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Abstract

We show that if a baryon asymmetry of the universe is generated through the out-

of-equilibrium decays of heavy scalar bilinears coupling to two fermions of the minimal

standard model, it is necessarily an asymmetry conserving (B−L) which cannot survive

past the electroweak phase transition because of sphalerons. We then show that a

surviving (B − L) asymmetry may be generated if the heavy scalars decay into two

fermions, and into two light scalars (which may be detectable at hadron colliders). We

list all possible such trilinear scalar interactions, and discuss how our new baryogenesis

scenario may occur naturally in supersymmetric grand unified theories.

http://arXiv.org/abs/hep-ph/9811240v1


One of the major successes of grand unified theories (GUTs) seems to be the generation

of baryon asymmetry of the universe. After Sakharov [1] pointed out the three conditions

required for baryogenesis, the first realization of this proposal was found in GUTs [2]. How-

ever, it was later recognized that the generated baryon asymmetry conserves (B−L) and is

therefore washed away by the sphaleron-induced, fast baryon-number violating processes [3]

before the electroweak phase transition.

Restricting ourselves to the fermion content of the standard model (SM), we first prove

that (B−L) conservation of the baryon asymmetry, generated in GUTs through heavy par-

ticle decays to known fermions only, is a generic feature of any theory. We then propose

a new mechanism for baryogenesis in GUTs in which a (B − L) asymmetry is generated

via heavy scalar bilinear decays into two fermions and two lighter scalars. In this scenario

the required CP violation comes from the interference between the tree-level and one-loop

self-energy diagrams. We classify all possible trilinear operators of the scalar bilinears which

can contribute to this type of baryogenesis. We demonstrate that in a wide class of su-

persymmetric (SUSY) GUTs, the new baryogenesis mechanism occurs naturally. A generic

feature of these scenarios is the existence of light scalars. For example in some SUSY GUTs,

there are pseudo-Goldstone-type bilinears whose masses are given by seesaw-type relations

and may be as low as O(1) TeV, giving rise to detectable signatures at future collider ex-

periments. In particular, observation of an excess of same-sign lepton pairs or s-channel

diquark resonances at the Fermilab Tevatron or the CERN Large Hadron Collider (LHC)

would strongly support this proposed baryogenesis scenario with scalar bilinears.

In spite of the tremendous successes of the SM, there are now definite experimental indica-

tions for physics beyond it. With the positive evidence of neutrino masses in atmospheric [4]

and solar neutrino [5] as well as LSND [6] experiments, it becomes apparent that we have to

extend the SM. One important approach to understand the new physics beyond the SM is to
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Representation Notation qq q̄l̄ ql̄ ll

(1, 1,−1) χ− X

(1, 3,−1) ξ X

(1, 1,−2) L−− X

(3∗, 1, 1/3) Ya X X

(3∗, 3, 1/3) Yb X X

(3∗, 1, 4/3) Yc X X

(3∗, 1,−2/3) Yd X

(3, 2, 1/6) Xa X

(3, 2, 7/6) Xb X

(6, 1,−2/3) ∆a X

(6, 1, 1/3) ∆b X

(6, 1, 4/3) ∆c X

(6, 3, 1/3) ∆L X

Table 1: Scalar bilinears which can take part in the generation of baryon asymmetry of the

universe.

study possible new particles whose existence may be indicated by the particle content of the

SM. In the SM the quarks and leptons transform under the SU(3)C ×SU(2)L×U(1)Y gauge

group as (ui, di)L ∼ (3, 2, 1/6), uiR ∼ (3, 1, 2/3), diR ∼ (3, 1,−1/3); (νi, li)L ∼ (1, 2,−1/2),

liR ∼ (1, 1,−1), where i = 1, 2, 3 is the generation index, and there is only one doublet Higgs

scalar, (φ+, φ0) ∼ (1, 2, 1/2), which couples (ui, di)L to ujR and djR, as well as (νi, li)L to ljR.

However, other scalars which transform as bilinear combinations of the SM fermions (listed

in Table 1) are of great interest. There are several scenarios in which new scalar bilinears are

added to explain the masses of neutrinos. Dileptons, leptoquarks and diquarks inevitably

occur in all interesting GUTs [7]. They are classified and their phenomenology has been

studied in comprehensive works [8, 9]. In the following we show that they are also important

for the generation of a baryon asymmetry of the universe.

To generate a baryon asymmetry it is necessary to have [1] (i) baryon number violation,

3



(ii) C and CP violation, and (iii) out-of-equilibrium conditions. In early works it was

noticed that baryogenesis is possible in GUTs because there exist new gauge and Higgs

bosons, whose decays violate baryon number. The quarks and leptons are put into a single

chiral representation, implying mixing of leptoquarks with diquarks. As a result, when these

heavy particles (say X) decay into two quarks and into a quark and an antilepton, the baryon

and lepton numbers are broken [10]. For CP violation this mechanism requires two heavy

gauge or Higgs bosons, X and Y , each of which should have two decay modes,

X → A+B∗, and X → C +D∗ ,

Y → A + C∗, and Y → B +D∗ ,

so that there exist one-loop vertex corrections to these decays. The required CP violation

occurs due to the interference between tree and loop diagrams. As required by the out-of-

equilibrium condition, masses of these particles must satisfy

ΓX < H = 1.7
√
g∗
T 2

MP

at T = MX , (1)

where, ΓX is the decay rate of the heavy particle X; H is the Hubble constant; g∗ is the

effective number of massless degrees of freedom; and MP is the Planck scale.

In specific GUT scenarios such as SU(5) and SO(10), (B − L) is either a global or a

local symmetry respectively. Hence the asymmetry generated by the above mechanism is

(B − L) conserving [7]. When the scalar or vector bosons decay only into fermions, any

attempt to generate a (B −L) asymmetry leads to its large suppression in all these models.

Only in models with a right-handed neutrino, such as SO(10), is it possible to generate a

(B − L) asymmetry after the (B − L) symmetry is broken at some high scale, so that the

right-handed neutrinos become massive and since they are Majorana fermions, their decays

violate lepton number [12]. Since we are not concerned with any fermion beyond the SM,

this scenario falls outside the scope of this article.
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The baryon asymmetry generated in the above scenarios by the interactions which con-

serve (B −L) is washed out by sphaleron processes [3] effective at temperatures 102 GeV <∼
T <∼ 1012 GeV. We shall now prove that this is a generic property of the baryon asymmetry

generated by the above described mechanism, when the decay products are fermions only,

which belong to the SM (not extending it to include a right-handed Majorana neutrino).

This follows from an operator analysis, which was done to show that the minimal scenarios

of proton decay conserve (B − L) [11]. For definitness we consider scalars X and Y , but

obviously the result generalizes also to vectors.

Let us start from the Lagrangian giving the decays of X and Y ,

L = fxabĀBX + fxcdC̄DX + fyacĀCY + fybdB̄DY . (2)

As per our assumption, there are no new fermions in addition to those present in the SM

and the scalars X, Y decay into only quarks and leptons. To obtain a nonzero CP violation

from the interference between tree and vertex diagrams, we require X and Y to be distinct

from each other and to have different decay modes. This implies B and C to be distinct.

In the SM one can then write down all possible combinations of A, B, C, and D, with X

and Y , and find out the decay modes of X and Y . On the other hand, since the out-of-

equilibrium condition and the nonvanishing of the absorptive part of the loop integral require

these scalars X and Y to be much heavier than the fermions, we can integrate them out

inside the loop and write down the diagrams in terms of the four-fermion effective operators

of the SM, as shown in Fig. 1.

This simple but crucial step allows us to use existing knowledge on SM four-fermion

operators for baryon number violation which have been studied extensively in the literature

[11]. It was found that all these operators conserve (B − L) to the lowest order. Any

(B − L) violating operator will be suppressed by < φ >2 /M2
GUT compared to the (B + L)

violating operators. In models with an intermediate symmetry breaking scale or with new
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Figure 1: Interference of effective four fermion operators which generates baryon asymmetry.

Higgs scalars at some intermediate scales, this suppression factor may be softened a little,

but still strong enough to rule out any possibility of generating enough baryon asymmetry

of the universe. On the other hand, any four-fermion operator which violates only lepton

number requires all the fermions to be the same; hence it cannot generate the required CP

asymmetry. Therefore a (B − L) asymmetry, needed to survive the sphaleron processes, is

impossible with the SM four-fermion operators.

In the considered scenario, one can in principle also have the self-energy-type diagrams

with the fermions in the loop for generating the CP asymmetry. However, in this case, after

integrating out the heavy scalars, the effective diagrams in terms of the four-fermion oper-

ators are exactly the same as in the vertex-correction case, so the conclusion is unchanged.

As long as the heavy scalars decay only into fermions, the generated asymmetry always

conserves (B − L). This generic feature is a consequence of the SM fermionic content.

We now show how a (B − L) asymmetry can be generated in GUTs if there are both
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heavy and light scalar bilinears. This is a generalization of a recently proposed scenario of

leptogenesis [13], where each of two heavy scalars decays into two fermions and into two light

scalars. Low-energy effective operators now contain two fermions and two scalar bilinears.

The required CP violation for baryogenesis comes entirely from an interference between

the tree-level decay and the self-energy corrections [13], and there are no one-loop vertex

corrections, as would be the case with Eq. (2).

Consider the scalars S1,2, each of which can decay into two fermions ψ1 + ψ2 and into

two scalars Z1 +Z2. If the (B−L) quantum numbers for the two decay modes are different,

these processes violate (B−L). The Lagrangian describing these interactions is of the form

L = M2
aS

†
aSa +

(

faψc
1ψ2S

†
a + µaZ1Z2S

†
a + h.c.

)

, (3)

where the fermions ψ1,2 and the scalars Z1,2 are assumed to be much lighter than S1,2. This

is then exactly analogous to Eq. (14) of Ref. [13] and we can simply use the formalism

developed there to obtain the (B − L) asymmetries generated by the tree level decays of

the physical states approximating S1,2 and their interference with the one-loop self-energy

diagrams [13], which is given by

δa ≃ ∆(B − L)
Im [µ1µ

∗
2f

∗
1 f2]

16π2(M2
1 −M2

2 )

[

Ma

Γa

]

, (4)

where the width Γa is given by (|µa|2 +M2
a |fa|2)/(8πMa).

Let M1 > M2, then as the universe cooled down to below M1, most of S1 would decay

away. However, the asymmetry so created would be erased by the (B − L) nonconserving

interactions of S2. Hence only the subsequent decay of S2 at T < M2 would generate a

(B − L) asymmetry which would pass through the electroweak phase transition unscathed.

If S2 is heavy enough to satisfy the out-of-equilibrium condition Γa < H of Eq. (1), then the

final baryon asymmetry is approximately given by [10] δB ∼ δ2/(3g∗). The desired value of

δB ∼ 10−10 may thus be obtained with a variety of scalar masses and couplings.
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At energies below the heavy scalar S1,2 masses, lower bounds of which can be obtained

from Eq. (1), any (B − L) violating effective operator of the form

O(B−L) ≡ [ψ1ψ2Z
†
1Z

†
2] (5)

can generate the baryon asymmetry. In the SM there is only one Higgs doublet scalar φ

which is supposed to be light. Hence there can be only one (B − L) violating effective

operator of the required form, i.e. liljφφ, which can be obtained from the SM particles.

This operator has been studied in the literature extensively. It contains all the scenarios of

neutrino masses and leptogenesis [14]. For example, it can be induced by the triplet bilinear

ξ in Table 1 generating a lepton asymmetry of the universe [13]. This operator may also

originate from heavy Majorana neutrinos [12].

In GUTs where the scalar bilinears listed in Table 1 occur, there are many other possibil-

ities to form dimension-five operators of the type given by Eq. (5) which violate lepton and

baryon numbers. As all the scalar bilinears couple to ordinary fermions, the classification

of the two-scalar-two-fermion baryon-asymmetry generating operators in GUTs reduces to

that of all possible (B − L) violating trilinear operators of the scalar bilinears, as shown in

Table 2. From this list, we see that the first two trilinear scalar operators, O1,2, give rise to

the well-known dimension-five operator liljφφ [11]. The rest occur in GUTs such as SO(10)

and E6, as will be demonstrated below. Note the interesting fact that |∆(B −L)| = 2 in all

cases.

To exemplify the general discussion we shall now consider a large class of SUSY SO(10)

GUTs. The SO(10) symmetry may be broken down to the SM symmetry through sev-

eral intermediate steps which include the Pati-Salam SU(4)C × SU(2)L × SU(2)R and/or

SU(2)L ×SU(2)R ×U(1)B−L symmetries [15]. It has been shown [16, 17] that at these inter-

mediate stages, the requirement of stabilizing the charge-conserving vacuum after breaking

the supersymmetry introduces higher-dimensional operators to the theory. The resulting low-

8



Operators B − L Operators B − L Operators B − L

O1 = µ1φφχ
− -2 O2 = µ2φφξ -2 O3 = µ3χ

−χ−L++ -2

O4 = µ4ξξL
++ -2 O5 = µ5YaY

†
c χ

+ 2 O6 = µ6YdYaYa 2

O7 = µ7YdYbYb 2 O8 = µ8YcYdYd 2 O9 = µ9YbY
†
c ξ

† 2

O10 = µ10YaY
†
d χ

− -2 O11 = µ11YbY
†
d ξ -2 O12 = µ12YcY

†
dL

−− -2

O13 = µ13XbX
†
aχ

− -2 O14 = µ14XbX
†
aξ -2 O15 = µ15XaXbY

†
c 2

O16 = µ16XaφYd 2 O17 = µ17Xaφ
†Ya 2 O18 = µ18Xaφ

†Yb 2

O19 = µ19XaXaY
†
a 2 O20 = µ20XaXaY

†
b 2 O21 = µ21XbYdφ

† 2

O22 = µ22∆aYaYa 2 O23 = µ23∆aYbYb 2 O24 = µ24∆a∆b∆b 2

O25 = µ25∆c∆a∆a 2 O26 = µ26∆cYdYd 2 O27 = µ27∆bX
†
aX

†
a -2

O28 = µ28∆LYbYd 2 O29 = µ29∆bYaYd 2 O30 = µ30∆aYdYc 2

O31 = µ31∆cX
†
aX

†
b -2 O32 = µ32∆LX

†
aX

†
a -2 O33 = µ33∆L∆L∆a 2

O34 = µ34∆
†
a∆bχ

− -2 O35 = µ35∆
†
a∆Lξ -2 O36 = µ36∆

†
b∆cχ

− -2

O37 = µ37∆
†
L∆cξ -2 O38 = µ38∆

†
a∆cL

−− -2

Table 2: Trilinear scalar operators which can contribute to the baryon asymmetry of the

universe.

9



energy theory is the R–parity conserving minimal supersymmetric SM plus light diquark,

leptoquark, and dilepton states, which obtain masses via seesaw-type relations.

In the supersymmetric limit and in the absence of the nonrenormalizable terms, the

superpotential of a minimal SUSY Pati–Salam intermediate theory [18] has a complexified

U(30) symmetry that operates on SU(2) triplet, SU(4) tenplet superfields. After the neutral

components of the triplets acquire vacuum expectation values at the scale MR, thus breaking

the symmetry, a U(29) complexified symmetry remains, giving rise to 118 massless fields,

18 of which get masses from the D terms. Inclusion of the higher-dimensional effective

terms necessary to conserve the electric charge leads thus to a total of 50 complex pseudo-

Goldstone bosons with masses mpG ∼ M2
R/MP , where MP is the Planck scale. For MR as

high as O(1010) GeV, the pseudo-Goldstone-type diquarks, leptoquarks, and dileptons may

have masses O(1) TeV. More details can be found in Ref. [17].

Let us consider one of the choices which leaves one Yb field as light as O(1) TeV. Then,

for example, the operator O23 in Table 2 implies that some of the heavy ∆a could generate

a baryon asymmetry of the universe. Even though the left-right symmetry breaking scale is

around 1010 GeV, the ∆a can be much heavier than this mass scale. The out-of-equilibrium

condition implies that these fields are as heavy as 1013 GeV. Their decay modes into Yb + Yb

and into dc + dc violate baryon number as well as (B − L). Hence a baryon asymmetry of

the universe can be generated according to the mechanism discussed before. Since this is a

(B − L) asymmetry, it will not be washed away by the sphaleron processes. Note that the

light Yb alone can be assigned definite global quantum numbers, and hence they do not wash

away the generated baryon asymmetry; their Yukawa interactions should satisfy constraints

derived in Ref. [8, 9].

An important feature of our new baryogenesis mechanism in general, and the discussed

SUSY GUT scenario in particular, is that the light scalar bilinear fields can lead to detectable
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signatures at the Fermilab Tevatron or the CERN LHC. The most interesting among these

are the s-channel resonance processes mediated by diquarks [9]. They may result in resonance

production of light dijets or distinct final states such as tc or tt. The leptonic decays of two

top quarks provide same-sign dilepton final states which have very little SM background. At

the Tevatron, the s-channel production is sea-quark suppressed and diquark masses up to

only O(1) TeV are testable in the tc, tt channels, but at the LHC, diquark masses as high as

O(10) TeV can be probed [9]. Therefore, any possible signal of this type detected at hadron

colliders will lend support to the proposed baryogenesis mechanism.

To summarize, we have shown that a (B−L) asymmetry cannot be generated in GUTs if

the new heavy gauge bosons or scalar bilinears decay only into the SM fermions. As a result

the baryon asymmetry of the universe generated by this type of mechanism cannot survive

to the present day because it would have been washed away by the sphaleron processes. We

then show that it is possible to generate a (B−L) asymmetry in GUTs using scalar bilinear

decays into known fermions and into light scalars. We have classified all possible operators

of the scalar bilinears which can contribute to this baryogenesis mechanism. As an example

we have demonstrated that the proposed baryogenesis mechanism occurs naturally in a wide

class of SUSY GUTs based on the SO(10) gauge symmetry. The light scalar bilinears may

lead to clear detectable experimental signatures at colliders, especially in the discussed SUSY

GUTs where they are pesudo-Goldstone bosons with mass of O(1) TeV.
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