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Abstract

We have constructed an explicit see-saw model containing two singlet neutrinos, one

carrying a (B − 3Le) gauge charge with an intermediate mass scale of ∼ O(1010) GeV

along with a sterile one near the GUT (grand unification theory) scale of ∼ O(1016)

GeV. With these mass scales and a reasonable range of Yukawa couplings, the model

can naturally account for the near-maximal mixing of atmospheric neutrino oscillations

and the small mixing matter-enhanced oscillation solution to the solar neutrino deficit.
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The super-Kamiokande experiment has recently provided convincing evidence for the

atmospheric neutrino oscillation [1] as well as confirmed earlier results on solar neutrino

oscillation [2]. The atmospheric neutrino oscillation data seem to require a large mixing

angle between νµ and ντ ,

sin2 2θµτ > 0.82 (1)

and

∆M2 = (0.5 − 6) × 10−3eV2. (2)

On the other hand, the solar neutrino oscillation data can be explained by the small mixing-

angle matter-enhanced solution between νe and a combination of νµ/ντ with [3]

sin2 2θe−µ/τ = 10−2 − 10−3 (3)

and

∆m2 = (0.5 − 1) × 10−5eV2. (4)

This represents the most conservative solution to the solar neutrino anomaly although one

can get equally good solutions with large mixing-angle matter-enhanced and vacuum oscil-

lations as well. One would naturally expect a near-maximal mixing between νµ and ντ (1),

as required by the atmospheric neutrino data, if they were almost degenerate Dirac partners

with a small mass difference given by (2). In the context of a three-neutrino model however,

the solar neutrino solution (4) would then require the νe to show a much higher level of de-

generacy with one of these states, which is totally unexpected. Therefore, it is more natural

to consider the three neutrino mass states as nondegenerate with

m1 = (∆M2)1/2 ≃ 0.05eV, m2 = (∆m2)1/2 ≃ 0.003eV, m3 << m2. (5)

There is broad agreement on this point in the current literature on neutrino physics [4], much

of which is focussed on the question of reconciling this hierarchical structure of neutrino

masses with at least one large mixing angle (1).

The cannonical mechanism for generating neutrino masses and mixings is the so called

see-saw model involving heavy right-handed singlet neutrinos [5]. It naturally leads to small

hierarchical masses for the three doublet neutrinos, but with small mixing angles. Alter-

natively one can generate the small neutrino masses radiatively via the Zee model [6, 7] or

the R-parity breaking supersymmetric model [8]. Instead of heavy right-handed neutrinos,

one needs here an expanded scalar sector in the ≤ TeV region, as extra Higgs multiplets in
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the former case and as squarks and sleptons in the latter. The radiative mechanism offers

more flexibility to reconcile hierarchical neutrino masses with at least one large mixing angle.

In fact, explicit models for neutrino masses and mixing have been constructed recently to

explain the atmospheric and solar neutrino data in terms of these two radiative mechanisms

[7, 8]. It should be noted however that the presence of extra scalars in the ≤ TeV region

in these models represents a potential problem with large flavour-changing neutral-current

(FCNC) effects. Moreover, these extra scalars can either be detected or ruled out in future

colliders. On the other hand, the see-saw model is less vulnerable to FCNC effects and

collider search, although it is harder to reconcile hierarchical neutrino masses with a large

mixing in this case. The present work is devoted to this exercise. As we shall see below,

this model can naturally reconcile hierarchical neutrino masses with a large mixing angle

(1). Moreover, the low-energy (≤ TeV) spectrum of this model is identical to the standard

model, so that it has no potential problem with flavour-changing neutral currents.

Let us first consider the atmospheric neutrino oscillation. It is clear from (1), (2) and (5)

that it requires the heaviest neutrino state to be a roughly equal mixture of νµ−ντ with mass

∼ 0.05 eV. In the simplest see-saw model, this requires one heavy singlet neutrino, having a

Dirac coupling to this equal mixture of νµ − ντ [9]. Such a heavy neutrino can be motivated

in a U(1) extension of the standard model, with the U(1) gauge charge corresponding to

(B−3Li), where one needs one right-handed singlet neutrino carrying an Li number of 1 for

anomaly cancellation [10]. This is analogous to the left-right symmetric model, corresponding

to the U(1) gauge charge (B − Le − Lµ − Lτ ), where one needs three right-handed neutrino

singlets for anomaly cancellation. Such a U(1) extension of the standard model was recently

constructed for the U(1) gauge charge (B − 3Lτ ) [10] and its phenomenological implications

studied [11]. Although one can make the right-handed singlet neutrino of this model to

couple to a roughly equal mixture of νµ − ντ by adjusting the model parameters, it will not

be a natural feature of this model. To achieve this naturally, we must treat the µ and τ

flavours on equal footing and distinguish them from e. Accordingly we shall consider the

U(1) extension of the standard model, corresonding to the U(1) gauge charge,

Y ′ = B − 3Le. (6)

Moreover, we shall introduce a reflection symmetry via a multiplicative quantum number,

N–parity, in order to avoid the coupling of the singlet neutrino with νe [12].

The leptons and Higgs scalars of the model are listed below with their SU(2)L×U(1)Y ×
U(1)Y ′ gauge charges, where the negative N–parity states have been identified by the sub-
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script.
(

νe

e

)

L

∼ (2,−1/2;−3) νc
eL ∼ (1, 0; 3)

(

φ+

φ0

)

L

∼ (2, 1/2; 0)

(

η+
1

η0
1

)

L

∼ (2, 1/2; 3)

(

η+
2

η0
2

)

L

∼ (2, 1/2;−3) χ0 ∼ (1, 0;−6)

ζ0 ∼ (1, 0;−3) νS ∼ (1, 0; 0) (7)

Here one extra singlet neutrino νS with no Y ′ charge has been added for explaining the solar

neutrino data. Since the mass M of this sterile neutrino is not protected by any symmetry,

it is expected to be very high, going up to the GUT scale (1016 GeV). All the other new

particles will acquire masses at an intermediate scale, corresponding to the spontaneous

breaking of the U(1)Y ′ gauge symmetry. The resulting mass matrix for the five neutrino

states in the basis [νe νµ ντ νc
e νS] is given by,



















0 0 0 0 f ′′ < η1 >

0 0 0 f1 < η2 > f ′
1 < φ >

0 0 0 f2 < η2 > f ′
2 < φ >

0 f1 < η2 > f2 < η2 > f < χ > 0

f ′′ < η1 > f ′
1 < φ > f ′

2 < φ > 0 M



















(8)

Note that the scalar ζ0 does not contribute to the mass matrix. However, it provides a

soft N–parity breaking term in the Lagrangian, which allows the model to avoid a potential

domain-wall problem.

Both ζ0 and χ0 are expected to acquire large vacuum expectation values and masses at

the scale of U(1)Y ′ breaking. In contrast, the SU(2) doublets η1 and η2 are required to have

positive mass-squared terms at this scale, so that they would have large masses but very

small vevs < η1 > and < η2 > [13]. For example, < η2 > can be estimated from the relevant

part of the scalar potential,

m2

2η
†
2η2 + λ(η†

2η2)(ζ
†ζ) + λ′(η†

2η2)(χ
†χ) − µφ†η2ζ

† (9)

where the last term is the N–parity breaking soft term mentioned above. Although we start

with a positive mass-squared term for the field η2, after minimisation of the potential we

find that this field acquires a small non-zero vev given by,

< η2 >=
µ < φ >< ζ >

M2
2

(10)
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where M2
2 = m2

2+λ < ζ0 >2 +λ′ < χ0 >2 represents the physical mass of η2 and < φ >≃ 102

GeV. One expects a similar value for < η1 >. The size of the soft term can be anywhere up

to the spontaneous symmetry breaking scale, i.e., µ ≤ M2.

In order to account for the desired neutrino masses and mixing we shall require the size

of the vevs to be

< η1 >∼< η2 >∼ 1GeV. (11)

This would correspond to assuming µ ∼< ζ > /100 in (10). Alternatively one can get this

with µ ∼< ζ > and M2 ≃ m2 ≃ 10 < ζ >. In either case one can get the required vev with

reasonable choice of the mass parameters around the scale of the spontaneous symmetry

breaking.

We shall now proceed to calculate the masses and mixing angles of the three light left-

handed neutrinos by diagonalising the 5 × 5 mass matrix. Since we have added two singlet

neutrinos, one of the doublet neutrinos will remain massless. This is also clear from the fact

that the determinant of the mass-matrix (8) is zero. Let

a1 =
f1 < η2 >√

f < χ >
, a2 =

f2 < η2 >√
f < χ >

,

b1 =
f ′

1 < φ >√
M

, b2 =
f ′

2 < φ >√
M

c =
f ′′ < η1 >√

M
. (12)

We then take the approximation a1,2 ≫ b1,2 ≫ c, which will be true for our parameter space

of interest. The two nonzero light mass eigenvalues are now

m1 ≃ a2

1 + a2

2, (13)

m2 ≃
(a1b2 − a2b1)

2

a2
1 + a2

2

. (14)

The f ′
1,2 are Yukawa couplings of the standard model Higgs boson to νµ, ντ . Assuming them

to be similar in size to the top quark Yukawa coupling as in SO(10) grand unified theories

implies

f ′
1,2 ∼ 1. (15)

On the other hand, assuming them to be similar in size to the τ Yukawa coupling would

imply

f ′
1,2 ∼ 10−2. (16)
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Comparing (5), (12), and (14), we see that the Yukawa couplings of (15) give

M ∼ 1016GeV(∼ MGUT ), (17)

while the Yukawa couplings of (16) imply

M ∼ 1012GeV, (18)

which is also a reasonable value.

Thus one can get the right mass for the matter-enhanced solution to solar neutrino

oscillations for M in the range of 1012−16 GeV. Moreover we see from (12) and (13) that

m1 ∼
(

f 2
1 + f 2

2

f < χ >

)

GeV. (19)

Here the Yukawa couplings appearing in the numerator and denominator correspond to the

scalars η2 and χ0 respectively. Assuming them to be of similar size, we see that any value of

this Yukawa coupling in the range of (15) – (16) will give the required m1 of equation (5) for

< χ >∼< ζ >∼ 108−10GeV. (20)

Thus we can have the right mass for atmospheric neutrino oscillations for a reasonable scale

of the U(1)Y ′ symmetry breaking and a reasonable range of the Yukawa couplings.

Let us now look at the mixing matrix connecting the neutrino flavour eigenstates (νe, νµ, ντ )

to the mass eigenstates (ν3, ν2, ν1), written in increasing order of mass. Because of the struc-

ture of (8) with a guaranteed zero mass eigenvalue, we can express this mixing matrix as

a product of two matrices U1 and U2 corresponding to the atmospheric and solar neutrino

mixing angles respectively, i.e.,








νe

νµ

ντ









= U1U2









ν3

ν2

ν1









. (21)

We get

U1 =









1 0 0

0 cos θ1 sin θ1

0 − sin θ1 cos θ1









, (22)

where

tan θ1 =
sin θ1

cos θ1

≃
a1

a2

(

= f1

f2

)

.
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Note that tan θ1 is simply the ratio of the Yukawa coulings of η2 to νµ and ντ which are

expected to be of similar size. Assuming them to be equal implies tan θ1 = 1; i.e., maximal

mixing for atmospheric neutrino oscillation, sin2 2θ1 = 1. Moreover any value of this ratio

in the range

0.64 <
f1

f2

< 1.56 (23)

will ensure the near-maximal mixing condition of equation (1). Thus we can get the required

mixing angle for atmospheric neutrino oscillations without any fine tuning of the Yukawa

couplings.

Finally we get

U2 =









cos θ2 − sin θ2 0

sin θ2 cos θ2 0

0 0 1









, (24)

where

sin θ2 =
c
√

a2
1 + a2

2

a1b2 − a2b1

≃
c

b1,2
.

Substituting (12) in (24) gives

sin θ2 =
f ′′

f ′
1,2

< η1 >

< φ >
. (25)

This is to be compared with the required angle (3), which corresponds to

sin θ2 = (1.6 − 5) × 10−2. (26)

Assuming the Yukawa couplings to be of similar size, equation (25) gives the required mixing

angle for

< η1 >∼ 1GeV (27)

as mentioned earlier. There is a contribution to this angle from the charged lepton sector,

which is however relatively small, as we see below.

We have been working in the basis where the charged-lepton mass matrix, arising from

their couplings to the standard-model Higgs boson φ, is diagonal. However, there will be

non-diagonal terms introduced by the Yukawa couplings of η1 to eµ and eτ [7]; i.e.

Mℓ =









me 0 0

f ′′
1 < η1 > mµ 0

f ′′
2 < η1 > 0 mτ









(28)
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Its contribution to the νe mixing angle is

sin θ2 = f ′′
1 < η1 >

me

m2
µ

∼ f ′′
1 10−1 ≤ 10−3, (29)

since the Yukawa coupling in this case is at most ∼ 10−2.

In summary, we have constructed a see-saw model containing two heavy singlet neutrinos.

One of them carries a (B − 3Le) gauge charge and acquires an intermediate scale mass,

corresponding to the spontaneous breaking of this gauge symmetry. The associated scalars

have also masses at this scale. The other singlet neutrino is sterile and has a very heavy

mass near the GUT scale. With these two mass scales and a reasonable range of Yukawa

couplings, the model can naturally account for the near maximal mixing solution to the

atmospheric neutrino oscillation and the small mixing MSW solution to the solar neutrino

oscillation.
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