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Abstract

To connect the scalar field (acceleron) responsible for dark energy to neutrinos,

the usual strategy is to add unnaturally light neutral singlet fermions (right-handed

neutrinos) to the Standard Model. A better choice is actually a Higgs triplet, through

the coupling of the acceleron to the trilinear Higgs triplet-double-doublet interaction.

This hypothesis predicts an easily observable doubly-charged Higgs boson at the forth-

coming Large Hadron Collider (LHC).
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The existence of dark energy [1] may be attributed to a scalar field called the acceleron

(or quintessence) [2] whose equation of motion involves a term of negative pressure, allowing

the present Universe to expand at an accelerated rate. The acceleron may also form a con-

densate and couple to matter in such a way that the observed neutrino masses are dynamical

quantities. This is the scenario of mass varying neutrinos [3], motivated by the proximity of

the effective mass scale of dark energy to that of neutrinos, which may have some interesting

consequences [4, 5].

To make the connection, the usual strategy is to introduce 3 right-handed neutrinos Ni,

i.e. 3 neutral fermion singlets under the electroweak SU(2)L×U(1)Y gauge group. However,

contrary to the cherished expectation that mNi
should be very large (thereby triggering the

canonical seesaw mechanism [6] and yielding naturally small Majorana neutrino masses mνi
),

they have to be very small, i.e. of order eV, to be compatible with dark energy. In view of

this problem, alternative mechanisms for the origin of mνi
should be explored [7].

In the Standard Model, naturally small Majorana neutrino masses come from the unique

dimension-five operator [8]

Leff =
fij

Λ
(νiφ

0 − liφ
+)(νjφ

0 − ljφ
+) + H.c., (1)

which can be realized at tree level in exactly 3 ways [9], one of which is of course the canonical

seesaw mechanism with 3 right-handed neutrinos. Another way is to add a Higgs triplet [10]

∆ =

(

ξ+/
√

2 ξ++

−ξ0 −ξ+/
√

2

)

(2)

with trilinear couplings to both the lepton doublets (νi, li) and the Higgs doublet Φ =

(φ+, φ0), i.e.

Lint = fij[νiνjξ
0 +

1√
2
(νilj + liνj)ξ

+ + liljξ
++] + µΦ†∆Φ̃ + H.c., (3)
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where Φ̃ = (φ̄0,−φ−). As a result [11],

(Mν)ij =
2fijµ〈φ0〉2

m2
ξ0

. (4)

If µ = µ(A), i.e. a function of the acceleron field A, then this is in fact a natural realization

of mass varying neutrinos with mξ of order the electroweak scale.

In all previous proposals of neutrino mass with a Higgs triplet, there is no compelling

reason for mξ to be this low. One possible exception [12] is the case of large extra space

dimensions, where mξ should be below whatever the cutoff energy scale is, but that is only

a phenomenological lower bound. On the other hand, if dark energy is indeed connected to

neutrinos through the Higgs triplet, then at least ξ++ will be unambiguously observable at

the forthcoming Large Hadron Collider (LHC).

Consider the most general Higgs potential consisting of Φ and ∆, i.e.

V = m2(Φ†Φ) + M2(Tr∆†∆) +
1

2
λ1(Φ

†Φ)2 +
1

2
λ2(Tr∆†∆)2

+
1

2
λ3(Tr∆†∆∆†∆) + λ4(Φ

†Φ)(Tr∆†∆) + λ5(Φ
†∆†∆Φ)

+ µ(Φ̃†∆†Φ + Φ†∆Φ̃). (5)

Let 〈φ0〉 = v and 〈ξ0〉 = u, then

v[m2 + λ1v
2 + λ4u

2 − 2µu] = 0, (6)

u[M2 + (λ2 + λ3)u
2 + λ4v

2] − µv2 = 0. (7)

For |µ| << |m|, |M |, and

m2 < 0, λ1M
2 − λ4m

2 > 0, (8)

we have the unique solution

v2 ≃ −m2

λ1
, u ≃ µv2

M2 + λ4v2
. (9)
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The Higgs triplet masses are then

m2
ξ++ ≃ M2 + (λ4 + λ5)v

2, (10)

m2
ξ+ ≃ M2 + (λ4 + λ5/2)v2, (11)

m2
ξ0 ≃ M2 + λ4v

2. (12)

Once produced, the decay of ξ++ into two charged leptons is an unmistakable signature

with negligible background. Its decay branching fractions also map out |fij|, i.e. the entire

neutrino mass matrix up to an overall scale [12].

In a model of neutrino dark energy (νDE), the neutrino mass mν is a dynamical quantity.

It is assumed to be a function of a scalar field A (the acceleron) with a canonically normalized

kinetic term and ∂mν/∂A 6= 0. In the nonrelativistic limit, mν depends on the total density

nν of the thermal background of neutrinos and antineutrinos, and the energy or effective

potential of the system is given by

V = mνnν + V0(mν). (13)

The thermal background and the scalar potential V0(mν) will act in opposite directions and

at any instant of time, the minimum of the effective potential is given by

V ′(mν) = nν + V ′
0(mν) = 0. (14)

We assume the curvature scale of V to be much larger than the Hubble expansion rate, so

that the adiabatic approximation is valid. In other words, the solution of Eq. (14) for mν is

assumed to be valid instantaneously.

For an adiabatic expansion of the Universe, the density of matter varies with the scale

factor as

ρ ∝ R−3(1+ω), (15)
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where ω is a time-independent parameter, which enters in the following simple equation of

state:

ρ(t) = ωp(t). (16)

In a νDE model, it was shown that ω satisfies the equation

ω + 1 = −V ′(mν)

mνV
=

Ων

Ων + ΩDE

, (17)

where ΩDE = ρDE/ρc is the contribution of V0(mν) to the energy density and Ων = nν/ρc is

the neutrino energy density. Since the observed value [1]

ω = −0.98 ± 0.12

is close to −1 at the present time, Ων should be much less compared to ΩDE . These consid-

erations restrict the possibilities of the form of the potential. For small dω/dnν, the variable

mass of the neutrino is proportional to the neutrino density to the power ω:

mν ∝ nω
ν .

The above general considerations are valid, independent of the details of the particular model

of neutrino mass. However, most phenomenological implications are specific to such details,

with a few general features which are common to all models [4].

In the present scenario, for the effective neutrino mass to vary, we have to associate

the acceleron field A with the trilinear coupling of ∆ with Φ, so that the effective neutrino

mass becomes dependent on the field A. This simply means that we set µ = µ(A) in the

scalar potential of Eq. (5). As for the self-interactions of A, we may assume for example the

following potential:

V0 = Λ4 log(1 + |µ̄/µ(A)|). (18)

Using Eq. (4), the effective low-energy Lagrangian is then given by

−Leff = fij |µ(A)| 〈φ
0〉2

m2
ξ0

νiνj + H.c. + Λ4 log(1 + |µ̄/µ(A)|), (19)
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and Eq. (13) is of the form

V (x) = ax + b log
(

1 +
c

x

)

, (20)

where x = mν ∝ |µ(A)| and a, b, c are all positive. For 4b/ac << 1, xmin ≃ b/a, so

mν ∝ n−1
ν , (21)

as desired. As a condition of naturalness, it has been argued that the mass of the scalar field

should not be larger than the order of 1 eV and Λ ∼ 10−3 eV. In the canonical realization

of mass varying neutrinos using right-handed neutrinos N , this would imply small NN

Majorana masses as well as tiny νN Dirac masses, which are clearly rather unnatural. Here,

the requirement is simply that mξ0 be of order 〈φ0〉, which is a much more reasonable

condition.

Thus the mass of ξ0 is predicted to be in the range of 80 − 500 GeV. The lower limit

is the present experimental bound from the direct search of the triplet Higgs scalar, while

the upper limit comes from the requirement that it should not be too large compared to the

electroweak breaking scale, otherwise it would be difficult to explain neutrino masses much

below 1 eV. The form of µ(A) was discussed in the original paper [3] to be µ(A) ∼ λA or

µ(A) ∼ µeA
2/f2

. We shall not go into the details of this discussion on the dynamics of this

model, although some of the generic problems of mass varying neutrinos are common to the

present model as well [14].

Depending on the form of µ(A), global lepton number may be broken spontaneously

in such a model of νDE, thereby creating a massless Goldstone boson, i.e. the Majoron.

However, as shown below, its coupling to ordinary matter is highly suppressed, hence its

existence is acceptable phenomenologically. If we take the case µ(A) ∼ λA (where A is

complex), we can express the field A as

A =
1√
2
(ρ +

√
2z)eiϕ
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where z is the vacuum expectation value or condensate of A. Similarly,

φ0 =
1√
2
(H +

√
2v)eiθ, ξ0 =

1√
2
(ζ +

√
2u)eiη, (22)

with v and u as the vacuum expectation values of φ0 and ξ0 respectively. The longitudinal

component of the Z boson (G0), the physical Majoron (J0) and the massive combination

(Ω0) of (zϕ, uη, vθ) are given by:

G0 =
v2θ + 2u2η√

v2 + 4u2
,

J0 =
(v2 + 4u2)z2ϕ + v2u2η − 2u2v2θ
√

z2(v2 + 4u2)2 + u2v4 + 4v2u4

Ω0 =
ϕ − η + 2θ√

z−2 + u−2 + 4v−2
, (23)

respectively. The heavy Ω0 is almost degenerate in mass with ζ . They are essentially the

reincarnations of ξ0. The massless J0 is potentially a problem phenomenologically but its

couplings to all leptons are strongly suppressed by (u/v)2, and can safely be neglected in all

present experiments.

Since the triplet Higgs scalars cannot be much heavier than the usual Higgs doublet, they

should be observable at the LHC as well as the proposed future International Linear Collider

(ILC). The phenomenology of such triplet Higgs scalars has been discussed in [12]. The

same-sign dileptons will be the most dominating decay modes of the ξ++. Complementary

measurements of |fij| at the ILC by the process e−e−(µ−µ−) → l−i l−j would allow us to study

the structure of the neutrino mass matrix in detail. Of course, these features are generic to

any model with a Higgs triplet as the origin of Majorana neutrino masses. The difference

here is that it is also accompanied by the unusual predictions of mass varying neutrinos in

neutrino oscillations [4, 15].

In conclusion, we have pointed out in this paper that if the neutrino mass mν is dynamical

and related to dark energy through the acceleron A, then the most natural mechanism for
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generating mν is that of the Higgs triplet, rather than the canonically assumed right-handed

neutrino. The mass scale of the triplet Higgs scalars is predicted to be close to that of

electroweak symmetry breaking, hence it has an excellent chance of being observed at the

LHC and ILC. Aspects of this model relating to cosmology and neutrino oscillations are

similar to other existing models of dark energy.
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