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Abstract

We propose a simple texture of the neutrino mass matrix with one sterile neutrino

along with the three standard ones. It gives maximal mixing angles for νe → νS

and νµ → ντ oscillations or vice versa. Thus with only four parameters, this mass

matrix can explain the solar neutrino anomaly, atmospheric neutrino anomaly, LSND

result and the hot dark matter of the universe, while satisfying all other Laboratory

constraints. Depending on the choice of parameters, one can get the vacuum oscillation

or the large angle MSW solution of the solar neutrino anomaly.
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Recently the super-Kamiokande experiment has confirmed the atmospheric neutrino os-

cillation result, suggesting nearly maximal mixing of νµ with another species of neutrino

[1]. The same experiment has also confirmed the solar neutrino oscillation result, which

suggests mixing of νe with another species of neutrino [2]. Moreover, the energy spectrum

of the recoil electron seems to favour the large mixing-angle vacuum oscillation of νe over

the MSW solutions [2], although this may have limited statistical significance in the global

fit to the solar neutrino data [3, 4]. They have led to a flurry of phenomenological models

for neutrino mass and mixing which can account for these oscillations [5-8], most of which

are focussed on the bi-maximal mixing angles for the atmospheric and the solar neutrinos.

However, almost all of these works are based on the three-neutrino formalism, involving the

standard left handed neutrinos νe, νµ and ντ [5].

On the other hand the inclusion of the LSND neutrino oscillation result [9] is known

to require a fourth neutrino, which has to be a sterile one (νS) for consistency with the

observed Z–width [10]. Moreover it requires either νµ or νe to oscillate into νS for explaining

the atmospheric and solar neutrino anomalies, while requiring νµ → νe oscillation for the

LSND result. Thus the three-neutrino models for atmospheric and solar neutrino anomalies,

based on a νe −νµ −ντ mixing, are in direct conflict with the LSND result. While the LSND

result has not been corroborated by the preliminary KARMEN data [11], the statistical

significance of the latter is limited by its lower sensitivity in the relevant region of parameter

space. Indeed, with the standard statistical method the 90 % c.l. limit of KARMEN excludes

only half the parameter space of the LSND data in the ∆m2 ≤ 2eV 2 region [12]. Hopefully,

this issue will be resolved by the proposed mini-BOONE experiment at Fermilab along with

more data from KARMEN. It seems to us premature, however, to rule out the LSND result

at present. Therefore we have tried to construct a four-neutrino mass matrix, which can

account for the present solar and atmospheric neutrino data along with the LSND result.

It can also account for the hot dark matter content of the universe [13], while satisfying all

laboratory and astrophysical constraints [14, 15, 16].

Table 1 summarises the experimental constraints on neutrino mass and mixing param-

eters, which are relevant for our model. The large angle MSW and the vacuum oscillation

solutions to the solar neutrino data [2, 17, 18] are taken from a recent fit to the νe sup-

pression rates along with the recoil electron spectrum by Bahcall, Krastev and Smirnov

[3]. For both the solutions the fit favours the oscillation of νe into a doublet neutrino over

νe → νS. The reason is that in the former case the NC scattering of this doublet neutrino
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Table 1: Present experimental constraints on neutrino masses and mixing

Solar Neutrino [3] : ∆m2 ∼ (0.8 − 2) × 10−5eV 2

(Large angle MSW) sin2 2θ ∼ 1

Solar Neutrino [3] : ∆m2 ∼ (0.5 − 6) × 10−10eV 2

( Vacuum oscillation) sin2 2θ ∼ 1

Atmospheric Neutrino [1] : ∆m2 ∼ (0.5 − 6) × 10−3eV 2

sin2 2θ > 0.82

LSND [9] : ∆m2
eµ ∼ (0.4 − 2)eV 2

sin2 2θeµ ∼ 10−3 − 10−2

Hot Dark Matter [13] :
∑

i mi ∼ (4 − 5)eV

Neutrinoless Double Beta Decay [14] : mνe < 0.46eV

CHOOZ [15] : ∆m2
eX < 10−3eV 2

(or sin2 2θeX < 0.2)

with electron can partly account for the discrepancy between the observed suppression rates

in super-Kamiokande and the Homestake experiments. On the other hand one can get ac-

ceptable solutions with νe → νS oscillation if one makes allowance for a 20 % normalisation

uncertainty for the Homestake experiment. This will also enlarge the acceptable range of

∆m2. Therefore we shall consider both the oscillation scenarios νe → νS and νe → ντ in

our model. It should be added here that the best value of sin2 2θ for the large angle MSW

solution is slightly less than 1; and even there the quality of fit is rather poor when all the

experimental data are put together [3]. However one can get acceptable fit with the large

angle MSW solution, including the sin2 2θ = 1 boundary, if one makes reasonable allowance

for the uncertainty in the Boron neutrino flux [3, 4]. Finally, the global fits [3, 4] have also

found acceptable small angle MSW solutions for both these oscillation scenarios. But we do

not consider them here, since the texture of our mass matrix naturally leads to bimaximal

mixing as we shall see below.

The dark matter constraint on the sum of neutrino masses comes from a recent global fit

to the spectrum of density perturbation in the universe using various cosmological models

[13]. The best fit is obtained with a hot and cold dark matter model, where the former

constitutes 20 % of the critical density. Besides there is an astrophysical upper bound on the

number of neutrino species from nucleosynthesis, which allows 1 or atmost 2 sterile neutrinos
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[19].

We shall consider a four-neutrino mass matrix for the three doublet neutrinos and a

singlet (sterile) neutrino. We shall present two scenarios, where the solar and atmospheric

neutrino anomalies are explained by the oscillations (A) νe → νS and νµ → ντ and (B)

νe → ντ and νµ → νS. The corresponding mass matrices will be related to one another

by suitable permutation of neutrino indices. In each case maximal mixing between the

oscillating neutrino pairs will be ensured by the texture of the mass matrix. Moreover we

shall obtain the vacuum oscillation and the large angle MSW solutions in each case depending

on the choice of parameters.

(A) νe → νS and νµ → ντ Oscillations :

In this case the texture of our neutrino mass matrix in the basis [νe νµ ντ νS] is

mν =













0 0 a d

0 c b 0

a b 0 0

d 0 0 0













. (1)

Note that it has only 4 parameters. In comparison the earlier mass matrices considered

had at least 5 parameters [20, 21, 22]. Moreover, the above mass matrix is minimal in

the sense that it has only one diagonal element. The mass matrix of [20] has effectively 4

parameters in the case of maximal vacuum oscillation solution of the solar neutrino. However

it contains two equal diagonal elements, which could in general be different from one another.

It is clear from the mass matrix that the neutrinoless double beta decay vanishes because
∑

i U
2
eimi = mee = 0; so that the corresponding constraint [14] is automatically satisfied.

For the 3 × 3 submatrix of doublet neutrinos, we shall assume the hierarchy

b ≫ a, c. (2)

Consequently the νµ and ντ will form a nearly degenerate pair with maximal mixing and small

mass squared difference (∼ 2bc) to explain the atmospheric neutrino anomaly. Moreover, the

remaining eigenvalue of this 3×3 submatrix gets a tiny double see-saw contribution 2a2c/b2,

which will be much smaller than d over a wide range of the latter parameter. Consequently,

the νe and νS will form a nearly degenerate pair with maximal mixing and small mass squared

difference to explain the solar neutrino anomaly. The vacuum oscillation and the large angle

MSW solutions will correspond to the choices d < a, c and d ∼ b respectively.
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I – Vacuum Oscillation Solution (b >> a, c > d) : In this approximation the mass

eigenvalues are given by,

m1 = d +
a2c

2b2

m2 = b +
c

2
+

a2

2b
+

c2

8b
− a2c

2b2

m3 = −b +
c

2
− a2

2b
− c2

8b
− a2c

2b2

m4 = −d +
a2c

2b2
(3)

and the corresponding mass eigenstates (νT
i ≡ {ν1 ν2 ν3 ν4}) are related to the weak

eigenstates (νT
α ≡ {νe νµ ντ νS}) through the mixing matrix Uiα as,













νe

νµ

ντ

νS













=













1√
2

−s1 s1
1√
2

s1
1√
2

− 1√
2

s1

s′2
1√
2

1√
2

−s′2
− 1√

2
s2 s2

1√
2

























ν1

ν2

ν3

ν4













(4)

where, s1 = a√
2b

and we can neglect the terms s2 and s′2, which are of the order of ∼
O( ac√

2b2
, ad

b2
) ∼ 10−5 for our choice of parameters. For the given 4 × 4 mixing matrix Uiα the

probability of two flavour oscillation is given by,

Pνανβ
= δαβ − 4

∑

j>i

UαiUαjUβiUβj sin2

(

∆m2
ijL

4E

)

, (5)

where, ∆m2
ij = m2

i − m2
j . For our mixing matrix the flavour oscillation in each case is

dominated by one mixing angle which can be determined by comparing the expression (5)

with the effective 2 × 2 flavour oscillation formula

Pνανβ
= sin2 2θαβ sin2

(

∆m2
ijL

4E

)

. (6)

Thus we get an expression for sin2 2θαβ in terms of parameters of the mixing matrix Uiα.

For illustration we shall now present the solution for a specific set of parameters, i.e.,

a = 0.05eV, b = 1.5eV, c = 0.001eV and d = 0.0001eV . There are two pairs of nearly

degenerate eigenvalues

mν1
≃ −mν4

≃ d = 0.0001eV

mν2
≃ −mν3

≃ b = 1.5eV.

(7)
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The LSND experiment can be explained by the oscillations between states with mass squared

difference of the order eV 2 which means that it can be explained by the oscillations between

the ν1,4 and ν2,3 states. To explain LSND as an oscillation between the νe and νµ the effective

mixing angle sin2 2θeµ is obtained by comparing (5) and (6) and reading off the mixing matrix

elements from (4),

sin22θeµ = −4{Ue1Ue2Uµ1Uµ2 + Ue1Ue3Uµ1Uµ3 + Ue4Ue2Uµ4Uµ2 + Ue4Ue3Uµ4Uµ3}

= −4 × 4(−s2
1)(

1√
2
)2 =

4a2

b2
. (8)

Similarly the other masses and the relevant mass squared differences and the corresponding

mixing angles for the experiments listed in Table 1 are given by,

∆m2
sol = m2

ν1
− m2

ν4
=

2a2cd

b2
= 2.2 × 10−10eV 2

sin2 2θeS = 1

∆m2
atm = m2

ν2
− m2

ν3
= 2bc = 0.003eV 2

sin2 2θµτ = 1

∆m2
LSND = m2

ν1
− m2

ν2
= b2 − d2 = 2.2eV 2

sin2 2θeµ = 8s2
1 =

4a2

b2
= 0.004

mDM =
∑

i

|mi| = 3eV. (9)

The νe → νS oscillation gives the vacuum oscillation solution to the solar neutrino anomaly,

while the νµ → ντ oscillation explains the atmospheric neutrino anomaly. The LSND result

is explained by νµ → νe oscillation. The contribution to dark matter is 3 eV. The CHOOZ

[15] and other laboratory constraints are satisfied.

Note that the above solution consists of two nearly degenerate pairs of maximally mixed

neutrinos, separated by a realatively large mass squared gap. This is known to be the

favoured mass configuration for satisfying the various laboratory constraints [20, 23]. The

four model parameters are used to ensure that the three mass squared gaps correspond to

the required values of ∆m2 for the solar, atmospheric and LSND neutrino oscillations, and

θeµ corresponds to the required mixing angle for LSND. The hot dark matter prediction

comes out as a bonus. All these features are natural predictions of our mass matrix; and as

such they will be shared by each of the alternative solutions discussed below. It should also

be noted that the underlying double see-saw mechanism is responsible for generating mass
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squared gaps differing by 10 orders of magnitude starting with mass parameters, which differ

by only 3–4 orders of magnitude (i.e., similar to the case of the up type quark mass matrix).

II – Large Angle MSW Solution (b > d >> a, c) : In this approximation (b 6= d)the

mass eigenstates are given by,

m1 = d − a2d

2(b2 − d2)
+

a2b2c

2(b2 − d2)2

m2 = b +
c

2
+

c2

8b
+

a2b

2(b2 − d2)
− a2b2c

2(b2 − d2)2

m3 = −b +
c

2
− c2

8b
− a2b

2(b2 − d2)
− a2b2c

2(b2 − d2)2

m4 = −d +
a2d

2(b2 − d2)
+

a2b2c

2(b2 − d2)2
(10)

and the mixing matrix has the same form as (4), with s1 = a
(b2+d2)1/2

, and s2 = s′2 = ab
d(b2+d2)1/2

. Hence like before νe → νS mixing and the νµ → ντ mixing are maximal, where as the

νe → νµ mixing is given by the small parameter s1. It may be added here that one gets a

smooth numerical solution at b = d, although the approximation (10) breaks down there.

In this case let us consider a choice, a = 0.025eV, b = 1.5eV, c = 0.0015eV and d =

1.25eV . Then the different masses and the relevant mass squared differences and the corre-

sponding mixing angles are given by,

mν1
≃ −mν4

≃ d = 1.25eV

mν2
≃ −mν3

≃ b = 1.5eV

∆m2
sol = m2

ν1
− m2

ν4
=

2a2b2cd

(b2 − d2)2
= 1.1 × 10−5eV 2

sin2 2θeS = 1

∆m2
atm = m2

ν2
− m2

ν3
= 2bc = 0.004eV 2

sin2 2θµτ = 1

∆m2
LSND = m2

ν1
− m2

ν2
= b2 − d2 = 0.69eV 2

sin2 2θeµ = 8s2
1 = 8

a2

(b2 + d2)
= 1.3 × 10−3

mDM =
∑

i

|mi| = 5.5eV. (11)

The numerical values of the mass square differences have been calculated using the exact

solutions of for the masses. The analytical expressions for the mass square differences are
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from the polynomial approximation (10). The numerical agreement for the mass square

differences between the exact solutions and the polynomial approximation agrees upto 6

decimals in this range of parameters.

Thus the νe → νS oscillation provides the large angle MSW solution to the solar neutrino

problem. The νµ → ντ and νµ → νe oscillations explain the atmospheric neutrino anomaly

and the LSND result respectively as before. The contribution to dark matter is 5 eV. It may

be added here that with these parameters s1 < s2; so the effective mass of νe is slightly lower

than that of νS.

(B) νe → ντ and νµ → νS Oscillations :

In this case we can use the same mass matrix as before if we make the following change

of basis,

(νe νµ ντ νS) −→ (νe νµ νS ντ ). (12)

Note that with this change of basis the diagonal element for the sterile neutrino mSS con-

tinues to remain zero, which is an important condition as we shall see below. Moreover the

change of basis does not affect the mass eigenvalues m1, m2, m3 and m4. But now the nearly

degenerate pair m1 and m4 represent the two maximally mixed states of νe and ντ , while

m2 and m3 represent similar admixtures of νµ and νS. Thus the solutions (9) and (11) will

continue to hold with the exchange of the neutrino flavour indices τ and S in θeS and θµτ .

Consequently they will represent the vacuum oscillation and large angle MSW solutions to

the solar neutrino anomaly via νe → ντ oscillation, while the atmospheric neutrino anomaly

is explained via νµ → νS oscillation. The rest of the results remain the same as before.

Let us briefly discuss the possible mechanisms underlying the above mass matrix. Con-

sider first the 3 × 3 submatrix corresponding to the three left-handed doublet neutrinos.

This sub-eV scale mass matrix could arise from the standard see-saw mechanism with three

heavy right-handed singlet neutrinos. Alternatively, one can get it without any right-handed

neutrino but with an expanded higgs sector via a radiative mechanism [24] or Majorana cou-

pling of the left-handed neutrino pairs to a heavy Higgs triplet [25]. In both cases one can

naturally obtain a sub-eV scale mass matrix. The extension of the mass matrix to include a

light singlet neutrino has been tried recently in each of the above three models [6, 7, 8]. In the

standard see-saw model it is assumed to be one of the right-handed singlets while one adds

a singlet neutrino in the other two models. In each case one has to impose a zero Majorana

mass for this singlet, as otherwise it will naturally assume a high mass value. This is the

reason why we have set mSS to zero in our mass matrix (1). In the standard see-saw model
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this has been done by assuming a singular Majorana mass matrix for the singlet neutrinos,

so that one of the eigenvalues (mSS) is zero [8]. In the other two models the mSS is made to

vanish by imposing an additional symmetry [6, 7]. Finally one asks if this singlet neutrino

can naturally have Dirac masses in the ≤ 1 eV scale? It seems possible to get it in the Zee

model [6] and the triplet higgs model [7] via the same suppression mechanisms which keep

the 3× 3 doublet mass matrix in the sub-eV range. But in the case of the standard see-saw

model it had to be put in by hand [8]. We feel it is important to look for a more natural

way to keep the Dirac masses small in this model.

To summarize, we have presented a texture of four-neutrino mass matrix which auto-

matically ensures bi-maximal mixing between νe → νS and νe → ντ or vice versa. Thus

with only four parameters it can account for the solar, atmospheric and LSND neutrino

anomalies while remaining consistent with other experimental constraints. The prediction

of the desired hot dark matter density comes out as bonus. Depending on the choice of

parameters we can get both the vacuum oscillation and the large angle MSW solutions to

the solar neutrino anomaly. Thanks to the underlying double see-saw mechanism, one can

generate the desired mass squared gaps differing by 10 orders of magnitude starting with the

four mass parameters which differ by only 3–4 orders of magnitude.

ACKNOWLEDGEMENT

We are grateful to Profs.K.S.Babu and Ernest Ma and also to Prof.K.Whisnant for point-

ing out a notational error in the original version of our mass-matrix. We are also grateful

to Prof. Ernest Ma for a critical reading of the manuscript. We thank Profs. V. Barger, W.

Buchmuller, S. Goswami, S. Pakvasa, T. Weiler and P. Zerwas for discussions. Two of us

(US and DPR) would like to acknowledge the hospitality of the Theory Group, DESY and

US acknowledges financial support from the Alexander von Humboldt Foundation.

9



References

[1] Super-Kamiokande Collaboration : Y. Fukuda et al, Phys. Rev. Lett. 81 (1998) 1562;

Phys. Lett. B433 (1998) 9 and B436 (1998) 33; T. Kajita, Talk presented at Neutrino

– 98, Takayama, Japan (1998).

[2] Super-Kamiokande Collaboration : Y. Fukuda et al, Phys. Rev. Lett. 81 (1998) 1158;

Talk by Y. Suzuki at Neutrino – 98, Takayama, Japan (1998).

[3] J.N. Bahcall, P.J. Krastev and A.Yu. Smirnov, Phys. Rev. D58 (1998) 096016.

[4] N.Hata and P.G. Langacker, Phys. Rev. D 56 (1997) 6107.

[5] B. Allanach, hep-ph/9806294; V. Barger, S. Pakvasa, T.J. Weiler and K. Whisnant,

Phys. Lett. B437 (1998) 107; V. Barger, T.J. Weiler and K. Whisnant, hep-ph/9807319;

J. Elwood, N. Irges and P. Ramond, hep-ph/9807226; E. Ma, hep-ph/9807386; G. Al-

terelli and F. Feruglio, hep-ph/9807353; Y. Nomura and T. Yanagida, hep-ph/9807325;

A. Joshipura, hep-ph/9808261; K. Oda et al, hep-ph/9808241; H. Fritzsch and Z. Xing,

hep-ph/9808272; J. .Ellis et al, hep-ph/9808301; A. Joshipura and S. Vempati, hep-

ph/9808232; U. Sarkar, hep-ph/9808277; S. Davidson and S.F.King, hep-ph/9808296;

H. Georgi and S.L. Glashow, hep-ph/9808293; R.N. Mohapatra and S. Nusinov, hep-

ph/9808301; R. Barbieri, L.J. Hall and A. Strumia hep-ph/9808333; Y. Grossman, Y.Nir

and Y. Shadmi, hep-ph/9808355.

[6] N. Gaur, A. Ghosal, E. Ma and P. Roy, Phys. Rev. D58 (1998) 071301.

[7] U. Sarkar, hep-ph/9807466.

[8] Y. Chikira, N. Haba and Y. Mimura, hep-ph/9808254.

[9] LSND Collaboration : A. Athanassopoulos et al, Phys. Rev. Lett. 77 (1996) 3082,

nucl-ex/9706006 and nucl-ex/9709006.

[10] P.B. Renton, Int. J. Mod. Phys. A 12 (1997) 4109.

[11] KARMEN Collaboration : B. Zeitnitz, Talk at Neutrino – 98, Takayama, Japan (1998).

[12] C. Giunti, hep-ph/9808405.

[13] E. Gawiser and J Silk, Science 280 (1998) 1405; see also J. Primack, astro-ph/9707285.

10

http://arXiv.org/abs/hep-ph/9806294
http://arXiv.org/abs/hep-ph/9807319
http://arXiv.org/abs/hep-ph/9807226
http://arXiv.org/abs/hep-ph/9807386
http://arXiv.org/abs/hep-ph/9807353
http://arXiv.org/abs/hep-ph/9807325
http://arXiv.org/abs/hep-ph/9808261
http://arXiv.org/abs/hep-ph/9808241
http://arXiv.org/abs/hep-ph/9808272
http://arXiv.org/abs/hep-ph/9808301
http://arXiv.org/abs/hep-ph/9808232
http://arXiv.org/abs/hep-ph/9808232
http://arXiv.org/abs/hep-ph/9808277
http://arXiv.org/abs/hep-ph/9808296
http://arXiv.org/abs/hep-ph/9808293
http://arXiv.org/abs/hep-ph/9808301
http://arXiv.org/abs/hep-ph/9808301
http://arXiv.org/abs/hep-ph/9808333
http://arXiv.org/abs/hep-ph/9808355
http://arXiv.org/abs/hep-ph/9807466
http://arXiv.org/abs/hep-ph/9808254
http://arXiv.org/abs/nucl-ex/9706006
http://arXiv.org/abs/nucl-ex/9709006
http://arXiv.org/abs/hep-ph/9808405
http://arXiv.org/abs/astro-ph/9707285


[14] H.V. Klapdor-Kleingrothaus, in Proc Lepton and Baryon number violatoin, Trento,

April 1998; M. Günther et al, Phys. Rev. D 55 (1997) 54; L. Baudis et al, Phys. Lett.

B 407 (1997) 219.

[15] CHOOZ Collaboration : M. Appollonio et al, Phys. Lett. B420 (1998) 397.

[16] Particle Data Group, Eur. Phys. J. C 3 (1998) 1.

[17] GALLEX Collabroration : W. Hampel et al, Phys. Lett. B 388 (1996) 364; SAGE

Collaboration : V. Gavrin et al, Neutrino – 98, Takayama, Japan (1998).

[18] Homestake expt : B.T. Cleveland et al, Astrophys. J. 496 (1998) 505; R. Davis, Prog.

Part. Nucl. Phys. 32 (1994) 13.

[19] C.J. Copi, D.N. Schramm and M.S. Turner, Phys. Rev. Lett. 75 (1995) 3981; Phys.

Rev. D 55 (1997) 3389.

[20] V. Barger, T.J. Weiler and K. Whisnant, Phys. Lett. B 427 (1998) 97; V. Barger, S.

Pakvasa, T.J. Weiler and K. Whisnant, hep-ph/9806328.

[21] S.C. Gibbons, R.N. Mohapatra, S. Nandi and A. Raychaudhuri, Phys. Lett. B 430

(1998) 296.

[22] E. Ma and P. Roy, Phys. Rev. D 52 (1995) 4780; Z.G. Berezhiani and R.N. Mohapatra,

Phys. Rev. D 52 (1995) 6607; E.J. Chun, A.S. Joshipura and A.Yu. Smirnov, Phys.

Rev. D 54 (1996) 4654; K. Benakli and A.Yu. Smirnov, Phys. Rev. Lett. 79 (1997)

4314; G. Cleaver, M. Cvetic, J.R. Espinosa, L Everett and P. Langacker, Phys. Rev. D

57 (1998) 2701; A.S. Joshipura and A.Yu. Smirnov, hep-ph/9806376.

[23] S.M. Bilenky, C. Giunti and W. Grimus, Eur. Phys. J. C 1 (1998) 247;S. Goswami,

Phys. Rev. D55, 2931 (1997).

[24] A. Zee, Phys. Lett. B 93 (1980) 389.

[25] E. Ma and U. Sarkar, Phys. Rev. Lett. 80 (1998) 5716.

11

http://arXiv.org/abs/hep-ph/9806328
http://arXiv.org/abs/hep-ph/9806376

