions. In the generi ase of three singlets, we have taken a simple struture ofneutrino mass matrix with some tolerable assumptions and shown that the struture is onsistent with urrent dataon neutrino masses and mixing. Then we desribed implementation of νDE in the model. The model allows themass parameter of the singlet, whih varies with the aeleron �eld, to have the same sale as the sale of dark energysatisfying the desired naturalness requirement.
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