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Abstract

There are only two viable low-energy E6 subgroups: SU(3)C ×SU(2)L ×U(1)Y ×
U(1)N or SU(3)C × SU(2)L × SU(2)′R × U(1)YL+Y ′

R
, which would not erase any pre-

existing lepton asymmetry of the Universe that may have been created by the decay

of heavy singlet (right-handed) neutrinos or any other mechanism. They are also the

two most favored E6 subgroups from a recent analysis of present neutral-current data.

We study details of the leptogenesis, as well as some salient experimental signatures of

the two models.

http://arXiv.org/abs/hep-ph/0011197v1


In the energy range of 100 GeV to 1 TeV, physics beyond the standard model (SM) may

appear in two ways. One is the possible addition of supersymmetry; the other is the possible

extension of the SU(3)C×SU(2)L×U(1)Y gauge group to a larger symmetry group G. Both

of these options are realized in the E6 superstring models which predict the existence of new

particles, such as an extra gauge boson Z ′, at O(1) TeV [1].

As required by the solar and atmospheric neutrino data [2], any extension of the SM

should include a mechanism for generating small nonzero neutrino masses. It should also

be consistent with the present observed baryon asymmetry of the Universe. If it contains

B−L violating interactions at energy scales in the range 102−1012 GeV, these together with

the B + L violating electroweak sphalerons [3] would erase [4] whatever lepton or baryon

asymmetry that may have been created at an earlier epoch of the Universe [5].

In this Letter we show that if G is a subgroup of E6, and if G survives down to O(1)

TeV as is expected in these theories, then the constraint of successful leptogenesis [6, 7]

from the decay of heavy singlet (right-handed) neutrinos N results uniquely in only two

possible candidates. One is G1 = SU(3)C × SU(2)L × U(1)Y × U(1)N [8], and the other is

G2 = SU(3)C × SU(2)L × SU(2)′R × U(1)YL+Y ′

R
[9], where SU(2)′R is not the conventional

SU(2)R. Only these groups allow N to have zero quantum numbers with respect to all of

their transformations. Any other subgroup of E6 would result in lepton-number violating

interactions at O(1) TeV as it is broken down to the SM. Remarkably, G1,2 happen to be

also the two most favored E6 subgroups from a recent analysis [10] of present neutral-current

data. This is a possible hint that one of these two models may in fact be correct.

Whereas there is only one version [9] of the model based on G2, we find 2 (and only 2)

phenomenologically viable versions of G1, and work out the details of the leptogenesis in all

3 cases. In addition to specific Z ′ properties at colliders, we also predict the discovery of W±

R

in the G2 model. Among other distinctive experimental signatures are the s-channel diquark
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resonances at hadron colliders, which can be tested up to the multi TeV scale at the LHC

[11].

The fundamental 27 representation of E6 may be classified according to its maximal

subgroup SU(3)C × SU(3)L × SU(3)R. In the notation where all fermions are considered

left-handed, one has the particle assignment

(u, d, h) ∼ (3, 3, 1), (hc, dc, uc) ∼ (3∗, 1, 3∗), (1)

whereas νe, e, e
c together with the new superfields N c, νE, E, N c

E, Ec, S are contained in

(1, 3∗, 3). Under the decomposition SU(3)L → SU(2)L×U(1)YL
, SU(3)R → SU(2)R×U(1)YR

,

they may be represented pictorically as

d u

h dcuc

hc

e νe

N c ec

E EcX

where the horizontal axis measures T3L + T3R, the vertical axis YL + YR, and X = νE, S, N c
E .

In this particle assignment, the assumption is that the SU(2)R subgroup contains the quark

doublet (dc, uc) as in the usual left-right model. However, as was first pointed out in Ref. [9], a

different decomposition of SU(3)R may be chosen, i.e. SU(2)′R, where (hc, uc) is the doublet.

A third way is to choose the direction of symmetry breaking so that (hc, dc) is a doublet [12].

These 3 choices are merely the familiar old T, V, U isospins of SU(3). With the interchange

dc ↔ hc in going from SU(2)R to SU(2)′R, one must also interchange (νe, e) ↔ (νE , E), and

N c ↔ S. The new pictorial representation is

d u

h hcuc

dc

E νE

S ec

e EcX ′

where X ′ = νe, N
c, N c

E . The electric charge is given by

Q = T3L + Y, Y = YL + T3R + YR. (2)
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If SU(2)R × U(1)YR
is replaced by SU(2)′R × U(1)Y ′

R
, then

T ′

3R =
1

2
T3R +

3

2
YR, Y ′

R =
1

2
T3R − 1

2
YR. (3)

Hence T ′

3R + Y ′

R = T3R + YR so that Y remains the same as it must. As far as the SM is

concerned, the two extensions are equally viable and no interaction involving only the SM

particles, i.e. u, d, uc, dc, νe, e, e
c and the corresponding gauge bosons, can tell them apart.

Another way to extend the SM is to attach an extra U(1). In this case, E6 offers the choice

of a linear combination of two distinct U(1) subgroups [13], i.e. E6 → SO(10) × U(1)ψ and

SO(10) → SU(5) × U(1)χ, with

Qψ =

√

3

2
(YL − YR), Qχ =

√

1

10
(5T3R − 3Y ). (4)

Let Qα ≡ Qψ cos α + Qχ sin α, then all possible U(1) extensions of the SM under E6 may be

studied [14] as a function of α.

Let us now discuss the role of B − L in E6 models. It is well-known that YL + YR =

(B − L)/2 as far as the SM particles are concerned [15]. For the new fermions belonging

to the E6 fundamental representation, this may be extended as a definition because their

Yukawa interactions with the SM particles must be invariant under G. With this assignment,

all Yukawa and gauge interactions conserve B − L. Among the five neutral fermions in E6,

only two (νe and N c) carry nonzero B − L quantum numbers (−1 and 1). Hence the only

useful source of B − L violation in any E6 model is the large Majorana mass of N c, which

is of course also the reason why neutrino masses are small (from the seesaw mechanism) to

begin with.

In a successful scenario of leptogenesis [6], the decay of the physical heavy Majorana

neutrino N (i.e. N c plus its conjugate) must satisfy the out-of-equilibrium condition

ΓN < H(T = mN) =

√

4π3g∗
45

T 2

MP

, (5)
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where ΓN is its decay width, H(T ) the Hubble expansion rate and g∗ the effective number

of massless degrees of freedom at the temperature T . This requires mN to be many orders

of magnitude greater than 1 TeV, so N c cannot transform under the low-energy gauge

group G. Since N c ∼ (1; 0;−1/2; 1/2) under SU(3)C × T3L × T3R × (YL + YR), this group

(i.e. the conventional left-right model) is forbidden by leptogenesis. On the other hand,

N c ∼ (1; 0; 0; 0) under SU(3)C×T3L×T ′

3R× (YL+Y ′

R), hence the skew left-right model [9] is

allowed. In the U(1)α models, N c transforms trivially only if tan α =
√

1/15. This is called

U(1)N [8] with

QN =

√

1

40
(6YL + T3R − 9YR), (6)

and is indeed zero for N c, i.e. YL = 1/3, T3R = −1/2, and YR = 1/6.

Thus the only possible E6 subgroups allowed by leptogenesis are those given by the

skew SU(2)′R and U(1)N models. While details of the leptogenesis and the low-energy phe-

nomenology are different in these two models, their choice follows from a single and unique

group-theoretical argument which has nothing to do with model building. Indeed, if not for

the fact that sin2 θW 6= 3/8 at low energies, the breaking of SU(2)′R×U(1)YL+Y ′

R
would result

in U(1)N × U(1)Y .

There are many virtues [8, 16] associated with these two models. They are also the most

favored [10] of all known gauge extensions of the SM, based on present neutral-current data

from atomic parity violation [17] and precision measurements of the Z width. The U(1)N

model was not considered in Ref.[10], but it can easily be included in their Fig. 1 by noting

that it has α = 0 and tan β =
√

15 in their notation, thus placing it within the 1σ contour

together with the SU(2)′R model.

We shall now work out details of the leptogenesis in these models. The most general

superpotential for the U(1)N model coming from the 27 × 27 × 27 decomposition of the E6
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Nk
ν̃em

N c
En

Nl

ν̃ei

N c
Ej

Nk

ν̃em, h̃m

N c
En, d

c
n

Nl

ν̃ei

N c
Ej

Figure 1: Loop diagrams interfering with the Nk tree decay.

fundamental representation is

W = λijk1 uciQjH
c
k + λijk2 dciQjHk + λijk3 eciLjHk + (7)

λijk4 SiHjH
c
k + λijk5 Sihjh

c
k + λijk6 ecihju

c
k + λijk7 hciQjLk +

λijk8 dcihjN
c
k + λijk9 hiQjQk + λijk10 ucid

c
jh
c
k + λijk11 LiH

c
jN

c
k ,

where we denote (νE , E) as H and (Ec, N c
E) as Hc. The terms λ1−5 give masses to all

fermions and must be present in any model. SU(2)L × U(1)Y is broken by 〈Ñ c
E〉 and 〈ν̃E〉,

while 〈S̃〉 breaks U(1)N [as well as SU(2)′R × U(1)YL+Y ′

R
] and gives masses of order MZ′ to

E, h, νE , and N c
E . Whereas W conserves B − L automatically, there are some terms which

violate B + L. To prevent rapid proton decay, an appropriate Z2 symmetry (extension of

R-parity) must be imposed. There are 8 ways to do that, resulting in 8 different models [18].

However, the requirements of leptogenesis and nonzero neutrino masses single out only 2

allowed possibilities. If (L, ec), N c and (h, hc) are all odd under Z2, then λ9,10 = 0 in Eq. (7)

which is called Model 1. Here N c is a lepton (L = −1) and h is a leptoquark (B = 1/3,

L = 1). If (h, hc) is even and the others remain odd, then we get Model 2 with λ6,7,8 = 0 and

h is now a diquark (B = −2/3). Note that leptogenesis is also possible in Model 7 of Ref.[18]

with λ6−10 = 0, but as h is stable in this case, it is ruled out by cosmological considerations.

Baryogenesis is also allowed in Model 5 of Ref.[18] with λ6,7,11 = 0, but since N c is now a

baryon with B = 1 and L = 0, neutrinos are exactly massless in that model.

The superpotential of the skew SU(2)′R model is completely fixed and can be obtained
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from Eq. (7) by setting λ4 = λ3, λ6 = −λ5, λ7 = −λ1 and λ9,10 = 0. Here h is a leptoquark

as in the U(1)N Model 1. However, the SU(2)′R decomposition also implies that W−

R has

L = 1 and is odd under R-parity rather than even. Indeed, W−

R has T ′

3R = −1 and Y ′

R = 0,

but because of Eq. (3), it has YR = −1/2.

In general, the heavy Majorana neutrino Nk decays to the B − L = −1 final states

νei
Ñ c
Ej , ν̃ei

N c
Ej, eiẼ

c
j , ẽiE

c
j and dci h̃j, d̃cihj via the interaction terms λ11 and λ8 in Eq. (7),

respectively, and to their conjugate states with B −L = 1. To establish a B −L asymmetry,

one needs: (i) B − L violation, from the N Majorana mass; (ii) CP violation, from the

complex couplings λ8,11; and (iii) the out-of-equilibrium condition of Eq. (5). An equal

asymmetry is also generated from the corresponding decays of the scalar partners Ñk [7].

The subsequent decays of N c
Ej, Ec

j and hj or their superpartners to SM particles do not affect

the asymmetry because they conserve B − L.

Technically, the B−L asymmetry εk is generated from the interference between tree-level

Nk decays and one-loop diagrams, some of which are depicted in Fig.1 for one particular

final state. Thus εk = εVk + εSk , where εVk and εSk are vertex and self-energy contributions

respectively. They are given by

εkV = − 1

8π

∑

l,m,n

∑

a;i,j CaIm[λijk∗a λmnk∗a λmjla λinla ]
∑

a;ij Ca|λijka |2
√

xl
[

(1 + xl)Log(1 + 1/xl) − 1
]

, (8)

εkS = − 1

4π

∑

l,m,n

∑

a,b;i,j Ca,bIm[λijk∗a λmnk∗b λmnlb λijla ]
∑

a;ij Ca|λijka |2
√

xl(x
2
l − 1)−1, (9)

where xl = (mNl
/mNk

)2, indices a, b = 8, 11 denote the interactions of Eq. (7), and the

constants C8 = 1, C11 = 2, C8,8 = 1/2, C11,11 = 2, C8,11 = C11,8 = 1 come from the number

of diagrams in each case.

Notice two differences from the standard Fukugita-Yanagida mechanism [6]: (i) The
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structures of the flavor indices in εVk and εSk are not the same unless there is only one

generation of scalars. (ii) There are more self-energy diagrams because the particles in the

loop need not be related to those in the final state. This is reflected in Eq. (9) by terms

which mix the λ8 and λ11 couplings. Together, (i) and (ii) imply that in contrast to the

models of Refs. [6, 7, 19], the vertex and self-energy contributions to εk are not related to

each other, allowing one or the other to be dominant independently of the values of the Nk

masses. This is true even in the U(1)N Model 2 in which λ8 = 0. Also, in the U(1)N Model

1 and the SU(2)′R model, the ordinary neutrino masses (induced by λ11LHcN c) need not be

related to the lepton asymmetry.

The total decay width of Nk is given by

ΓNk
=

1

4π

∑

i,j

(

|λijk8 |2 + 2|λijk11 |2
)

mNk
. (10)

Taking g∗ ∼ 102, the out-of-equilibrium condition (5) implies
∑

i,j(|λijk8 |2 + 2|λijk11 |2) <∼ 2 ×

10−17 GeV−1 mNk
. For mNk

∼ 1015 GeV, this gives for example λijk8 , λijk11
<∼ 10−1. As long

as Eq. (5) is satisfied, there are no damping effects due to the inverse decay or scattering

processes which may affect the B−L asymmetry. The baryon-to-entropy ratio generated by

the decays of Nk and Ñk is then nB/s ∼ 2εknγ/(2s) = (εk/g∗)(45/π4) where nγ is the photon

number density per comoving volume. In order to satisfy the observed value nB/s ∼ 10−10,

we need λijk8,11 typically of order ∼ 10−3 assuming a maximal CP-violating phase. The out-of-

equilibrium condition can therefore be satisfied easily and the asymmetry is produced with

the right order of magnitude.

Above the electroweak phase transition, rapid B+L violating sphaleron processes convert

the created B − L asymmetry to the observed asymmetry of quarks and leptons. Since the

new particle masses are O(1) TeV, they do not take part in the sphaleron-induced processes.

(Although the anomaly is independent of the masses of the new particles, their participation

in the sphaleron processes is forbidden by the phase space available at the time of the
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electroweak phase transition). Thus B and L violations in the sphaleron environment remain

approximately the same as in the SM [20]. This completes the successful baryogenesis in our

models.

There are some unique experimental signatures of the SU(3)C×SU(2)L×U(1)Y ×U(1)N

and SU(3)C × SU(2)L × SU(2)′R × U(1)YL+Y ′

R
models. First, the Z ′ couplings are given by

QN in the former, and by [21]

−1
√

1 − 2s2
w

[

s2
wYL +

(

3s2
w − 1

2

)

T3R −
(

3 − 5s2
w

2

)

YR

]

,

in the latter. Here s2
w ≡ sin2 θW , assuming gL = gR. For s2

w = 3/8, this would be proportional

to QN , reflecting the same group-theoretical origin of these models.

In either model, one linear combination of the three S fermions (call it S3) becomes

massive by combining with the (neutral) gaugino from U(1)N or SU(2)′R breaking, resulting

in mS3
≃ MZ′ , with MZ′/MZ ≃ (25s2

w/6)(u2/v2) = 0.96(u2/v2) in the former [22], and

MZ′/MZ ≃ [(1 − s2
w)2/(1 − 2s2

w)](u2/v2) = 1.10(u2/v2) in the latter [21], where u = 〈S̃3〉.

The other two S fermions are presumably light and could be considered “sterile” neutrinos

[8, 16]. Hence the invisible width of Z ′ is predicted to have the property

Γ(Z ′ → νν̄ + SS̄) =
(

62

15

)

Γ(Z ′ → l−l+), (11)

in the U(1)N model, and

Γ(Z ′ → νν̄ + SS̄) =

(

5 − 16s2
w + 14s4

w

6 − 30s2
w + 39s4

w

)

Γ(Z ′ → l−l+),

in the skew left-right model.

In addition to the extra neutral gauge boson Z ′, there is also the charged gauge boson

W±

R in the skew left-right model. It has the unusual property that it carries nonzero B − L

as explained before. The mass of WR is given by

MWR
≃
(

cos 2θW
cos θW

)

MZ′ = 0.84 MZ′ . (12)
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It is predicted to decay only into 2 out of the 3 charged leptons because S3 is heavy and

its partner in the SU(2)′R doublet is necessarily a mass eigenstate, i.e. ec, µc, or τ c. If, for

example, it is τ c, then W+
R may decay only into e+S or µ+S, but not to τ+S.

The Yukawa interactions differ in the U(1)N Models 1 and 2, and in the skew SU(2)′R

model, as explained before. Perhaps the most distinctive experimental signatures in this

sector are the s-channel diquark h resonances at hadron colliders predicted in the U(1)N

Model 2. At the LHC, the initial state from 2 valence quarks carries B = 2/3, hence a

diquark resonance may occur without suppression. This allows us to test the existence of

the diquark h above 5 TeV [11].

In conclusion, in the context of E6 superstring theory, the requirement of successful

leptogenesis uniquely leads to only two possible extensions of the SM at the TeV energy

scale: SU(3)C × SU(2)L × U(1)Y × U(1)N and SU(3)C × SU(2)L × SU(2)′R × U(1)YL+Y ′

R
.

Two Yukawa structures are possible in the former model, but only one in the latter. There

are more sources of leptogenesis in these models than in the standard Fukugita-Yanagida

scenario, while the smallness of Majorana neutrino masses is assured by the standard seesaw

mechanism. They are also the only two such extensions of the SM which are within the

1σ contour of present neutral-current data. This fact allows for the exciting possibility of

discovering the extra Z ′ boson with the predicted couplings in either model, the unusual W±

R

boson in the skew left-right model, and the diquark resonances in the U(1)N Model 2.
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