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Abstract. We present a theoretical analysis of the dynamics of crystal growth from a
supercooled melt. A molecular theory of crystal growth that pays proper attention to the
structure at the liquid-solid interface is discussed.
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1. Introduction

Kinetics of crystal growth has been a subject of absorbing interest for several decades
(Cahn 1960; Cahn et al 1964; Bennema and Gilmer 1973; Carruthers 1979; Langer
1980). Recently attention has been focussed on understanding the dynamics of crystal
growth from a microscopic basis. In this article we present a molecular theory of crystal
growth developed by Bagchi and Kirkpatrick (1986) and discuss some of its
consequences. In the next section we discuss the structure at the liquid-solid interface
and its relevance to the kinetics of crystal growth. In §3 we describe the recent theory of
Bagchi and Kirkpatrick. Section 4 concludes with a discussion.

2. Structure at the liquid-solid interface

Despite considerable effort over the years, the structure of the liquid-solid interface
remains controversial and poorly understood. The main reason for this uncertainty is
that it is difficult to obtain experimental information about the interface which is quite
narrow and is bounded by two condensed phases. Most of our understanding on the
structure of the interface comes from computer simulations (Cape and Woodcock
1980; Broughton et al 1981; Cleveland et al 1982) and from theoretical studies (Cahn
and Kikuchi 1985; Haymet and Oxtoby 1981; Oxtoby and Haymet 1983; Tempkin
1966). Computer simulation studies indicate that the liquid-solid interface of a simple
one-component system may be 6-8 monolayers wide. The decay of crystalline order
may depend on the orientation of the crystalline solid. Theoretical investigations have
reached similar conclusions on the structure of the interface. In the following we briefly
discuss two theoretical studies that are relevant to the present work.

+ Contribution number 346 from the Unit.
* To whom all correspondence should be addressed.

465




466 Biman Bagchi and T R Kirkpatrick

The first study we discuss is that of Tempkin (1966) who proposed a multi-layer
model of the interface. The merit of the Tempkin model is that it does not limit the
number of layers and that it can be applied to different kinds of interfaces. This model
consists of an infinite number of layers with the thickness d,;, the interplanar distance of
the (hkl) face. Molecules in each layer are divided into solid-like and liquid-like
molecules. A solid-like molecule can occur only on another solid molecule. The frac-
tion of solid molecules in the nth layer, C,, is the order parameter in this model. In
the Tempkin model, n ranges from — oo (solid) to + co (liquid) with C_ = 1 and
C .+ = 0. The assumption of solid on solid (sos) rules out ‘overhangs’ and implies
that C,,, < C,. In the Tempkin formalism one calculates the change in Gibbs free
energy that occurs if a completely flat (that is, singular) interface is ‘roughened’.
For the flat reference face the following conditions hold: —oc <n <0, C, = 1, and
1 <n< + o0, C, =0; the reference face is placed between n =0 and n = 1.

By using standard methods of statistical thermodynamics, Tempkin obtained the
following expression for AG, the change of Gibbs free energy upon roughening a
singular reference plane for the (001) face of a simple cubic lattice:

AG 0 >
m?=ﬂl: 2 (1—C..)—"§,1Cn]

n= - o

+a i C"(I—C")+ i (Cn“cn+1)1n(cn—cn+l), (1)

n= - n= o

where ‘
o = 4g/kgT, B = Ap/kgT. @

2¢ is the energy gain upon formation of two solid-liquid bonds by replacing a solid-solid
bond and a liquid-liquid bond. Ay is the change in chemical potential where a solid-like
molecule is converted into a liquid-like molecule, i.e. Au is the difference in chemical
potential if the two phases are not in thermodynamic equilibrium. kj is the Boltzman
constant and T the temperature. A self-consistent equation can be obtained from (1) by
minimizing AG with respect to C,. This leads to the following equation:

[(Cy=Chs1)/(Cy-y —C,)]exp (—2aC,) = exp (—a+f), 3)

which has to be solved numerically. Main results of Tempkin model are summarized
below:

(i) The interface is sharp for high values of o and is rough and broad for low «. There
is no ‘roughening’ transition as « is lowered, but the interface can be considered rough
for « S 1 and sharp (or flat or singular) for « 2 4. For most metals « ~ 1 and so the
interface is rough.

(ii) For nonequilibrium interfaces with B # 0, the Tempkin model predicts two
regions in the f-a plane separated by a continuous line originatingat = 0,0 ~ 1'1. In
the region with higher « and lower f, there is a stable interface, whereas in the other
region there is no stable solution to (3). In the latter region, Tempkin’s model predicts
continuous growth for infinitesimal B. For example, for most metals, Tempkin’s model
predicts continuous growth even for B~ 107°. For organic crystals like salo] with
high o, a large driving force is necessary to maintain growth of the crystal. It is worth
noting that a is proportional to the latent heat of fusion. ,

Despite the considerable success of Tempkin’s model, it suffers from some
fundamental drawbacks when applied to the crystal-melt interface. For a crystal-melt
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interface it is not possible to disctiminate between a solid-like and a liquid-like
molecule. Another drawback is its failure to describe the semi-crystalline topological
order present at the interface; C,, is just an average density. A more detailed description
is desirable.

Such a description has been provided recently (Haymet and Oxtoby 1981; Oxtoby
and Haymet 1983)in a molecular theory of the crystal-melt interface by generalizing the
order parameter description of freezing developed by Ramakrishnan and Yussouff
(1979). The central point of the Haymet-Oxtoby formalism is that the interface is
treated as a perturbation about the homogeneous liquid phase. The main assumption
of this work is that the interface is sufficiently broad, compared to the molecular
diameter, so that a square-gradient approximation on the spatial variation of the order
parameters can be made. The order parameters describe the inhomogeneous density
distribution at the interface which is assumed to be of the following form

no (1) = py[1+ do ()] + p, 3 ¢, () exp (iG ), @)

where p, is the average equilibrium density of the liquid phase and the G are the
reciprocal lattice vectors (RLv) of the crystalline solid phase. ¢, and ¢, are the order
parameters that characterize the structure at the liquid-solid interface. They are
analogues of the C, of Tempkin’s model. These order parameters are zero in the pure
liquid phase far from the interface and have constant non-zero values in the pure solid
phase. It is assumed that these order parameters change smoothly from their liquid-like
to solid-like values as the interface is traversed from liquid to solid.

Oxtoby and Haymet (1983) obtained a set of self-consistent differential equations for
the variation of ¢, and ¢, and solved these equations numerically for planar bcc 100
and 111 crystal-melt interfaces. Their calculations show that the interfacial transition
zone is quite broad, which is consistent with their starting assumption. One interesting
prediction of the theoretical calculations is the existence of a ‘structured liquid’ region
in the interface characterized by a liquid-like average density, but solid-like topological
ordering,

It is obvious from the preceding discussion that the diffuse interface model of
Haymet and Oxtoby (proposed originally by Cahn 1960) predicts a picture of the solid-
liquid interface that is considerably different from that of Tempkin. In Tempkin’s
model, the microscopic boundary between solid and liquid is sharp, even after the
‘roughening’ of the surface. Recent investigations of Weeks and coworkers (Weeks and
Gilmer 1979) have clearly shown the presence of a roughening transition for a solid-
vapour interface. For a Lennard-Jones system, the roughening temperature, T, is below
the triple point. So, this roughening transition may be of little relevance to a solid-liquid
interface since the density of the liquid even at a temperature slightly above the triple
point is at least an order of magnitude larger than that of the vapour. Thus, a
description of the solid-liquid interface cannot be based on models which are primarily
designed to describe a solid-vapour interface. A dense liquid is characterized by
considerable amount of short range order. Any theory of the solid-liquid interface must
pay attention to this local structure in dense liquids. This view may be further
strengthened by looking into the disparate time scales that are involved in the
dynamical processes at these two interfaces. At a solid-vapour interface, the self-
diffusion coefficient of a molecule in the solid phase is negligibly small compared to that
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in the vapour phase. Thus, for many properties, one can distinguish between a molecule
in the solid and in the vapour state. Such a clear demarcation does not exist at a
microscopic level for the solid-liquid interface; there is not sufficient separation in time
scales of motion of a molecule in two adjacent layers. Thus, a diffuse interface model, in
which a gradual change in atomic arrangements occurs over several molecular layers,
seems more appropriate. This view finds support in results of recent computer
simulations of solid-liquid interfaces.

In this paper we assumed a diffuse interface model to describe the dynamics of crystal
growth from a supercooled melt. Qur theory pays proper attention to the local
structure of the liquid. A considerable amount of work need to be done before a
detailed comparison of this theory with experiment can be made. We now briefly
discuss the theory. .

3. A molecular theory

We shall consider the growth of a perfect crystal from its supercooled melt. Because of
supercooling, there will be a thermodynamic driving force towards solidification at the
interface which will favour advancement of the crystalline front. In addition to
supercooling, the velocity of crystal growth will be determined by two other factors: the
rate of removal of the latent heat generated by solidification and the viscous forces
present in the liquid which inhibit the formation of crystalline order. Thus the process
of crystal growth is complicated due to the involvement of several dynamical processes
of varying temporal and spatial dependences.

For a crystal to grow into the adjacent melt, several microscopic processes must
occur simultaneously. Firstly, a transport of mass is involved because the crystal is
denser than the liquid. For many solid-liquid transformations, the fractional density
change involved is substantial, often 10-209; of the density of the liquid. Even for a
much smaller fractional density change (as is the case for liquid metals), it may play an
important role in crystal growth because it is a locally conserved variable and in a high
density liquid, especially at the solid-liquid interface, transport of particles is a slow
process. Secondly, the periodic arrangement of particles must build up from the
spatially random liquid structure. An important point here is that the interface is rather
narrow. Thus, the local structure of the liquid is important in the crystallization process.
One can approximately distinguish between two regions within the interface, In the
region close to the solid surface, the density and atomic arrangements will be solid-like,
whereas in the region close to the liquid side, the opposite is true. For a slow steady
growth of the crystal, these quantities (the density and the topological order) are
expected to evolve slowly towards their solid phase values. In this limit, one can
generalise the order parameters ¢, and ¢, of (4) to the time domain and expand the time
dependent singlet distribution function in the following form:

n(r, t) =D [1 + ¢0(r: t)] + Pi Z ¢n (l', t) €xp (1 G- l'). (5)

As before, ¢, represents the time dependence of the fractional change in density,
averaged over an unit cell of the lattice, and ¢, represents the time dependence of the
oscillatory part in density. Such a separation is meaningful because the magnitudes of
G’s are large.
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It is worth pointing out that ¢, and ¢, are coupled. So, crystal growth is a process
where a locally conserved variable (¢,) (in a coarse-grained description) is coupledtoa

‘nonconserved variable (¢, ). In the terminology of time dependent statistical mechanics,

such a process corresponds to the model C of the time dependent Ginzburg-Landau
(tpct) theories discussed by Hohenberg and Halperin (1977). One objective of this
work is to obtain equations of motions for ¢, and ¢, from a model kinetic equation for
n(r,t).

The kinetic equation proposed by Bagchi and Kirkpatrick (1986) is a non-linear
diffusion equation that contains a mean-field force term due to the liquid structure
present on small length scales and a term due to the temperature variation at the
interface. The equation is given by

9’-%:—’2=v-f)(r,t)-[Vn(r,z)-ﬁnF]—v-f)-nvmﬁ, 6)

where D (r, t)is the position and time dependent self-diffusion tensor, Bis [k5 T (r, n]*
and F (r,f) is the mean-field force term given by

BF (r,t)y =V [dr'c(r—r)n(,1), )

¢(r) is the two particle direct correlation function.

The justification for using a non-linear diffusion equation to describe the dynamics
of crystal growth has been discussed elsewhere (Bagchi and Kirkpatrick 1986). Here we
briefly mention the salient points. Firstly, (6) has correct limiting properties. At
equilibrium, the solution of (6) is the standard mean-field expression for the
inhomogeneous density distribution that has been used successfully in the theory of
freezing. Ina homogeneous system in the absence of a temperature gradient, (6)leads to
an expression for the dynamic structure factor S (k, w), which can describe neutron
scattering by dense classical liquids fairly well for large values of the wave vector k.
Secondly, recent work of de Schepper and Cohen (1982), and also of Kirkpatrick (1985),
on short wavelength collective modes show that the dynamics at large wave numbers
are dominated by a self-diffusion-like mode alone. Thirdly, the mean free path in a
liquid at freezing density is extremely small, only 35 %, of molecular diameter. This last
fact implies that in a dense liquid a hydrodynamic-like description can be used to
describe processes taking place on a molecular scale.

Next, we substitute (5) for n (r, £) in (7) to obtain an expression for F (r, ). Equations
(5)and (6) are then combined to obtain an equation of motion for the order parameters.
The resulting expression is rather complicated. We write it in the following form

0 0
%.}. EZ ¢, (0, )exp(iG, V) =[A(r, )= p; ), Qu -a(r, 1)]

+pIZBn(rat)cxp (iG"'l')"‘p, z Qn,m(r’t)exp [l(Gn+Gm)r]s (8)
Gt G

where the coefficients 4, B, and Q, ,, are functions of the order parameters ¢, and ¢g,
of D and T, and of their spatial derivatives. Expressions for 4, B, and Q,, ,, are given
elsewhere (Bagchi and Kirkpatrick 1986).

From (8), we can derive equations of motion for the order parameters ¢, and ¢, if we
assume that ¢, and ¢, vary smoothly in space and time. The form of the resulting
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equations is similar to the ones obtained from the time dependent Ginzburg-Landau
description, with one important difference. In our formalism, we have explicit
expressions for the coefficients that occur in the expansion of the free energy functional
in the order parameters. Another aspect of (8) is that it is derived from a kinetic
equation (6) and so is expected to the valid in nonequilibrium situations.

Equation (8) must be supplemented with an equation of motion of the temperature
field T(r, t). In principle, one should be able to express the rate of change of T'(r,¢) in
terms of the rate of change of the order parameters, and the thermal diffusion
coefficient. Collins and Levine (1985) have recently initiated such an approach to the
problem of diffusion limited crystal growth. The basic idea here is that as the crystalline
front advances into the liquid, the order parameters change from liquid-like to solid-
like values giving rise to latent heat of fusion which must be removed from the interface
by thermal diffusion. So, we should find an expression for the local latent heat of fusion
(that is, a position dependent entropy change) in terms of the order parameters. We
shall leave this taks for the future. In this paper we shall assume a linear temperature
gradient across the interface and find an expression for the velocity of steady growth of
a planar crystal surface.

Let usassume that the crystal is growing in the z-direction with a constant velocity V.
In the coordinate frame attached to the moving surface, ¢,, ¢,, D and T will be
approximately independent of time for a slowly advancing interface and their
dependence on the position coordinate z will be similar to that of a stationary
equilibrium interface. The first term on the right hand side of (6) will then be small and
negligible. Making the coordinate transformation

zy =z+ Vi, 9
we obtain

—{j—n(z —Vt) = ——a—D(z Vt)yn(z Vr)x—l- g T(z,—Vt (10)

gty = dz, 1 ! Toz, ** )

The time derivatives of the order parameters are given by

0 _ g,

'é‘t‘¢o(21"Vf)— - -ZT’

b o,

Egb,,(,.l——Vt)—— _VE;' (1)

Using (11) and (5) in (10) and keeping only the terms that are multiplied by (G, %)
because they are the dominating terms, we obtain the following simple expression for

V= —;1; j dzD(z)%;a% T (2), (12)

where z,, is the width of the interface, and z, and z, denote positions where the order
parameters reach their liquid-like and solid-like values, respectively. If we further
assume a linear dependence of T'(z) on z, we recover the usual linear dependence (Cahn
1960) of ¥ on AT—the temperature difference between the crystal and the melt.
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4. Discussion

An analysis (Langer 1980) of the thermal diffusion equation with the usual equilibrium
Joule-Thomson boundary condition shows that a steady-state solution for the thermal
field is possible only for a unique supercooling (T (— ) =T, — L/C, where T, is the
equilibrium melting temperature, L the latent heat and C, the specific heat). At this
supercooling, the crystal growth velocity is arbitrary (Langer 1980). As discussed by
Collins and Levine (1985), this is simply because of the absence of any length scale in the
problem. In the analysis of Bagchi and Kirkpatrick (1986), the length scale is
determined by the variation of the order parameters in the interface and this gives rise
to a well-defined velocity of growth of a planar interface, as given by 12).

It is interesting to compare our theory with Cahn’s original (Cahn 1960) theory of
crystal growth. The fundamental ideas are quite similar. The main difference is that our
work is more microscopic and pays proper attention to the structure at the solid-liquid
interface. This has been possible because of our use of the nonlinear diffusion equation
(6) to describe the dynamics at the interface.

A limitation of this work is that it is based on a mean-field description of the potential
experienced by the particles at the interface. However, the justification of using a mean-
field description in the present problem comes from the following observations. Firstly,
such a description has been successfully used in the theories of freezing. Secondly, it
gives fairly accurate description of the dynamic structure factor, S (k, w), for large
values of k. Since dynamics of freezing involves variations on molecular length scales,a
description at the level of the mean-field may be fairly accurate.
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