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Majorana Neutrino Superfluidity and Stability of Neutrino Dark Energy
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We demonstrate that Majorana neutrinos can form Cooper pairs due to long-range attractive
forces and show BCS superfluidity in a class of mass varying neutrino dark energy models. We
describe the condensates for Majorana neutrinos and estimate the value of the gap, critical temper-
ature and Pippard coherence length for a simple neutrino dark energy model. In the strong coupling
regime bosonic degree of freedom can become important and Bose-Einstein condensate may govern
the dynamics for the mass varying neutrino models. Formation of the condensates can significantly
alter the instability scenario in the mass varying neutrino models.

Some time back neutrino superfluidity was studied for
Dirac neutrinos [1], in which the left-handed and the
right-handed neutrinos form Cooper pairs due to the at-
tractive force originating from their Yukawa interactions
with the Higgs scalar. Unfortunately this interesting con-
cept could not be applied to any realistic situation in
astrophysics or cosmology. We extend this formalism
for Majorana neutrinos and show that the superfluid-
ity of relic neutrinos could be important when one con-
siders their interactions with very light scalar field, like
quintessence. We study the superfluidity of Majorana
neutrinos in the context of the mass varying neutrinos
(MaVaNs) models [2, 3] and show that it can solve the
stability problem [4, 5] of the MaVaNs naturally.

The interaction between the neutrinos in a MaVaN sce-
nario is known to be attractive[6, 7, 8] due to the pres-
ence of a quintessence field called acceleron. It is well
known that these models are unstable when the neutri-
nos become non-relativistic i.e. their pressure pν ≈ 0
[4, 5]. The instability saturates when the degeneracy
pressure balances the attractive force and the final state
can evolve as ΛCDM. It should be noted that this insta-
bility does not arise in a certain class of models involving
super-acceleration [9]

We show that this attractive interaction can lead to
neutrino superfluidity in MaVaNs by formation of the
Cooper pairs. If the size of the Cooper pairs is smaller
than the length scales relevent for the dark energy dy-
namics, the dynamics of a scalar field describing the Bose-
Einstein condensate could be applied for studying the
evolution of the system. The inclusion of the conden-
sate dynamics alters the instability scenario significantly.
Firstly, there would be no degeneracy pressure in the
bosonic system. Moreover the coupling between the neu-
trinos and the scalar field will be changed. However the
attractive force, if any, between the condensates and the
acceleron should be balanced by the Heisenberg uncer-
tainty. This kind of stable structures are known in the
literature as Boson stars [11]. Next we demonstrate that
the stability calculations considered earlier[4, 5] are al-
tered and the new stability criteria can be satisfied by
the different models of dark energy potentials. Conden-
sates with Majorana neutrinos has been discussed in the

literature [12], but here we develope a statistical formal-
ism following ref. [1].

The first problem one encounters while dealing with
the Majorana neutrino supefluidity is the chemical poten-
tial. Since the Majorana particles self annihilate, num-
ber of particles is not conserved, and hence, their number
operator and the chemical potential vanishes in equilib-
rium. However, in the early universe, these are not of
any concern: the Majorana neutrinos have two helicity
components which can vary with time according to the
helicity-flip rate. One can define the chemical potential
to the extent the helicity is conserved. Typically the ratio
of the helicity-flip rate to the current Hubble expansion
H rates is

G2 T 3gm2
ν√

gT 2/mp
∼ 10−8, (1)

where g is the effective degrees of freedom relevent for the
temperature T [13]. Thus the helicity-flipping rate of the
Majorana particles ceases below a certain temperature,
when the particles move apart from each other due to
the expansion of the universe at a faster rate compared
to their self annihilation rate [14].

Another important problem is to show how the freely
streaming streaming neutrinos can become degenerate
and exhibit superfluidity: In any MaVaN model there
is an interaction between the scalar field and the neutri-
nos. Dynamics of the neutrinos can be described by the
following kinetic equation[Afshordi et.al. in Ref.[4]]

df

dη
+ u · ∇f − aγ−1∇mν · ∂ f

∂ p
= 0 (2)

where a and η are the scale factor and the conformal time,
defined in Robertson-Walker metric, respectively. The
last term includes the effective neutrino mass variation
due to the scalar field. In the absence of the last term
on the left hand side, f is given by the usual Fermi-Dirac
distribution. However, when small perturbations of the
type δf = ∆(p)exp[i(k · x − ωη] and δmν = Σexp[i(k ·
x−ωη] are considered, the system becomes unstable and
eq.(1) gives, in a sub-Hubble regime,

ω∆(p) = k · u− γ−1

(

k · ∂f
∂p

)

Σ (3)
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Only ω/k = cs appear in the equation and there is no
preferred scale in this equation. cs can be found (Af-
shordi et. al. in Ref.[4]) to be ±

√
−1 in a nonrelativisitic

regime. Thus the instability that grows at smaller length
scale. Since there is no preferred length scale in equation
(3), the instability can continue to grow on the smaller
length scales. However in a realistic situation the in-
stability may saturate when the degeneracy pressure by
the neutrinos become important[18]. At this stage the
attractive interaction between the degenerate neutrinos
may induce the phenomenon of superfluidity.

Consider a Majorana mass term of the left-handed neu-
trinos in a model that provides an attractive long-range
force due to the exchange of a scalar field φ:

LM = νM [mν + fφ φ] νM . (4)

Although we present the formalism for one gneration, it
can be easily extended to the realistic case with three
neutrinos.

The Majorana field νM , defined in terms of the left-
handed neutrinos νL and its CP conjugate field νc

R:

νM = νL + λνc
R (5)

satisfies the condition:

νc
M = [νL + λνc

R]
c

= λ∗νM . (6)

where λ is the Majorana phase, |λ|2 = 1. We work in the
Weyl representation:

γµ =

(

0 σµ

σ̄µ 0

)

with σµ = [I2, σi]; σ̄
µ = [I2,−σi]

where I2 is a 2 × 2 unit matrix and σi are the Pauli ma-
trices. In this basis, γ5 = iγ◦γ1γ2γ3 = diag (−I2, I2 )
is diagonal, and the left and right-handed fields become:

νL =

(

ψ
0

)

; νR =

(

0
χ

)

; νc
R =

(

0
ψ

)

; νc
L =

(

χ
0

)

. (7)

The Majorana neutrinos can now be expressed as:

νM =

(

ψ
λψ̄

)

; νc
M =

(

λ∗ψ
ψ̄

)

; νM
T =

(

λ∗ψ
†

ψ†

)

; (8)

so that the Lagrangian density associated with the mass
term (equation 4) becomes

LM = [mν + fφφ]νM νM = [mν + fφφ]
[

λ∗ψ
†
ψ + λψ†ψ

]

.

It ought to be mentioned that the present mass of scalar
field differ widely from 10−4eV as in Fardon et. al. in
Ref.[2] to mφ > H e.g Bjaelde et. al. in Ref. [5]. In
what follows, we deviate from the initial model of Fardon
et. al. and consider the case with mφ > H . For small
energy and momentum transfers, interaction term can be
written as

HI = −C (νM νM ) (νM νM ) . (9)

In terms of the component fields ψ this becomes

HI = −C
[

λ∗2 ψ
†

a ψa ψ
†

b ψb + ψ
†

a ψa ψ
†
b ψb

+ ψ†
a ψa ψ

†

b ψb + λ2 ψ†
a ψa ψ

†
b ψb ] . (10)

One of the key ingredient in theory of superconduc-
tivity is to have an overall attractive interaction be-
tween its particles. In the case of a metal the Coulomb
interaction between the electrons, in Fourier space is
VCoul = e2/(k2 +K2

D), where KD
−1 is the typical shield-

ing distance. VCoul is always repulsive i.e. Vcoul > 0.
However the superconductivity arises as the the electrons
in the metal also have an attractive interaction Vph aris-
ing due to their interaction with the phonons. One can
show that for a superconductor Vph + VCoul < 0. Un-
der this condition it is energetically more favourable for
particles to form pairs. Momenta of the particles in the
pair states are directed opposite with each other and have
spin in the opposite directions. When the energy mini-
mization is carried out for the wave function containing
the pair states either occupied by the two particles or
none the gap condition naturally arises [15]. In the case
of MaVaN scenario, as implied by Eqs.(9-10) there is an
attractive interaction between the neutrons. In fact the
famous instability in this scenario arises In fact the in-
stability in MaVaN scenario arises precisely when this
interaction dominates over the gravity [4]. Since there
is no other interaction that can make up for the overall
repulsive interaction, the above condition of supercon-
ductivity can be satisfied.

The gauge boson exchange would give repulsive force
between two left-handed fields, so the only possible con-
densate would correspond to a spin-0 pairing of the left-
handed neutrinos with the right-handed antineutrinos:

〈ψa ψ
†

b〉 = ǫab D . (11)

The mean field approximation would then give us the
interaction Hamiltonian with the condensate D:

HMF
1 = −2 C

[

λ∗2 ψ
†

a ψb D + λ2 ψ†
a ψb D

∗
]

ǫab . (12)

We shall now express the Majorana field in terms of the
creation and the annihilation operators as

ψM (x) =
∑

p,s

√

mν

2ǫ

(

fpsupse
−ipx + λ∗f †

psvpse
ipx

)

. (13)

The component fields are then related to the creation and
annihilation operators through the relation

ψ =
∑

p,s

√

mν

2ǫ
fpsupse

−ipx ψ =
∑

p,s

√

mν

2ǫ
f †

psvpse
ipx

ψ† =
∑

p,s

√

mν

2ǫ
f †

psūpse
ipx ψ

†
=

∑

p,s

√

mν

2ǫ
fpsv̄pse

−ipx .
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The interaction Hamiltonian can then be written in terms
of the creation and annihilation operators as:

HMF
1 = −C

∑

p

mν

ǫ

[

D λ∗2 e−2iǫt
(

fp↑f−p↓ − fp↓f−p↑

)

+D∗ λ2 e2iǫt
(

f †
p↑f

†
−p↓ − f †

p↓f
†
−p↑

)]

, (14)

where ǫ =
√

p2 +m2
ν .

In models of mass varying neutrinos the number den-
sity of the Majorana neutrinos becomes proportional to
the inverse of neutrino mass. In addition, the effective
interaction Hamiltonian also does not conserve particle
number. Since the treatment is based on grand canoni-
cal ensemble, this requires a self-consistent treatment to
determine when the condensates become nonvanishing.
The complete Hamiltonian (H) is obtained by adding the
interaction part HMF

1 and the free-particle Hamiltonian

H0 =
∑

p

ǫ
(

f †
p↑fp↑ + f †

p↓fp↓

)

. (15)

One can also write the complete Hamiltonian in a so
called standard or canonical form in which it resembles
with the free particle Hamiltonian in Eq.(15) [16] as

H =
∑

p

E
(

b†p↑bp↑ + b†p↓bp↓

)

, (16)

where E2 = (ǫ−µ)2 +κ2 and µ is the chemical potential.
For the late universe when the neutrino become non-

relativistic, T ≪ m, one can write its chemical potential
following Ref.[17] as

µ(t) = m + (µD −m)T (t)/TD

where TD is the decoupling temperature and T (t) can be
regarded as the current temperature. In the late universe
the second term on the right hand side can be negligible
compared to the first term.

One can have a time-dependent transformation that
can relate the complete Hamiltonian H = H0 + HMF

1

with the standard form given by Eq.(16) [1, 16]. A rela-
tion between the annihilation and the creation operators
in both the Hamiltonians is given by

bp↑ = cos θei(α+ǫt)fp↑ − sin θei(α+ǫt)f †
−p↓

bp↓ = cos θei(α+ǫt)fp↓ + sin θei(α+ǫt)f †
−p↑ , (17)

with Dλ∗2 = |D|e2iα, tan 2θ = κ/(ǫ − µ) and κ =
2 C|D|mν/ǫ. A consistent solution for the nonvanishing
condensate D 6= 0 requires α = π/2, which has contri-
butions from both the condensate D as well as from the
Majorana phase λ∗. The magnitude of the gap is deter-
mined by the consistency condition that the value of the
condensate is same as that of the value obtained by the

canonical transformation. In other words, if we express
the condensate in terms of the density matrix (ρ) as

〈ψa ψ
†

b〉 = ρψa ψ
†

b , (18)

the density matrix (ρ) satisfies the consistency condition

ρ =
e−βH−µN

∑

e−βH−µN
=

e−βH

∑

e−βH
. (19)

This condition translates into

C
2

∫

d3p

(2π)3
m2

ν

ǫ2
1

√

(ǫ− µ)2 + κ2
= 1 , (20)

whose solution gives us the magnitude of the gap. This
integral is divergent and it should be cut off with the
upper limit Λ. The condensates form due to the attrac-
tive force between the neutrino and the scalar field in
the MaVaN scenario. For the early times when the neu-
trinos were in thermal contact with the other species in
the universe, this attractive interaction may not be very
important. Thus the values of Λ can be estimated from
the energy scales below which the attractive interaction
can be felt by the neutrinos become important.

Solving this equation we obtain the gap

∆ = 2

√

2Λ

mν

(

3π2nν

)1/3
e−x , (21)

where x = 2π2/[Cm2
ν(3π2nν)1/3]. The critical tempera-

ture and the Pippard coherent length are given by

Tc =
eγ

π
∆ ≈ 0.57∆; ξ =

ex

π
√

2Λmν

. (22)

This completes the formalism of formation of Cooper
pairs with Majorana neutrinos and BCS superconduc-
tivity. This may have many applications.

We shall now discuss how the Majorana neutrino su-
perfluidity, can solve the stability problem [4, 5] in neu-
trino dark energy models [2, 3, 7]. We demonstrate this in
a specific two-generation neutrino dark energy model [7].
The standard model is extended with two right-handed
neutrinos Ni, (i = 1, 2) and two scalars Φi, (i = 1, 2) with
a global U(1)1 ×U(1)2 symmetry, so that these fields in-
teract as

LM =
1

2
α1N̄1N

c
1Φ1 + α2N̄2N

c
2Φ2. (23)

When the fields Φi acquire vacuum expectation values
(vev) 〈Φi〉 = fi, we can express them as

Φi =
f

2
√

2
e2iφi/f , (24)

where φi are the massless Nambu-Goldstone bosons and
we assumed same decay constant fi = f for both the
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fields. Writing αiΦi = Miexp[2iφ/f ], we get the masses
of the right-handed neutrinos Ni to be Mi.

In this model, the neutrino Dirac mass terms mij ν̄iNj

do not respect the global symmetry, and hence, one com-
bination of the global U(1) symmetries is broken ex-
plicitly. As a result, one of the two massless Nambu-
Goldstone bosons picks up a small mass, making it a
pseudo Nambu-Goldstone boson (pNGB). This pNGB
(denoted by φ) can then become the acceleron field that
explains the dark energy

After integrating out the heavy right-handed neutri-
nos, we can write down the mass matrix of the light
physical neutrinos νT

p = ( ν1 ν2 ), as given in equation
4, where fφ = −im2/2Mf is not diagonal, leading to a
long-range attractive force, and mp = m2/M . In these
models of MaVaNs, naturalness restricts the mass scales
of the model and the right-handed neutrino mass scale is
supposed to be as low as eV.

To estimate the parameter x we need to know C which
depends on the acceleron mass C ∼ 1

8mφ
. If one takes

mφ ∼ 6Mpc [5], mν ∼ 1eV and nν ∼ 56/cm3 one finds
x ∼ 10−56. Thus practically the exponential factors in
Eqs.(21-23) are unity. So, the relevent scales of this equa-
tions are determined by the cut-off Λ and neutrino mass
mν . There remains a great deal of uncertainty over the
range of these parameters. For example if one can take Λ
as the scale when the tracking ρν ∼ ρDE becomes valid
[see Fardon et.al in Ref.[2]], one can take Λ as the de-
coupling temperature 1MeV . One can also take Λ to be
very close to the scale when the neutrinos become non-
relativistic i.e. few times mν . If we take the neutrino
mass around 1 eV , ξ has range between 0.36 − 104 cms.
The values of ξ in this entire range still can be smaller
than the neutrino lumps [18]. Finally we comment on the
so called instability in MaVaN models[4] in this changed
scenario with the condensates. The instability is known
to arise when the coupling between the scalar field and
the neutrinos is stronger than the gravitational force.
The coupling can be described by a source term of the
type β(φ)(ρν − 3pν) [5]. In the the relativistic regime
ρν ∼ 3pν , the coupling is highly suppressed. However, it
can become strong in the non-relativistic limit pν ∼ 0.
Size of the Cooper pairs is determined by the interaction
strength between the scalar field and the neutrinos. φs

dynamics is given by the following Lagrangian density

L = ∂0φ
†
s∂0φs − ∂iφ

†
s∂iφs − V (φs), (25)

where, m ≃ 2mν represents mass of the condensate. The
condensate potential

V (φs) = m2|φs|2 + g|φs|4 (26)

There can be interaction between the condensate φs and
the scalar field φ given by Vint = g1φφs. We can write
down the perturbation equation for the coupled system

φ and φs, following Bjaelde, et. al. in Ref.[5], for the
minimum of the effective potential tracked by the fields,

δφ̈+ 2Hδφ̇+
[

k2 + a2V ′′
φ

]

δφ = g1δφs (27)

δφ̈s + 2Hδφ̇s +
[

k2 + a2V ′′
φs

]

δφs = g1δφ. (28)

It should be noted that g1 quantifies the coupling be-
tween the condensate field φs and the scalar field φ and
it can be much smaller than the coupling between the
neutrinos and the scalar field. The condensates already
formed due to the attractive between the Majorana neu-
trino mediated by the φ.

Eqs.(27-28) contain V ′′
φ and V ′′

φs
terms which are non-

linear functions of φ and φs respectively. These equations
are linearized by making the assumption that they can
be written as φ ≈ φ0 + δφ and φs ≈ φs0 + δφs, where,
the quantities with suffix 0 represent background quan-
tities and they can vary with time much slowly than the
perturbation. From this perturbation in the scalar field

δφ =
g1δφs

−ω2 + 2iH + k2 + a2V ′′
φ

(29)

We can compute V ′′
φ in Eq.(24) using two forms of po-

tential Vφ frequently used in the MaVaN models. First
we consider Coleman-Weinberg type of potential [19]

Vφ = V0log(1 + κφ) (30)

where parameters V0 and κ can be selected to yield to-
tal dark energy contribution ΩDE ≃ 0.7. Using the

above linearization one can find V ′′
φ = 2κ2V0

(1+κφ0)2
. Secondly

we consider an inverse power-law model of the potential
given by

Vφ =
Mn+4

φn
(31)

where the parameter M can be fixed by the requirements
ΩDE ≃ 0.7 and mφ ≫ H . Thus we write as for n < 1,

V ′′
φ =

n(n− 1)(n− 2)Mn+4

φn−1
0

(32)

Instability is known to occur in a MaVaN scenario for
H < k/a < mφ [5]. The following dispersion relation can
be obtained from Eqs.(27-28):

ω4 − 4iHω3 −
[

4H2 +B
]

ω2 + 2iHBω +B1B2 − g2
1 = 0
(33)

where, B = 2k2 + a2
(

V ′′
φ + V ′′

φs

)

, B1 = k2 + a2V ′′
φ and

B2 = k2 + a2V ′′
φs

. Eq.(30) is quartic in ω and it can
be solved exactly by analytical means. However it is in-
structive to solve it by approximate methods. The terms
that are linear in the expansion rates H will contribute
to the damping of the modes. Moreover the instability, in
the MaVaN scenario without the condensates, the insta-
bility was found to occur in the regime H < k/a < mφ.
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Thus H defines the smallest wave-vector of the perturba-
tions. In what follows we ignore the terms involving H in
Eq.(33) to get following biquadratic dispersion relation,

ω4 −Bω2 +B1B2 − g4
1 ≈ 0 (34)

Solution of this can be written as

ω2 = B ±
√

B2 − 4 (B1B2 − g2
1) (35)

None of the roots of Eq.(32) is imaginary if B ≥ 0 and
B1B2 − g2

1 ≥ 0. These are the stability criteria and their
validity may depend on the form of the scalar field po-
tential as B and B1 both involve the term V ′′

φ . If B ≥ 0

and B1B2 − g2
1 < 0 then the two roots of Eq.(39) are

purely imaginary and one of it could give the instabil-
ity. It is easy to verify that for the Coleman-Weinberg
potential given by Eq.(33) V ′′

φ is positive for the parme-

ters values V0 ≈ 8.6 × 10−13eV 4, κ ≈ 1 × 1020M−1
pl and

φ0 ≈ 10−6Mpl taken from Ref. [5]. For the condensate
potential with g > 0, one can have all the stability con-
ditions satisfied for a sufficiently small coupling strength
g1. The stability condition satisfied for the entire regime
H < k/a < mφ. For the power-law kind of potential
given by Eq.(34) one can take M ≈ 0.011eV , n = 0.01
and φ0 ≈ 0.001Mpl [5],one can have B1 > 0. For this
case the stability conditions are again satisfied for a suf-
ficiently small values of the coupling g1 and g > 0.

The Majorana neutrino superfluidity we discussed may
have some interesting consequences. The effects of the
attractive long force, required for the formation of con-
densates, have been discussed for the neutrino oscillation
experiments [20] and also in cosmology [7]. The acceleron
potential can also change some of the features of the neu-
trino oscillations [21], which will be further modified in
the presence of the condensates.

We would like to note here that the stability analysis
provided in this paper is for the scalar field φs describing
neutrino condensates. This is a valid description when
the Bose-Einstein condensation (BEC) is formed. How-
ever when the coherent length is much smaller than the
neutrino interparticle spacing, the phenomenon of super-
fluidity of Majorana neutrino still occur in BCS as shown
in Ref.([1]). Furthermore, the accelerated expansion can
make the ratio of the helicity flip rate to the Hubble ex-
pansion rate even more smaller than the one we have at
present. Thus the condition for defining chemical poten-
tial in accelerated universe will remain satisfied in future.
However the chemical potential thus defined is a ’dynam-
ical quantity’. But the question of the small variation in
the chemical potential with time may not be studied by
the formalism presented here.

In summary we have discussed two issues for MaVaN
models namely the superfluidity of Majorana neutrinos
and the stability of MaVaN dyanmics. We proposed a
formalism to have condensates with Majorana neutrinos.

Our formalism shows that the neutrino superfluidity nat-
urally arises in MaVaN scenario and is a generic feature
of interacting Fermi particles having attractive potential
between them at a low temperature [22]. In addition, we
have also shown that for the case when the condensate
dynamics become important and mφ > H the dynamics
of the condensate can be stable for a variety of the dark
energy potentials.
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