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Abstract

A simple algorithm to calculate the group theory factor entering in
anomalies at four and six dimensions for SU(N) and SO(N) groups
in terms of the Casimir invariants of their subgroups is presented.
Explicit examples of some of the lower dimensional representations of
SU(n), n ≤ 5 and SO(10) groups are presented, which could be used
for model building in four and six dimensions.
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The consistency of any gauge theory requires that the sum of anomalies

[1] due to all the fermions present in the theory should cancel. The anomaly

cancellation is necessary because any classical symmetry is broken by quan-

tum effects in the presence of anomaly. In other words, any gauge theory

with non-vanishing anomaly is non-renormalizable [2].

In the standard model of electroweak interactions, the fermion content is

just right to make the theory anomaly free. In any extensions of the standard

model, particularly the ones which introduces additional gauge symmetry,

the most severe constraints come from the anomaly cancellation conditions.

Anomaly plays crucial roles in theories of dimension higher than four. Since

all representations in odd dimensions contains both left and right chiral fields,

there is no anomaly. But in dimensions six, eight or ten, any theory has to

cancel higher dimensional anomalies. In higher dimensional theories if the

space is compactified in an orbifold, then the orbifold compactification also

lead to anomaly at the fixed points. Consistency of such theories then require

that the brane anomalies at the fixed points should vanish.

Fermions in the loop contributes to anomaly. So, in non-supersymmetric

theories the fermion representations are constrained by anomaly. But in

supersymmetric theories, any chiral superfield would contribute to anomalies.

So, the superfields containing both the scalar and fermion representations are

constrained by the anomaly cancellation requirement.

The cancellation of anomaly is thus an integral part of constructing any

consistent model in four or higher dimensions. It is thus important to know

the group theory factor of any representation contributing to anomaly in four

or higher dimensions. In four dimensions one needs to calculate the triangle

anomaly, while at six dimensions it is a box anomaly and at eight dimensions

it is pentagon anomaly. These group theory factors for higher groups become

difficult to calculate. There are rigorous methods for searching anomanly free

theories that are used usually [3]. In this article we present a simple algorithm

to calculate the group theory factor appearing in the expression for anomaly
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in four and six dimensions for Lie groups, which could be useful for model

building.

In four dimensions, if the fermions belong to a representation R of G, then

the group factor in the expression for anomaly can be written in terms of the

generators T a(R1) for this representation R1 of G. Then the contributions

of fermions in a representation Rr to anomaly will be proportional to

3A = tr [T a(Rr)T
b(Rr)T

c(Rr)]. (1)

We shall use the notation nA to represent anomalies, so that triangle anomaly

in four dimensional theories is represented by n = 3; box anomaly in six

dimensions with n = 4 and pentagon anomaly in eight dimensions by n = 5.

In general, n = d/2 + 1 for anomaly in a d-dimensional theory and the

group factor for fermions or chiral superfields in a representation Rr entering

in the expression for anomaly is given by

nA = trRr
T n = tr [T a1(Rr)T

a2(Rr) · · · T an(Rr)]. (2)

In four dimensions this anomaly factor for all the fermions or all the su-

perfields should cancel for consistency. In higher dimensional theories one

should apply this factor with caution.

Consider a six dimensional orbifold model [4, 5], compactified on R4 ×

T 2/Z2. There will be four dimensional anomaly at the fixed points and also

the six dimensional anomaly at the bulk. If the gauge group in the bulk is G

and at the fixed points only the group H acts, then the only non-vanishing

anomaly at the fixed points will be restricted to the subgroup H of G. The

brane anomalies are also associated with the parities that acts on the fields

due to the action of the discrete Z2 symmetry. So, the choice of parity to

break N = 2 supersymmetry to N = 1 supersymmetry implies that the

spinor in a vector superfield and spinor in a scalar superfield contribute to

anomalies with opposite sign. There is another difference in anomalies at six

dimensions. In some cases there are contributions of the form

Ared = (trRr
T 2)2
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in addition to the usual trR)r T 4 terms. This factorized contributions, also

known as reducible anomalies, does not have any analogy in four dimen-

sions and could be cancelled by introducing antisymmetric tensor fields and

utilizing the Green-Schwarz mechanism. We shall thus calculate the group

factor for the irreducible anomaly contributions, given by 4A. Since there

are no independent 4th order invariants for the groups SU(2) and SU(3) and

trRr
T 4 = (trRr

T 2)2, we shall not present 4A for these two groups.

In the present approach all invariants are calculated in terms of invariants

of the subgroups. Consider the subgroup

G1 × G2 ⊂ G, (3)

where G2 = U(1) is an abelian subgroup of G. We can then decompose any

representations of G under G1 × G2 subgroup as

R =
∑

i

(ri, fi) (4)

where fi are the U(1) quantum numbers of G2. For any group SU(m) we

can write down the decomposition of the fundamental m dimensional repre-

sentation under the subgroup SU(m − 1) × U(1) as

m = (m − 1, 1) + (1,−m + 1). (5)

The second numbers 1 and (−m + 1) are the U(1) quantum numbers in this

decomposition. Using the product decomposition formulas we can find out

the decomposition of all other representations of SU(m) under the subgroup

SU(m − 1) × U(1).

We can then use the formulas

3A(R) =
∑

i

T 2(ri) · fi

4A(R) =
∑

i

3A(ri) · fi

nA(R) =
∑

i

(n−1)A(ri) · fi (6)
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to calculate the anomalies for the representation R of the group G in terms

of the invariants of the subgroup G1 × G2. For verification of the results we

also use the formulas

nA(R) =
∑

i

nA(ri). (7)

For completeness we also present a couple of useful relations

nA(R1 + R2) = nA(R1) + nA(R2)

nA(R1 ×R2) = nA(R1)D(R2) + nA(R2)D(R1). (8)

Thus by writing down the decomposition of any representation under its sub-

group containing a U(1) factor, it will be possible to calculate the irreducible

group factor entering in the expression for anomalies. For the cancellation of

anomalies in any theory, we require only this factor and hence these results

will be extremely useful while building models in many extensions of the

standard model.

Let us first consider the group SU(2). Since all representations are pseudo-

real, all four dimensions triangle anomalies vanishes. There are also no fourth

order invariants and hence we have to worry only about the quadratic Casimir

invariants. For the group SU(2) the quadratic Casimir invariants are given

by

T 2(N) =
(N−1)/2∑

i=−(N−1)/2

|i|2 (9)

for an N dimensional representation.

We shall next consider the group SU(3). The fourth order invariants

are again absent and hence we have to compute the quadratic Casimir in-

variants and the triangle anomalies for the different representations. Using

the decompositions of the representations of SU(3) under SU(2) × U(1) as
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Table 1: Quadratic Casimir invariant and triangle anomalies of SU(3). There
are also no 4th order invariants.

Rr Index (l) 3A

3 1 1
3̄ 1 −1
6 5 7
6̄ 5 −7
8 6 0
10 15 27
1̄0 15 −27
15 20 14
15′ 35 77
21 70 −182
24 50 −64
27 54 0

3 = (2, 1) + (1,−2)

3̄ = (2,−1) + (1, 2)

6 = (3, 2) + (1,−4) + (2,−1)

· · · · ··

we can use equations 6 and 7 to calculate the quadratic Casimir invariants

and the anomalies, which is presented in table 1. The triangle anomalies for

SU(3) can be computed using the formula presented in ref. [6].

Proceeding in the similar way, we can calculate the triangle and box

anomalies for the groups SU(4) and SU(5), which are presented in tables 2

and 3. The triangle anomalies can again be computed and compared follow-

ing ref. [6]. Calculating the box anomalies are more involved. In general,
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Table 2: Anomalies for the group SU(4).

Rr Index (l) 3A 4A

4 1 1 1
4̄ 1 −1 1
6 2 0 −4
10 6 8 12
1̄0 6 −8 12
15 8 0 8
20 13 −7 −11
2̄0 13 7 −11
20′ 16 0 −56
20” 21 −35 69
35 56 112 272
36 33 21 57
45 48 48 24
50 70 0 −380

the relations involve both reducible as well as irreducible anomalies. For

the group SU(n)(n > 3) the anomaly for the adjoint representation can be

written as

4A(adj) = 2 n 4A(fund) + 6 (tr(fund)T
2)2 (10)

in terms of the invariants of the fundamental representations. However for

purpose of anomaly cancellation in six dimensional theories we are interested

in only the irreducible anomalies and hence the present method will serve the

purpose. This procedure can be extended to any higher groups in the same

way.

We shall now consider a slightly non-trivial case of the group SO(10). We

consider the decomposition of SO(10) under the subgroup SU(5)×U(1). The

vector and the spinor representations of SO(10) decompose under SU(5) ×
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Table 3: Anomalies for the group SU(5).

Rr Index (l) 3A 4A

5 1 1 1
5̄ 1 −1 1
10 3 1 −3
1̄0 3 −1 −3
15 7 9 13
1̄5 7 −9 13
24 10 0 10
35 28 −44 82
3̄5 28 44 82
40 22 −16 −2
45 24 −6 −6
50 35 −15 −55
70 49 29 79
70′ 84 −156 354
75 50 0 −70

U(1) as

10 = (5, 2) + (5̄,−2)

16 = (1,−5) + (5̄, 3) + (10,−1).

If we now calculate the triangle anomalies in terms of the triangle anomalies

of SU(3) representations, then it is obvious that both the representations

10 and 16 have vanishing anomalies, since the SU(5) anomalies 3A(5) =

3A(10) = −3A(5̄) = 1. It is also well-known that all representations of

SO(10) group are anomaly-free. Using equation 6 we can calculate the box

anomalies for the representations of SO(10), which are given by

R → 10 16 45 54 120 126 210

4A → 4 −4 8 72 −8 −104 120
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modulo a normalization factor, which will not change the condition for anomaly

cancellation. From these the two relations follow:

4A(45) = 2 4A(10) and 4A(16) = 4A(1̄6) = −4A(10).

These relations are true only for the irreducible anomalies, as we discussed

earlier. This method can be extended to higher dimensional theories and to

all the Lie groups.

In summary, we presented a simple algorithm of calculating anomalies

at four and six dimensions for all the Lie groups. We gave explicit exam-

ple for the groups SU(3), SU(4), SU(5) and SO(10), which are extensively

used in building orbifold grand unified theories and Higgsless models in six

dimensions and extensions of the standard models.
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