

# Random spread on the family of small-world networks

Sagar A. Pandit<sup>1,\*</sup> and R. E. Amritkar<sup>1,†</sup>

<sup>1</sup>Physical Research Laboratory, Ahmedabad 380 009, India

We present the analytical and numerical results of a random walk on the family of small-world graphs. The average access time shows a crossover from the regular to random behavior with increasing distance from the starting point of the random walk. We introduce an *independent step approximation*, which enables us to obtain analytic results for the average access time. We observe a scaling relation for the average access time in the degree of the nodes. The behavior of average access time as a function of  $p$ , shows striking similarity with that of the *characteristic length* of the graph. This observation may have important applications in routing and switching in networks with large number of nodes.

PACS numbers: 05.40.Fb, 05.40.-a, 05.50.+q, 87.23.Ge

## I. INTRODUCTION

The small-world network exhibits unusual connection properties. On one hand it shows strong clustering like regular graphs and on the other hand it shows very small average shortest path between any two nodes like random graphs. Watts and Strogatz have proposed a simple model to describe small-world networks [1]. The model gives a prescription to generate a one parameter family of graphs, ranging from the highly clustered (regular) graphs to the random graphs.

Various properties of this model have been studied [2, 3, 4, 5]. The spread and percolation properties investigated in Refs. [2, 3, 4, 5], deal with the spread of information (disease) along the shortest path in the graph or the spread along the spanning tree.

In this paper, we study random walk on the family of small-world networks. Such a random walk corresponds to *random spread* of information on the network. In any realistic application of the spread on a graph, we expect the spread to be somewhere in between the two extremes viz. shortest path and the random walk. e.g. In Milgram's experiment [6], which studies the connection properties of social networks, the path of a letter from a randomly chosen point to a fixed target is traced. The only condition imposed on the transfer of letter was that, the letter should be given to the person whom the sender knows by first name. The path followed by such a letter would have both random as well as shortest path elements in it. Another example is the path of internet protocol packet which follows a similar algorithm for forwarding the packet [7].

The determination of shortest path between two nodes typically requires  $O(n^3)$  operations [8], where  $n$  is the number of nodes. This process becomes prohibitively expensive as  $n$  becomes very large. Examples of such networks are social networks, telephone networks, internet

etc. Another problem with the determination of shortest path is the incomplete knowledge of the network. Hence, it is clear that an alternate method of generating path (which need not be shortest) becomes necessary in these networks. Our analysis of random walk shows that average access time between two nodes goes as  $O(n)$ , for small-world geometry. It is beneficial to consider a network with random routing or switching, particularly if it has small-world properties. Thus the random routing emerges to be both, practical and computationally cheaper method for large networks.

In Section II we discuss analytical and numerical results for the *average access time* of the random walk on one parameter family of graph ranging from regular case to the random case. We introduce an *independent step approximation* which allows us to get analytical expressions for the average access time. We discuss these results in Section III. It is found that the random walk results are similar to that of the shortest path results. Thus from the nature of the outcome of an experiment it may be difficult to conclude whether the spread was random or along the shortest path. An important consequence of this result can be in the routing and switching in very big networks. Random routing is a promising method, particularly if the network has small-world properties. Section IV summarizes the results.

## II. RANDOM WALK ON SMALL-WORLD GRAPHS

The random walk on a graph is performed as follows: We start with a fixed node (say  $i$ ) and at each step make a jump to a node connected to  $i$  with uniform probability  $1/d(i)$ , where  $d(i)$  is the degree of the node  $i$ , thus performing a random walk. Such a random walk gives a finite *Markov chain* [9]. One of the most important quantities of interest in a finite Markov chain is the *average access time*. Let  $D_{i,j}$  be the average access time, defined as the first passage time to the node  $j$  if the walk starts from the node  $i$ . We denote  $D_j = D_{0,j}$ .

We perform the random walks on the family of graphs generated by the algorithm given by Watts and Stro-

\*Electronic address: sagar@prl.ernet.in

†Electronic address: amritkar@prl.ernet.in

gatz [1]. The prescription gives a one parameter family of graphs which interpolates between the regular case and the random case. We refer to this family as the family of small-world networks or graphs. The regular graph (denoted by  $p = 0$ ) is a graph with  $n$  vertices on a circle with each node connected to  $2k$  nearest neighbors. The parameter  $k$  is suitably chosen to keep the graph sparse but connected. The other elements of the family are obtained by random rewiring of each edge in the graph with probability  $p$ . It is seen that the small-world behavior is prominent around the parameter value  $p = 0.01$ . i.e., when only 1% edges are rewired. The case  $p = 1$  corresponds to the random case [11].

### A. The regular case ( $p = 0$ )

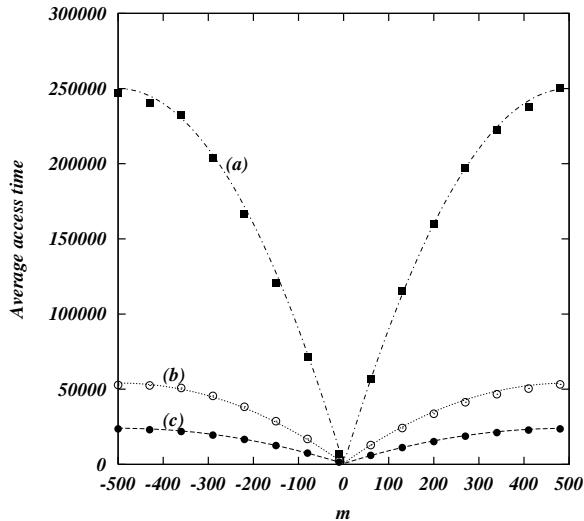


FIG. 1: The plot of average access time vs. the distance  $m$  of a site from the starting point ( $m = 0$ ) for the regular graphs. Curves (a), (b) and (c) correspond to  $k = 1, 3$  and  $5$  respectively. The points are the result of simulations of random walks on graph of size 1000. The lines are the analytical and scaling results obtained using equations (4) and (5).

Fig. 1 shows the results of the *average access time* in simulation of random walk on the regular graph with 1000 nodes for several values of  $k$ . The average access time shows a linear behavior for small  $m$  and it shows quadratic nature for large  $m$  due to the circular topology. The lines are the analytic curves obtained as follows.

From the expectation values of conditional events, we can easily write the recursion relation for average access time for the walk starting from node  $i$  as [10]

$$D_{i,m} = \frac{1}{2k} \sum_{j=1}^k (D_{i+j,m} + D_{i-j,m}) + 1 \quad (1)$$

This is a  $2k$ -th order difference equation for  $D_{i,m}$ . We first consider the case  $k = 1$ . In this case the above recursion relation reduces to a quadratic form given by

$$D_{i,m} = \frac{1}{2}(D_{i+1,m} + D_{i-1,m}) + 1 \quad (2)$$

The equation can be solved using standard techniques [10] and the solution is given by

$$D_{i,m} = -(m - i)^2 + A(m - i) + B \quad (3)$$

where  $A$  and  $B$  are constants. The constants are determined using the boundary conditions  $D_{m,m} = 0$  and  $D_{m-n,m} = 0$ . Hence,

$$D_{i,m} = -i^2 + (2m - n)i - m^2 + mn$$

Without loss of generality, we assume that the walk starts from  $i = 0$ . So the *average access time* for site  $m$  starting from zero is

$$D_m = -m^2 + mn \quad (4)$$

Curve (a) in Fig. 1 shows both the analytical and numerical results for the case  $k = 1$ . The linear and the quadratic nature is clearly seen.

For general value of  $k$ , it is not possible to solve the difference equation (1) exactly. The numerical simulations show that the nature of the curves for different  $k$  is the same as for  $k = 1$ . This suggests that there may be a scaling relation for a general  $k$ . Using numerical data fit we find that the following scaling relation fits the data reasonably well.

$$D_m^k(n) \approx (1 + \mu \ln(k)) D_{\frac{m}{k}}^1\left(\frac{n}{k}\right) \quad (5)$$

where  $D_m^k$  is the average access time from the site 0 to site  $m$  on the graph with  $2k$  nearest neighbors,  $\mu = 0.86$  [12].

A possible explanation for such a scaling can be a quotienting of a graph by sub-graph of size  $k$ .

The Fig 2 explains the quotienting procedure clearly. The outer graph in Fig 2 is of size 30 and the inner graph is the quotiented graph which has only nearest neighbor connections. While the walk on the quotiented graph is described by equation (4), the coefficient probably comes from the average time spent in each block. Note that the number of blocks that the walker has to pass is  $\frac{m}{k}$ .

From Fig. 1 we see that the scaling relation (5) shows an excellent matching with the numerical results for various values of  $k$ .

### B. The random case ( $p = 1$ )

For the completely random case the access time becomes independent of  $m$  and  $D_{i,j} = n - 1, \forall i, j$ . This result can be obtained as follows.

We note that to calculate average access time one must consider an ensemble of graph for a given  $p$ . The average access time is obtained by first averaging over several

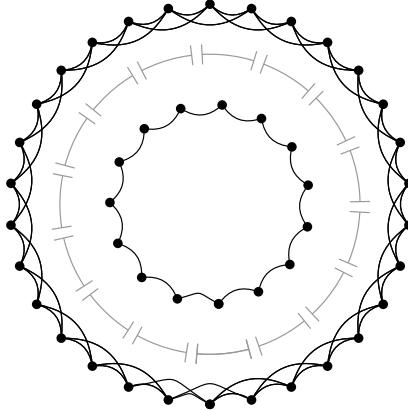


FIG. 2: Figure describes the quotienting procedure of reducing the regular graph with  $n$  nodes and  $2k$  neighbors to a graph with  $\frac{n}{k}$  nodes and 2 neighbors. The outer graph is of 30 nodes and the inner quotiented graph is of 15 nodes.

realizations of random walk on a given graph and then it is averaged over various members of the ensemble of graphs. We now introduce an *independent step approximation* where we assume that the order of these two averages is interchanged. Thus in this approximation each step of the random walk is averaged over all the realizations of the graphs. This approximation is a kind of mean field approximation done in statistical mechanics.

Let  $P_{i,j}$  be the probability of reaching site  $j$  from site  $i$  in one step. It is obvious that  $\sum_i P_{i,j} = 1$ . Using independent step approximation, we get

$$P_{i,j} = \frac{1}{n-1}$$

Thus the probability of reaching a site  $m$  at any time step is  $\frac{1}{n-1}$ . Hence, the probability of reaching site  $m$  for the first time in  $t$  time steps is

$$P_m(t) = \left(1 - \frac{1}{n-1}\right)^{t-1} \frac{1}{n-1} \quad (6)$$

Thus  $D_m$  is given by

$$\begin{aligned} D_m &= \sum_t t P_m(t) \\ &= n-1 \end{aligned} \quad (7)$$

### C. The intermediate case ( $0 < p < 1$ )

Fig. 3 shows the results of average access time on the graph with 1000 nodes and  $k = 5$ . Two distinct behaviors of average access time can be identified from the Fig. 3. For small values of  $m$ , the behavior is similar to that of regular case, while for the larger values of  $m$  the average access time saturates and behaves like that of a random

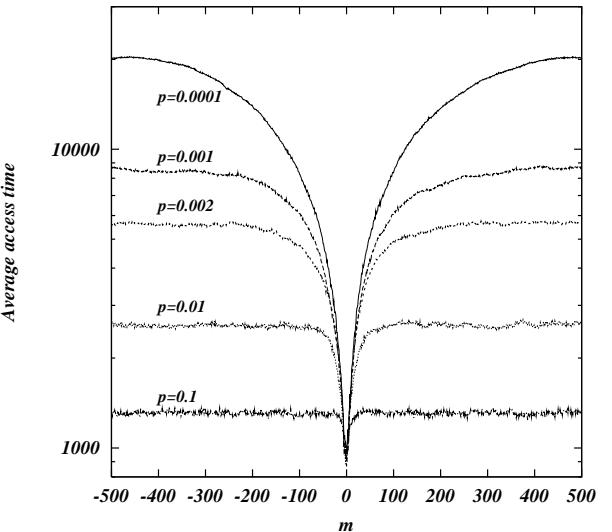


FIG. 3: The plot of average access time vs the distance  $m$  from the starting point  $m = 0$  for graph with 1000 nodes and  $k = 5$ , generated for various values of parameter  $p$ . The average access time clearly show the crossover from the regular to random behavior with increasing  $m$ . Note the logarithmic scale for the average access time.

graph (See Sec. II B). As  $p$  increases the saturation of average access time becomes more prominent and the crossover from regular to saturation behavior takes place at smaller and smaller values of  $m$ . For  $p = 0.01$ , which corresponds to the small-world behavior [1], the average access time behavior is almost same as that of the random graph except for small values of  $m$  of the order of  $k$ .

To obtain analytical estimates of average access time we again make use of the independent step approximation defined in Sec. II B. In this approximation each step in the walk is taken with a probability  $(1-p)$  to nearest  $2k$  sites and with probability  $p$  to the remaining sites. In analogy with the  $p = 0$  case we write a recursion relation for  $D_{i,m}$  (See Appendix).

$$\begin{aligned} D_{i,m} &= (1-p) \left[ \frac{1}{2k} \sum_{l=0}^k (D_{i+l,m} + D_{i-l,m}) + 1 \right] \\ &\quad + p \left[ \frac{1}{n-2k-1} \sum_{\substack{l=0 \\ l \neq i-k, \dots, i+k}}^{n-1} D_{l,m} + 1 \right] \end{aligned} \quad (8)$$

This is a  $2k$ -th order difference equation. As in the case of  $p = 0$ , we first consider the case  $k = 1$ . The recursion relation becomes

$$D_{i,m} = (1-p) \left[ \frac{1}{2} (D_{i+1,m} + D_{i-1,m}) + 1 \right]$$

$$+p\left[\frac{1}{n-3}\sum_{l=0}^{n-1}D_{l,m}+1\right] \quad (9)$$

$i \neq i, i-1, i+1$

which can be written as

$$D_{i,m} = (1-p)\left[\frac{1}{2}(D_{i+1,m} + D_{i-1,m}) + 1\right] + p\left[\frac{1}{n-3}\sum_{l=0}^{n-1}D_{l,m} + 1 - \frac{1}{n-3}(D_{i,m} + D_{i+1,m} + D_{i-1,m})\right]$$

with little algebra, we finally get

$$D_{i,m} = \xi(D_{i+1,m} + D_{i-1,m}) + \zeta \quad (10)$$

where

$$\xi = \frac{(n-3) - p(n-1)}{2(n-3+p)}$$

and

$$\zeta = \frac{p\sum_{j=0}^{n-1}D_{i,m} + n-3}{n-3+p}$$

Note that the sum  $\sum_{j=0}^{n-1}D_{i,m}$  is independent of the site index and can be treated as a constant to be determined self-consistently from the solution. We solve the different equation (10) using the standard methods [10].

$$D_{i,m} = A\theta_+^{(m-i)} + B\theta_-^{(m-i)} - \frac{\zeta}{2\xi-1}$$

where

$$\theta_{\pm} = \frac{1}{2\xi}(1 \pm \sqrt{1-4\xi^2})$$

The constants  $A$  and  $B$  are determined using the boundary conditions  $D_{m,m} = 0$  and  $D_{m-n,m} = 0$ . The solution is given by

$$D_m = \frac{\zeta}{2\xi-1} \left[ \frac{\theta_-^{-m}\theta_+^{-n} - \theta_+^{-m}\theta_-^{-n} - \theta_-^{-m} + \theta_+^{-m}}{\theta_+^{-n} - \theta_-^{-n}} - 1 \right] \quad (11)$$

where without loss of generality we have put the starting point as  $i = 0$ .

The sum  $\sum_{m=0}^{n-1}D_m$  occurring in  $\zeta$  is calculated by summing Eq. (11) for all values of  $m$  and is given by

$$\sum_{m=0}^{n-1}D_m = \frac{(n-3)}{p\left(1 + n/\sum_{m=1}^{n-1}\left[\frac{\theta_-^{-m}\theta_+^{-n} - \theta_+^{-m}\theta_-^{-n} - \theta_-^{-m} + \theta_+^{-m}}{\theta_+^{-n} - \theta_-^{-n}} - 1\right]\right)}$$

Note that Eq. (8) and further analysis exhibit random behavior as  $p \rightarrow \frac{(n-2k-1)}{(n-1)}$ , rather than  $p = 1$  (See Appendix).

For general value of  $k$ , we again write a scaling relation similar to that of the case  $p = 0$ .

$$D_m^k(n, p) \approx (1 + \mu(p, k) \ln(k)) D_{\frac{m}{k}}^1\left(\frac{n}{k}, p\right) \quad (12)$$

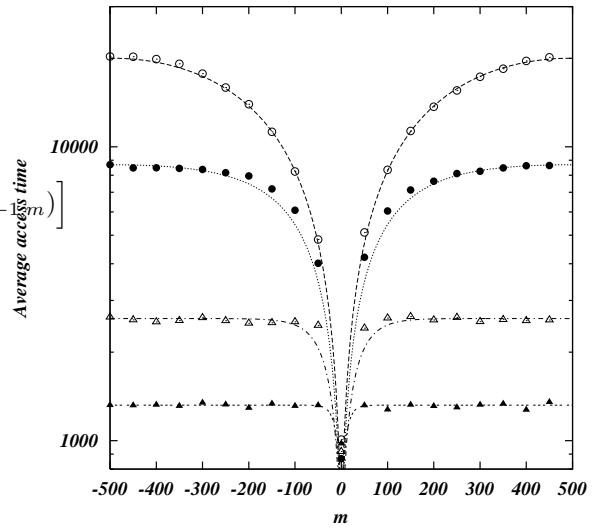


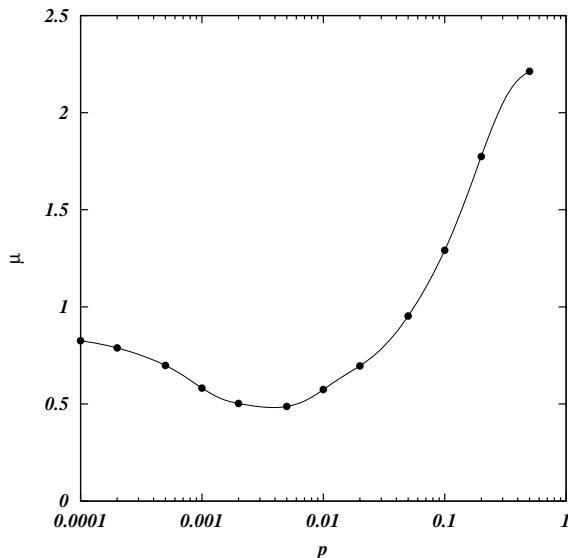
FIG. 4: Plot of average access time vs the distance  $m$  from the starting point of the random walk. The points are the numerical results for  $n = 1000$ ,  $k = 5$  and  $p = 0.0001$  (open circle),  $p = 0.001$  (solid circle),  $p = 0.01$  (open triangle) and  $p = 0.1$  (solid triangle). The lines are obtained using the scaling relation Eq. (12).

The Fig. 4 shows the match of the numerical data with the analytic expressions. The parameter  $\mu$  has a weak dependence on  $k$  for non-zero  $p$  which we have neglected in further analysis. Fig. 5 shows the behavior of  $\mu$  for the various values of  $p$ . In Fig. 4 it is clearly seen that for small and large values of  $p$  the match numerical and equation is quite good but for intermediate values there is a considerable deviation from the numerical results for small values of  $m$ . This fact can be understood as follows:

For small values of  $p$ , i.e., when  $p \approx 10^{-4}$ , the graph is nearly regular and the blocks of size  $k$  are nearly completely connected graphs, but as  $p$  increases the probability of leaving the block randomly to far away point increases, giving rise to higher average access time for the nearby points in the block, than the analytical values. Again for high values of  $p$  the expression has a good match because as far as the average access time is concerned the completely connected block and random block behave in similar way.

### III. DISCUSSION

It is interesting to compare the limiting behaviors of intermediate cases with those of results for the regular and random cases. The Eq. (9) reduces to Eq. (2) as  $p \rightarrow 0$ . However, the solution (Eq. (11)) does not smoothly reduce to Eq. (4). This is because of the degeneracy in the roots of quadratic indicial equation of Eq. (2) for  $p =$

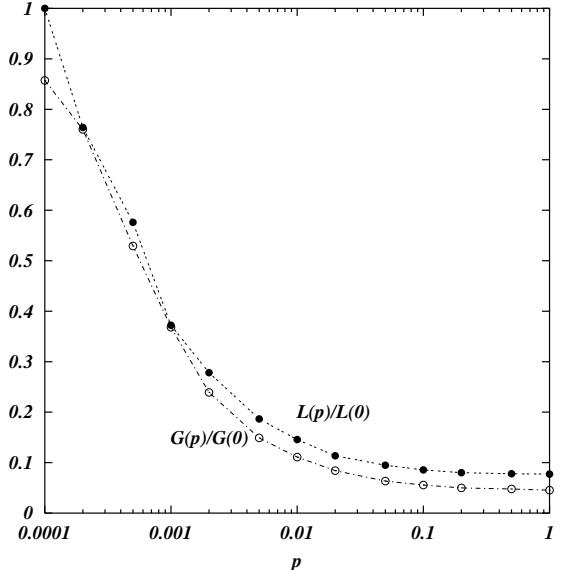
FIG. 5: Plot of  $\mu(p)$  as a function of  $p$ .

0 which is lifted for non-zero  $p$ . Thus the solution changes from a polynomial to an exponential in site index as  $p$  becomes non-zero. This explains the reason behind the saturation of the solution for non-zero  $p$  for asymptotic  $m$  which can not be obtained for  $p = 0$ .

For the random case we again find a similar situation. As  $p \rightarrow \frac{(n-3)}{(n-1)}$ , which corresponds to the random case (see Appendix), the Eq. (9) reduces to the  $D_m = \zeta$  and is consistent with the solution  $D_0 = 0$  and  $D_m = n-1, m \neq 0$ . However, the solution (Eq. (11)) does not smoothly reduce to a constant function because one of the roots ( $\theta_+$ ) diverges.

Next, we consider the average access time for the diametrically opposite node i.e.,  $G(p) = D_{\frac{n}{2}}(p)$ . This quantity is of interest as it should be correlated to the average cover time for the graph.

Fig. 6 shows the behavior of the access time of the diametrically opposite point normalized with that of  $p = 0$  case, i.e.  $G(p)/G(0)$ , as a function of  $p$ . The figure also shows the graph of characteristic length  $L(p)/L(0)$  [1], which is the average shortest path between any two sites. Both the curves in the graph corresponding to the shortest path and the random walk show similar behavior. This observation has interesting consequences. The random spread on a small-world network considerably reduces the access time compared to the regular graph as in the case of the shortest path spread. This can be very useful in applications such as routing and switching where random routing is cheaper. The determination of shortest path is generally very expensive (the number of operations goes as  $n^3$ ) and also in many cases the complete information of the network is not available. Examples of such networks are social networks, telephone

FIG. 6: Plot of  $G(p)/G(0)$ , i.e., normalized average access time for the diametrically opposite point of the graph, vs  $p$ . The plot also shows characteristic length  $L(p)/L(0)$  as a function of  $p$ . Both the quantities show a similar behavior. In particular the sharp drop near small-world regime ( $p \approx 0.01$ ) to the value corresponding to the random case is clearly seen in the figure.

networks, internet etc. where the number of nodes is very large. In such cases random routing will be more effective and cheaper, particularly if the graph has the small-world geometry. In this case the average access time goes as  $O(n)$ .

In the calculations we have introduced an *independent step approximation*, where we average over the various realizations of graphs at each time step. This is a kind of mean field approximation and has allowed us to obtain recursion relations for the average access time. We expect this approximation to be reasonably good for the random case. Even for the intermediate cases, the results obtained by this approximation are in good agreement with the numerical values.

For general values of  $k$  the recursion relations for average access time can not be solved. However, the behavior of average access time shows an interesting scaling relation in  $k$ . As discussed in Sec. II A the scaling relation corresponds to a quotienting procedure where a graph of  $n$  nodes with  $2k$  connections is scaled to a graph of  $\frac{m}{k}$  nodes with nearest neighbor connections and preserving the far-edges [2]. The scaling gives very good fit to the numerical data except for small values of  $m$ , when  $p \geq 0.001$ .

#### IV. SUMMARY

In this paper, we have studied random walk on the family of small-world graphs. For the regular case the average access time shows linear behavior for small distances and shows quadratic nature for large distances. An interesting scaling relation in  $k$  is observed for the average access time. For the random case the average access time is  $(n - 1)$  and is independent of distance and  $k$ . An independent step approximation has enabled us to get the analytical result for the average access time. The same approximation allows us to write a recursion relation for the intermediate values of  $p$ . For intermediate cases the average access time shows a crossover from regular to random behavior with increasing distances.

The normalized average access time of the diametrically opposite nodes shows almost identical behavior as that of the characteristic length as a function  $p$ . This observation can be very important in several applications where the number of nodes in graph are very large or the complete information about the graph is not available. In these cases random routing or switching will be beneficial and cheaper.

We thank Prof. V. Balakrishnan, Prof. G. Baskaran, Dr. G. Menon and Dr. R. Ramanujam for fruitful discussions.

#### V. APPENDIX

##### A. Derivation of equation (9)

We assume that the probability of breaking of an edge is  $p$ . We identify that the contribution to the average access time of site  $j$  comes from three types of events.

1. All the  $2k$  neighbors of site  $j$  are connected to  $j$ . The probability associated with this event is  $(1 - p)^{2k}$ .
2. Some of the neighbors are connected to  $j$  (say  $2k - r$ ) and  $r$  are connected to the far away sites. The probability associated with this event is  $p^r(1 - p)^{2k-r}$ .
3. None of the neighbors of  $j$  are connected to  $j$ . The probability associated with this event is  $p^{2k}$ .

By independent step approximation the degree of each node is  $2k$ . This enables up to write a recursion relation for average access time using the properties of expectation value of conditional probability [10]. We write

$$D_{i,m} = \sum_{r=0}^{2k} {}^{2k}C_r p^r (1 - p)^{2k-r} \left\{ \frac{2k - r - 1}{2k} \left[ \sum_{l=1}^k (D_{i-l,m} + D_{i+l,m}) \right] \right. \\ \left. + (1 - p) \left[ \frac{1}{2k} \sum_{l=0}^k (D_{i+l,m} + D_{i-l,m}) + 1 \right] + p \left[ \frac{1}{n - 2k - 1} \sum_{\substack{l=1 \\ l \neq i - k}}^n (D_{i-l,m} + D_{i+l,m}) \right] \right\}$$

In the above calculation we have assumed that the edge broken with probability  $p$  is not rewired to one of the  $2k$  nearest neighbors. Due to this the random graph limit corresponds to  $p = \frac{(n-2k-1)}{(n-1)}$  instead of  $p = 1$ . This can be seen by equating the probability of a connection to a nearest neighbor to the probability of a connecting to any of the other sites

$$\frac{(1 - p)}{2k} = \frac{p}{n - 2k - 1}.$$

---

[1] D. J. Watts, S. H. Strogatz, *Nature* **393**, 440 (1998).  
[2] S. A. Pandit, R. E. Amritkar, *Phys. Rev. E* **60** (2), R1119 (1999).  
[3] M. E. J. Newman, D. J. Watts, Scaling and percolation in the small-world network model, preprint [cond-mat/9904419](#).  
[4] C. F. Moukarzel, Preadding and shortest paths in systems with sparse long-range connections, preprint [cond-mat/9905322](#).  
[5] C. Moore, M. E. J. Newman, Epidemics and percolation in small-world networks, preprint.  
[6] S. Milgram, *Psychol. Today* **2**, 60-67 (1967).  
[7] W. R. Stevens, *Unix network programing*, (Prantice Hall, India (1993))  
[8] A. V. Aho, J. E. Hopcroft, J. D. Ullman, *The design and analysis of computer algorithms*, (Addison-Wesley (1998)).  
[9] L. Lovász, *Combinatorics, Paul Erdős is Eighty* (vol. 2), 1-46 (1993).  
[10] W. Feller, *An introduction to probability theory and its applications*, Vol. 1, (Wiley Eastern limited, Ed. 3, (1968)).  
[11] In the rewiring algorithm of Watts and Strogatz the random graph defined by  $p = 1$  is not truly random. However, as far as spread is concern the small-world network ( $p = 0.01$ ) itself is good enough approximation to the random network. Hence,  $p = 1$  case is adequate to describe the random behavior.  
[12] We have also tried other types of scaling relations in particular scaling relation of the form  $D_m^k(n) \approx k^\mu D_m^1(\frac{n}{k})$ . However, we find that the relation (5) gives better fit to the numerical data.