arXiv:hep-ph/0606206v1 19 Jun 2006

Anomaly for Model Building

Utpal Sarkar

Physical Research Laboratory, Ahmedabad 380 009, India

Abstract

A simple algorithm to calculate the group theory factor entering in
anomalies at four and six dimensions for SU(N) and SO(N) groups
in terms of the Casimir invariants of their subgroups is presented.
Explicit examples of some of the lower dimensional representations of
SU(n),n <5 and SO(10) groups are presented, which could be used
for model building in four and six dimensions.
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The consistency of any gauge theory requires that the sum of anomalies
[T] due to all the fermions present in the theory should cancel. The anomaly
cancellation is necessary because any classical symmetry is broken by quan-
tum effects in the presence of anomaly. In other words, any gauge theory
with non-vanishing anomaly is non-renormalizable [2].

In the standard model of electroweak interactions, the fermion content is
just right to make the theory anomaly free. In any extensions of the standard
model, particularly the ones which introduces additional gauge symmetry,
the most severe constraints come from the anomaly cancellation conditions.
Anomaly plays crucial roles in theories of dimension higher than four. Since
all representations in odd dimensions contains both left and right chiral fields,
there is no anomaly. But in dimensions six, eight or ten, any theory has to
cancel higher dimensional anomalies. In higher dimensional theories if the
space is compactified in an orbifold, then the orbifold compactification also
lead to anomaly at the fixed points. Consistency of such theories then require
that the brane anomalies at the fixed points should vanish.

Fermions in the loop contributes to anomaly. So, in non-supersymmetric
theories the fermion representations are constrained by anomaly. But in
supersymmetric theories, any chiral superfield would contribute to anomalies.
So, the superfields containing both the scalar and fermion representations are
constrained by the anomaly cancellation requirement.

The cancellation of anomaly is thus an integral part of constructing any
consistent model in four or higher dimensions. It is thus important to know
the group theory factor of any representation contributing to anomaly in four
or higher dimensions. In four dimensions one needs to calculate the triangle
anomaly, while at six dimensions it is a box anomaly and at eight dimensions
it is pentagon anomaly. These group theory factors for higher groups become
difficult to calculate. There are rigorous methods for searching anomanly free
theories that are used usually [3]. In this article we present a simple algorithm

to calculate the group theory factor appearing in the expression for anomaly



in four and six dimensions for Lie groups, which could be useful for model
building.

In four dimensions, if the fermions belong to a representation R of G, then
the group factor in the expression for anomaly can be written in terms of the
generators T%(Ry) for this representation Ry of G. Then the contributions

of fermions in a representation R, to anomaly will be proportional to
3A=tr [T“(RT)TI’(RT)TC(RT)]. (1)

We shall use the notation ,.A to represent anomalies, so that triangle anomaly
in four dimensional theories is represented by n = 3; box anomaly in six
dimensions with n = 4 and pentagon anomaly in eight dimensions by n = 5.

In general, n = d/2 4 1 for anomaly in a d-dimensional theory and the
group factor for fermions or chiral superfields in a representation R, entering

in the expression for anomaly is given by
WA =trg, T" =tr [T*(R,)T*(R,) -+ T"(R,)]. (2)

In four dimensions this anomaly factor for all the fermions or all the su-
perfields should cancel for consistency. In higher dimensional theories one
should apply this factor with caution.

Consider a six dimensional orbifold model [, B], compactified on R* x
T?/Z,. There will be four dimensional anomaly at the fixed points and also
the six dimensional anomaly at the bulk. If the gauge group in the bulk is G
and at the fixed points only the group H acts, then the only non-vanishing
anomaly at the fixed points will be restricted to the subgroup H of G. The
brane anomalies are also associated with the parities that acts on the fields
due to the action of the discrete Zy symmetry. So, the choice of parity to
break N = 2 supersymmetry to N = 1 supersymmetry implies that the
spinor in a vector superfield and spinor in a scalar superfield contribute to
anomalies with opposite sign. There is another difference in anomalies at six

dimensions. In some cases there are contributions of the form

Ared = (tIRT T2)2
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in addition to the usual trg), T* terms. This factorized contributions, also
known as reducible anomalies, does not have any analogy in four dimen-
sions and could be cancelled by introducing antisymmetric tensor fields and
utilizing the Green-Schwarz mechanism. We shall thus calculate the group
factor for the irreducible anomaly contributions, given by 4A. Since there
are no independent 4th order invariants for the groups SU(2) and SU(3) and
trr, T* = (trr,T?)?, we shall not present 44 for these two groups.

In the present approach all invariants are calculated in terms of invariants

of the subgroups. Consider the subgroup
gl X g2 - g7 (3)

where Gy = U(1) is an abelian subgroup of G. We can then decompose any
representations of G under G; x G, subgroup as

R = Z(Ti, fi) (4)
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where f; are the U(1) quantum numbers of G,. For any group SU(m) we
can write down the decomposition of the fundamental m dimensional repre-

sentation under the subgroup SU(m — 1) x U(1) as
m=(m-—1,1)+(1,-m+1). (5)

The second numbers 1 and (—m + 1) are the U(1) quantum numbers in this
decomposition. Using the product decomposition formulas we can find out
the decomposition of all other representations of SU(m) under the subgroup
SU(m —1) x U(1).

We can then use the formulas
SAR) = T2
dAR) = ZgA(T’Z') - fi
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DAR) = D e Alr) - fi (6)

i
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to calculate the anomalies for the representation R of the group G in terms
of the invariants of the subgroup G; x G,. For verification of the results we

also use the formulas

WAR) = 30 A(r) (7)

For completeness we also present a couple of useful relations

AR+ Re) = LARy) + 2 A(R2)

Thus by writing down the decomposition of any representation under its sub-
group containing a U(1) factor, it will be possible to calculate the irreducible
group factor entering in the expression for anomalies. For the cancellation of
anomalies in any theory, we require only this factor and hence these results
will be extremely useful while building models in many extensions of the
standard model.

Let us first consider the group SU(2). Since all representations are pseudo-
real, all four dimensions triangle anomalies vanishes. There are also no fourth
order invariants and hence we have to worry only about the quadratic Casimir

invariants. For the group SU(2) the quadratic Casimir invariants are given
by

TN = Y i )

for an N dimensional representation.

We shall next consider the group SU(3). The fourth order invariants
are again absent and hence we have to compute the quadratic Casimir in-
variants and the triangle anomalies for the different representations. Using
the decompositions of the representations of SU(3) under SU(2) x U(1) as



Table 1: Quadratic Casimir invariant and triangle anomalies of SU(3). There
are also no 4th order invariants.

R, Index (1) 34

3 1 1
3 1 —1
6 5 7
6 5 —7
8 6 0
10 15 27
10 15 —27
15 20 14
15 35 7
21 70 —182
24 50 —64
27 54 0

3 = (2,1)+(1,-2)
3 = (2,-1)+(1,2)
6 = (3,2)+(1,—4)+ (2,—1)

we can use equations 6 and 7 to calculate the quadratic Casimir invariants
and the anomalies, which is presented in table 1. The triangle anomalies for
SU(3) can be computed using the formula presented in ref. [6].

Proceeding in the similar way, we can calculate the triangle and box
anomalies for the groups SU(4) and SU(5), which are presented in tables 2
and 3. The triangle anomalies can again be computed and compared follow-

ing ref. [6]. Calculating the box anomalies are more involved. In general,



Table 2: Anomalies for the group SU(4).

R, Index (1) 34 4A

4 1 1 1
4 1 -1 1
6 2 0 —4
10 6 8 12
10 6 -8 12
15 8 0 8
20 13 -7 —11
20 13 7 —11
20 16 0 —56
207 21 -35 69
35 56 112 272
36 33 21 o7
45 48 48 24
50 70 0 =380

the relations involve both reducible as well as irreducible anomalies. For
the group SU(n)(n > 3) the anomaly for the adjoint representation can be

written as

sA(ady) =2 n g A(fund) + 6 (tr(funagyT?)? (10)

in terms of the invariants of the fundamental representations. However for
purpose of anomaly cancellation in six dimensional theories we are interested
in only the irreducible anomalies and hence the present method will serve the
purpose. This procedure can be extended to any higher groups in the same
way.

We shall now consider a slightly non-trivial case of the group SO(10). We
consider the decomposition of SO(10) under the subgroup SU(5)xU(1). The
vector and the spinor representations of SO(10) decompose under SU(5) x



Table 3: Anomalies for the group SU(5).

R, Index (1) 34 A

5 1 1 1

5 1 -1 1

10 3 1 -3
10 3 -1 -3
15 7 9 13
15 7 -9 13
24 10 0 10
35 28 —44 82
35 28 44 82
40 22 -16 -2
45 24 —6 —6
50 35 —-15 =55
70 49 29 79
70 84 —156 354
75 50 0 —70

10 = (5,2)+(5,—2)

16 = (1,-5)+ (5,3)+ (10, —-1).
If we now calculate the triangle anomalies in terms of the triangle anomalies
of SU(3) representations, then it is obvious that both the representations
10 and 16 have vanishing anomalies, since the SU(5) anomalies 3.4(5) =
3A(10) = —3A(5) = 1. Tt is also well-known that all representations of
SO(10) group are anomaly-free. Using equation 6 we can calculate the box

anomalies for the representations of SO(10), which are given by

R — 10 16 45 54 120 126 210
sA — 4 -4 8 72 -8 —-104 120
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modulo a normalization factor, which will not change the condition for anomaly

cancellation. From these the two relations follow:

These relations are true only for the irreducible anomalies, as we discussed
earlier. This method can be extended to higher dimensional theories and to
all the Lie groups.

In summary, we presented a simple algorithm of calculating anomalies
at four and six dimensions for all the Lie groups. We gave explicit exam-
ple for the groups SU(3), SU(4), SU(5) and SO(10), which are extensively
used in building orbifold grand unified theories and Higgsless models in six

dimensions and extensions of the standard models.
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