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Abstract

A simple extension of the standard model is proposed in which all

the three generations of neutrinos are Dirac particles and are naturally

light. We then assume that the neutrino mass matrix is diagonal and

degenerate, with a few eV mass to solve the dark matter problem. The

self energy radiative corrections, however, remove this degeneracy and

allow mixing of these neutrinos. The electroweak radiative corrections

then predict a lower bound on the νµ−νe mass difference which solves

the solar neutrino problem through MSW mechanism and also predict

a lower bound on the ντ − νµ mass difference which is just enough

to explain the atmospheric neutrino problem as reported by super

Kamiokande.
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The neutrinoless double beta decay [1] puts severe constraints on the

Majorana mass of the νe. With this constraint it is not possible to explain

simultaneously the dark matter problem [2], solar neutrino problem [3], at-

mospheric neutrino problem [4] and the laboratory bounds on the mixing

angles [5]. Since the preliminary results from KARMEN [6] contradicts the

LSND result [7], we shall not include that in our analysis. If the neutrinos

are Dirac particle there will not be any lepton number violation and hence

there will not be any constraint from the neutrinoless double beta decay. In

that case one can postulate an almost degenerate neutrino scenario [8] to

explain the other problems.

In this article, we consider exactly degenerate Dirac particles with a few

eV mass to explain the dark matter problem. However, this will not allow

any flavour mixing. So we introduce explicit lepton flavour violation, which

will break the mass degeneracy radiatively, which in turn will allow flavour

mixing. The electroweak self-energy corrections will then predict a lower

bound on the mass squared differences between νµ and νe which can solve

the solar neutrino problem through matter enhanced neutrino oscillation [9]

and simultaneously predict a lower bound on the mass squared difference

between ντ and νµ which is just enough to solve the atmospheric neutrino

problem. There is also a similar contribution to mass splitting from flavour

violating radiative corrections, which also gives the maximal neutrino flavour

mixing.

Consider a two generation Majorana neutrino scenario. The neutrino

mass matrix is given by,

Mν =
(

mee meµ

mµe mµµ

)

. (1)

The neutrinoless double beta decay [1] will imply mee < 0.46 eV. If we

consider an almost degenerate neutrino scenario [8], to solve the dark matter

problem [2] we require mµµ ≃ mee. Then the small mixing [5] of νe with νµ

will imply that sin2θeµ ∼
meµ

mµµ
< 0.6 and the masses of the νe and νµ are
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less than 1 eV. This will not solve the dark matter problem. This problem

is solved if one assumes that the neutrinos are Dirac particles. However, the

main problem of making the neutrinos a Dirac particle is that, in a simple

extension of the standard model the Dirac mass of the neutrinos are related

to the charged lepton masses and hence cannot be small (of the order of a

few eV) naturally.

We now propose a scenario where the neutrinos are Dirac particles and are

naturally light. The left handed neutrinos combine with the right handed

neutrinos through their interactions with a different higgs doublet, which

does not couple to the quarks and charged leptons because of the presence

of an additional U(1) symmetry. This new higgs doublet acquires a small

vacuum expectation value (vev), when the extra U(1) symmetry and the

electroweak symmetry are broken [10], and hence its coupling gives a small

Dirac mass to the neutrinos naturally. There is no lepton number violation

in this scenario and hence there are no Majorana mass of the neutrinos.

We extend the standard model gauge group to include a new U(1) sym-

metry,

Gext ≡ SU(3)c × SU(2)L × U(1)Y × U(1)X .

We also extend the model to include the three right handed neutrinos νiR

(i = 1, 2, 3); four additional singlet fermions Yi (i = 1, 2, 3) and Z, which

are required for purpose of anomaly cancellation; one new higgs doublet η,

a scalar singlet χ and a charged scalar singlet ζ . Transformation properties

of the new particles are presented in table 1. The scalar χ acquires a vev

at a very high scale M, breaks the U(1)X symmetry and give masses to the

extra singlet fields. The mass of the doublet η is also of the order of M, but

it does not acquire any vev to start with. However, after the electroweak

symmetry breaking it acquires a small vev and gives small Dirac masses to

the neutrinos naturally.

The lagrangian contains the quadratic and the quartic terms and the
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Table 1: transformations of the new particles

Fermions
νiR (1,1,0,2)
Yi (1,1,0,-1)
Z (1,1,0,-3)

Scalars
η (1,2,-1/2,-2)
χ (1,1,0,2)
ζ (1,1,1,-2)

trilinear mixing terms which are given by,

Lscalar = M2
η η†η + M2

χχ†χ + m2
φφ

†φ

+
1

2
λ1(φ

†φ)2 +
1

2
λ2(η

†η)2 +
1

2
λ3(χ

†χ)2

+
1

2
λ4(φ

†φ)(η†η) +
1

2
λ5(χ

†χ)(η†η) +
1

2
λ6(φ

†φ)(χ†χ)

+ µφ†ηχ. (2)

The scalar χ acquires a vev at some large scale M , which is the only other

mass scale in the model other than the electroweak symmetry breaking scale.

We consider

Mχ ∼ Mη ∼< χ >∼ M ∼ 1011GeV.

Then to prevent the usual higgs doublet from acquiring a large mass we

require

µ ∼ mφ ∼ m,

where m is the electroweak syummetry breaking scale.

We may now minimize the potential to determine the vevs of the different

scalar fields. They are given by,

< χ >2∼ −
M2

χ

λ3
; < φ >2∼

−λ1m
2
φ + λ4M

2
η

λ1λ2 − λ2
4
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and < η >∼
µ < φ >< χ >

M2
η

∼ 100eV. (3)

The scalar field η acquires a very small vev naturally in this scenario. As

a result, if it gives a Dirac mass to the neutrinos, then we have a natural

explanation of the smallness of the Dirac mass of the neutrinos. To obtain

the mass of the neutrinos we now write down the Yukawa couplings of the

leptons and the singlet fermions,

L = fνiαliLναRη + gabY c
a Ybχ + g′

aYaZχ + feiαliLeαRφ + hαβ(ναR)ceβRζ. (4)

The extra singlets Ya and Z get very large masses from the vev of the scalar

χ and they donot couple with the light neutrinos. Since they are decoupled

from the low energy sector, we shall not discuss them from now on. Although

we have to introduce these singlet fields for purpose of anomaly cancellation,

if one can implement this mechanism in a larger theory like grand unified

theory or string theory, one may not require to introduce these fields. The

scalar ζ give radiative mass splitting to neutrinos of different generations,

which in turn gives neutrino flavour mixing.

The first term in this equation gives small Dirac mass to the neutrinos

Mν = fνiα < η > . (5)

We now assume that the Dirac mass matrix is diagonal and degenerate and

to explain the hot component of the dark matter the diagonal elements are

given by fνiαδiα = m. The neutrino Dirac mass matrix then becomes

Mν =







m 0 0
0 m 0
0 0 m





 .

We further assume that in this basis the Yukawa interactions of the field

ζ is also diagonal, but the charge lepton mass matrix is not diagonal. In

general, it may be possible to diagonalise the charge lepton mass matrix and

5



the neutrino mass matrix simultaneously, since the neutrino mass matrix is

degenerate. However, the coupling of the charged scalar ζ will give radiative

correction, which will break the mass degeneracy and will not allow to make

the charged current interaction diagonal. As a result all the observed mixing

may come from the charge lepton mass matrix and we can only determine

them from experiments. The mixing angle will depend on the amount of

radiative mass splitting.

In general, the charged lepton mass matrix can be diagonalised by a bi-

unitary transformation

V †
ikMeiαUαβ = Mdiag

ekβ δkβ.

Then the matrix Vik, which diagonalises the matrix MeiαM †
ejα, will enter

in the charged current interactions. In the basis [eiL, eαR], in which the

charged lepton mass matrix is diagonal, the charge current interaction of the

neutrinos and the charged leptons will be given by,

Lcc = νiLγµV
†
kiekLW µ. (6)

The charged lepton mixing matrix Vij will introduce neutrino flavour mixing

after the radiative mass splitting.

We now define the basis for the neutrinos [νe
iL, νe

αR], which has diagonal

charged current interaction and are given by,

νe
iL = VikνkL and νe

αR = Uν
αβνβR.

In this basis, the mass matrix is not diagonal. But when the mass matrix is

diagonal and degenerate, we can always make transformations to the right

handed fields and make them diagonal. In the basis [νe
iL, νe

αR], the neutrino

mass matrix is given by,

Me
νij = VijMν .
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But Vij commutes with Mν and hence we can make a transformation νe
αR =

V †
βανβR; Vβα = Vij , and diagonalise the mass matrix. However, in the

presence of the radiative corrections due to ζ , this is not possible.

We assume that the couplings of ζ to the right handed leptons, hαβ , to

be diagonal. Although the phenomenology of such dilepton have not been

studied, one can extend the analysis of ref. [11] to constrain the parameters.

If, in addition, we assume that h11 < 10−5, then there is only one constraint

from the (g − 2)µ, which is h22 > 0.3 for mζ ∼ 100 GeV. For h33 there is no

bound in this scenario and we can consider this to be of the order of 1. With

this choice we get a self energy radiative correction (with the internal loop

containing charged leptons and ζ) to the neutrino mass matrix in the basis

[νiL, ναR], in which the charged current interaction is not diagonal but the

ζ couplings are diagonal, given by

Mνiα =







m + mζ
1 0 0

0 m + mζ
2 0

0 0 m + mζ
3





 (7)

where, mζ
i = m

h2

ii

4π

e2

i

m2

ζ

; ei = e, µ, τ . In this case, it will not be possible

to diagonalise the neutrino mass matrix in the basis in which the charged

current interaction is diagonal. Including the standard model self energy

radiative corrections [12], we can now write down the neutrino mass matrix

in the basis [νe
iL, νe

αR] as follows,

Me
νiα = VijMνiα + diag[mew

1 mew
2 mew

3 ] VijMνjα (8)

where, mew
i = αw(m2

ei
/m2

w), ei ≡ e, µ, τ . This mass matrix can now be

diagonalised to get the flavour mixing matrix and the mass ssquared differ-

ence between the different flavours of neutrinos. For any arbitrary choice

of the mixing matrix it is difficult to solve this analytically. So, for pur-

pose of illustration we demonstrate with a two generation example, and then

present some realistic numbers for a three generation scenario which we check

numerically.
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We consider the µ and τ family in the two generation example. For

Vij =
(

cos θ − sin θ
sin θ cos θ

)

, the mass matrix is given by,

Me
νiα =

(

(m + mζ
2)(1 + mew

2 ) cos θ −(m + mζ
3)(1 + mew

2 ) sin θ
(m + mζ

2)(1 + mew
3 ) sin θ (m + mζ

3)(1 + mew
3 ) cos θ

)

(9)

which can be diagonalised with a bi-unitary transformation. The unitary

matrix, which diagonalises Me
νiα(Me

νjα)†, gives the neutrino flavour mixing

and is given by,

V e
ij =

(

cos φ sin φ
sin φ cos φ

)

where,

φ ∼
1

2
tan−1

[

2 cos θ sin θ
(mζ

3 − mζ
2)

(mζ
3 − mζ

2) + (mew
3 − mew

2 )

]

and the mass squared difference is given by,

(m2
3 − m2

2)
2 = [2m cos θ sin θ(mζ

3 − mζ
2)]

2 + [m(mζ
3 − mζ

2) + m(mew
3 − mew

2 )]2.

(10)

It is clear from the expressions that both the electroweak radiative correction

as well as the radiative corrections due to ζ will contribute to the mass

squared difference. If ζ does not contribute to the mass difference, the mixing

angle vanishes as pointed out earlier. For the mixing angle to be maximal

we require the contribution of ζ to be of the same order or more than the

contribution from the electroweak radiative corrections.

The mass difference generated by the standard model self energy radiative

corrections (considering the Dirac mass of the neutrinos to be around 7 eV)

are given by,

∆msol = (mew
2 )2 − (mew

1 )2 = αwm2 m2
µ − m2

e

m2
w

= 0.6 × 10−5

∆matm = (mew
3 )2 − (mew

2 )2 = αwm2 m2
τ − m2

µ

m2
w

= 1.4 × 10−3 (11)
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The νe − νµ mass difference ∆mew
sol is just enough to solve the solar neutrino

problem, while the νµ − ντ mass difference ∆mew
atm falls within the solution

suggested by the recent super kamiokande result. If the contribution due

to ζ are of the same order of magnitude (which is the case for mζ ∼ 100

GeV and h11 = 0, h22 ∼ 0.1 and h33 ∼ 1), then we get the maximal mixing

angle for the νµ and ντ oscillations and the relevant mass squared difference

as required by the super kamiokande experiment. For the solar neutrino

problem, the mass squared difference between νe and νµ is just right for

the MSW solution [9], but we only get the small mixing solution. In this

scenario it will be difficult to explain the vacuum oscillation solution of the

solar neutrino problem, since although one can adjust the parameters of the

couplings of ζ to get a small radiative corrections, one cannot change the

electroweak radiative correction. As a result, the mass squared difference

between νe and any other neutrinos will be larger than required, unless there

are new sterile neutrinos, to which the νe oscillates. Since the neutrino masses

arise from a different higgs doublet, the neutrino mass mixing is not related

to the CKM quark mixing matrix.

In summary, we pointed out that if neutrinos are Dirac particles, then we

may start with a degenerate diagonal mass matrix with the diagonal elements

to be around a few eV, so that neutrinos could be the hot dark matter of the

universe. We also presented a model in which neutrinos could be light Dirac

particles naturally. The mass degeneracy is broken by self energy radiative

corrections, which can then allow enough mixing of these neutrinos to solve

the atmospheric neutrino and solar neutrino problems. The standard model

radiative corrections give a lower bound on the mass squared difference which

is just enough to solve both the atmospheric neutrino and solar neutrino

problems.
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