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Abstract

We discuss several bifurcation phenomena that occur in the quasiperiodi-

cally driven logistic map. This system can have strange nonchaotic attractors

(SNAs) in addition to chaotic and regular attractors; on SNAs the dynamics

is aperiodic, but the largest Lyapunov exponent is nonpositive. There are

a number of different transitions that occur here, from periodic attractors

to SNAs, from SNAs to chaotic attractors, etc. We describe some of these

transitions by examining the behavior of the largest Lyapunov exponent, dis-

tributions of finite time Lyapunov exponents and the invariant densities in

the phase space.
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I. INTRODUCTION

Quasiperiodically driven mappings where the dynamics can be strange (namely on frac-

tal attractors) but nonchaotic (namely having a lack of sensitivity to initial conditions) are

of considerable current interest [1,2]. Strange nonchaotic attractors (SNAs) were first de-

scribed by Grebogi et al. in 1984 [3], and are now known to be generic in quasiperiodically

driven systems. Such dynamics is paradoxical in some ways. The motion on SNAs is aperi-

odic, but over long times, nearby trajectories will coincide. The dynamics is almost always

characterized by intermittency, which is indicative of the fact that such attractors are highly

nonuniform and have a complicated interweaving of (locally) stable and unstable regions.

External forcing allows for a additional means of probing nonlinear dynamical systems.

If the forcing is periodic, then the motion of the system becomes either periodic or chaotic,

but for quasiperiodic forcing (for example when a system is modulated with two frequencies

which are incommensurate with each other) SNAs become possible. Strange nonchaotic dy-

namics usually occurs in the vicinity of strange chaotic behavior and periodic or quasiperi-

odic (nonstrange, nonchaotic) behavior. As a result, such systems can show transitions

between dynamical states and bifurcation phenomena which are similar to those in analo-

gous autonomous systems (for example the several scenarios [4] such as the period-doubling

route to chaos, intermittency, attractor crises, etc.) as those that are distinct from the

bifurcations of unforced systems [5–7]. These have been extensively studied in a number

of different contexts: questions of interest range from the mechanisms through which SNAs

are created [8–16], how they may be characterized [17,18], experimental systems where these

might occur [18–20], etc.

In this paper we examine the transitions between a number of different types of attractors

in the quasiperiodically driven logistic map. In this prototypical driven system, the attrac-

tors can be strange and nonchaotic, in addition to being strange and chaotic or nonchaotic

and regular (torus attractors). Studies of the driven logistic map have played an important

role in the study of SNAs. Kaneko [12] first observed “torus wrinkling” in this system: this
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was eventually described as the fractalization route to SNAs [13]. The creation of SNAs

through the collision of stable period–doubled tori with their unstable parent torus was also

first studied in this system [11]. One great advantage in studying the driven logistic mapping

(even though it is somewhat difficult to obtain analytic results) is that the undriven logistic

map has been extensively studied over the past few decades. Many of the features of the

driven system find their parallels in the undriven system. At the same time, however, since

the dynamics in the logistic map is generic of a wide class, the behaviour that can be simply

studied in the driven logistic map is characteristic of most driven nonlinear systems. Some

scenarios through which SNAs are formed in this and related systems have been reviewed

recently [1].

SNAs occur in several different parameter ranges, between regions of periodic or torus

attractors and regions of chaotic attractors. There is a plethora of possible dynamical

transitions, some of which have parallels in the undriven system, such as torus bifurcations,

. . . n T ↔ 2n T ↔ . . . ,

and others which do not, such as transitions from tori to SNAs

. . . n T ↔ n band SNAs ↔ . . .

. . . 2n T ↔ 2n−1 band SNAs ↔ . . . .

SNAs merge in a manner similar to the case of reverse bifurcations, SNAs widen, in a manner

similar to widening chaotic crises, and can transform from one type to another or from SNAs

to chaotic attractors.

The main focus of this paper, in addition to characterizing the above bifurcations and

transitions in this system through the Lyapunov exponent and its fluctuations, is also to

examine the manner in which the invariant measure varies with the parameters of the system,

and the effect that this has on the dynamics. In many instances, these bifurcations or

transitions involve the Lyapunov exponent going through zero, and can be analyzed in

terms of symmetries in the tangent–space dynamics.
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In Section II, we introduce the model, and discuss the analysis in terms of global and

local Lyapunov exponents, and the return map for stretch exponents. The the characteristic

behavior of the Lyapunov exponents at the various transitions to different attractors are

discussed in Sec. III. This is followed by a summary in Sec. IV.

II. MODEL

We study the logistic map with quasiperiodic modulation of the parameter α,

xn+1 = α[1 + ǫ cos 2πθn]xn(1 − xn) (1)

θn+1 = θn + ω mod 1, (2)

where ω is taken to be an irrational number (usually the golden mean ratio, (
√

5 − 1)/2.

Successive iterates of θ will densely and uniformly cover the unit interval in a quasiperiodic

manner, and the system therefore has no periodic orbits. As in our previous studies [5,6],

we rescale the parameter

ǫ′ =
ǫ

4/α − 1

for convenience, and study the system in the range 2 ≤ α ≤ 4 and 0 ≤ ǫ′ ≤ 1.

The Lyapunov exponent corresponding to the θ-rotation is trivially zero; however the

other exponent, which is of most importance in determining the dynamics varies with the

parameters. It can be calculated by averaging the stretch exponents tangential to the flow,

namely

yn = ln |α[1 + ǫ cos 2πθn](1 − 2xn)|, (3)

which is the local derivative of the mapping along a trajectory. The local or N–step Lya-

punov exponent is

λN =
1

N

N
∑

j=1

yj (4)

from which, asymptotically, one gets the global Lyapunov exponent
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Λ = lim
N→∞

λN . (5)

The stretch exponents are negative in the region bounded by the curves

x±(θ) =
1

2

[

1 ± 1

α(1 + ǫ cos 2πθ)

]

. (6)

Any change in the dynamics such that the invariant measure is increased in the region

[x−(θ), x+(θ)] will therefore lead to a decrease in the Lyapunov exponent, and, conversely,

depletion of measure in this region will naturally lead to an increase in the Lyapunov expo-

nent.

Note, however, that the invariant measure, ρα,ǫ(x, θ), for this mapping is not known

exactly (except at α = 4, ǫ = 0). It is therefore determined numerically by partitioning

the phase space (x, θ) into bins and examining the itinerary of a long trajectory. Shown in

Fig. 1(a) is an example of a SNA; the corresponding invariant measure is shown in Fig. 1(b).

The solid line is the locus of x±(θ), (cf. Eqn. (6)), showing that the SNA is largely located

within the contracting regions in phase space, but also has considerable support in the

unstable regions.

Local LEs, λN , depend on initial conditions but (with probability 1) Λ does not [21].

In order to characterize the non–uniformity of the attractor, it has proved instructive to

examine the distribution of local Lyapunov exponents. The probability density,

P (N, λ)dλ = probability that λN lies between

λ and λ + dλ, (7)

has been seen to have characteristic limiting forms that depend on the nature of the attractor

[22,23]. Of course, as N → ∞, P (N, λ) → δ(λ − Λ), but the nature of the finite–size

corrections and the approach to the limit are distinctive for different dynamical states.

This analysis is relevant for the study of nonuniform attractors, particularly for different

attractors across crisis points or at intermittency, when stretched exponentials often occur

[22].
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III. RESULTS AND DISCUSSION

In this Section we study the variation of the dynamics through several transitions in the

system as the parameters α and ǫ′ are varied. Phase diagrams for this system in different

parameter ranges have been obtained in a number of previous studies [5,6,10,11,23,24], and it

is known that there are two distinct regions of chaotic dynamics, corresponding, respectively

to high driving (large ǫ′) and large nonlinearity (large α). These are shown in Fig. 2 as C2

and C1 [5], and they separate a region of quasiperiodic (torus) dynamics. Strange nonchaotic

motion occurs on the boundaries of these regions [6] as shown in Fig. 2.

In addition to the asymptotic nontrivial Lyapunov exponent Λ, we also examine the

distribution of N–step Lyapunov exponents, and the variance of this distribution.

The variation in Λ with α for fixed ǫ′ is shown in Fig. 3(a). Although there are several

bifurcations and transitions, these are not easily visible in the behavior of the Lyapunov

exponent. We therefore examine an approximate or partial bifurcation diagram which can

be obtained for this system by plotting the values of x that obtain within a narrow window

in θ, namely in the interval (θ, θ + dθ). This will depend upon the choice of dθ and also on

the particular value of θ chosen, but qualitative features of the bifurcation diagram are not

affected.

The partial bifurcation diagram, Fig. 3(b), shows some of the transitions clearly: the

torus–doubling, for instance, and the transition from torus attractors to fractal attractors.

Since singularities are dense in θ, a SNA or a chaotic attractor shows up as a spread of

points (see Fig. 3(b), for example), while a torus attractor appears as a point or a finite

set of points. The distinction between a chaotic attractor or a SNA is not evident in the

bifurcation diagram, but examining Figs. 3(a) and (b), and the change in the variance in

Λ, shown in Fig. 3(c) gives a complete picture of the different attractors that are present in

the system. (Our calculations of the variance, σ, are from 50 samples, each of total length

106 iterations.)

Quasiperiodic forcing converts the fixed points of the logistic map into tori. At the
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period–doubling bifurcation, the Lyapunov exponent is exactly zero, as in the unforced

system, but with quasiperiodicity, the sequence of torus–doublings is interrupted and leads

to SNAs, either through the collision of stable and unstable tori as discussed by Heagy and

Hammel [11], or through fractalization [13,25]. This latter scenario is the most common route

to SNA, and since there is, apparently, no bifurcation involved, it is not clearly understood

as to how a torus gets increasingly wrinkled and transforms into a fractal attractor in the

process. Other routes to SNA are known, some of which, like intermittency [5,26], occur in

this system and others, such as the blowout bifurcation route [14], which do not.

A. From SNAs to SNAs: Merging and widening crises

As has been remarked earlier, several of the bifurcation phenomena of (unforced) chaotic

dynamical systems find their parallels in quasiperiodically forced systems. For example,

there are analogue of crisis phenomena. In the present system SNAs have a certain number

of “bands”. n–band SNAs are formed from n-tori via fractalization, or from 2n–tori through

the Heagy–Hammel mechanism. Additionally, one–band SNAs can form from a 1–torus [5]

or a 3–torus [23,24] due to saddle-node bifurcations.

As parameters are further varied, SNAs themselves evolve and merge at quasiperiodic

analogues of band–merging crises or reverse bifurcations: n–band SNAs transform to n/2–

band SNAs. Through such a transition, when the dynamics remains nonchaotic and strange,

Λ is a good order parameter. Sosnovtseva et al. [27], who discovered an example of this

transition in the driven Hénon and circle maps, demonstrated the merging by examining

the phase portrait. Given the fairly narrow range over which SNAs exist in any system,

such transitions also occurs in a restricted range, and often such crises can occur after the

transition to chaotic attractors. However, the variation of Λ does not follow a uniform

pattern as in the unforced case [28,29].

SNAs which are formed via fractalization may merge at negative Λ. The Lyapunov

exponent decreases with increasing nonlinearity; shown in Fig. 4(a) is the variation of Λ at a
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band–merging bifurcation (shown by the arrow) from a two–band SNA to a one–band SNA

for ǫ = 0.05. The critical value of the parameter is αc ≈ 3.387439 and the corresponding

‘partial’ bifurcation diagram of each alternate iterate of x is shown in Fig. 4(b). At merging

crises in unforced systems, the Lyapunov exponent usually does not show an increase (unlike

at widening crises) while with forcing, the exponent actually decreases.

This can be understood by examining the invariant density on the attractor before and

after merging. The two bands of the two–band SNA straddle the region of phase space

bounded by the curves x±(θ), Eq. 6. After the merging transition, the density is enhanced

mainly in this region where the stretch exponents are all negative. As a consequence, the

Lyapunov exponent must decrease. (A plot of the difference in the invariant density on

the SNAs before and after merging is shown in Fig. 4(c).) This appears to be the typical

behaviour at the SNA band–merging transition [30], and is in contrast to the behaviour of

the unforced system.

Widening crises also occur, where the SNA abruptly changes size as a parameter is varied

(near W1 in Fig. 2). Shown in Fig. 5 is such an example, which occurs on the line ǫ′ = 1.

Here, the post–crisis SNA, shown in Fig. 5(b), is clearly larger than the pre–crisis SNA

(Fig. 5(a)) which is created via fractalization. The signatures of the transition are evident

in both Λ and the variance [Figs. 5(c-d)]. The sudden expansion of the attractor seems

to be due to collision with the unstable saddle (which also gives rise to the intermittency

transition to SNA [5]). This saddle is difficult to locate, but in the three–dimensional

extension of this system, namely the quasiperiodically driven Hénon map, Osinga and Feudel

have recently described similar crises in detail [31] and have obtained the saddle there as

well. In contrast to merging crises, the density is now enhanced in the unstable regions of

phase space: Λ therefore increases. The distribution of finite—time LEs also has a stretched

exponential tail which is characteristic of the crisis–induced intermittency [22] [see Fig. 5(e)].

Similar interior crises also take place for lower forcing, when a fractalized SNA transforms

to an intermittent SNA. An example of this is shown in Fig. 6, near ǫ′ = 0.614... and
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αc = 3.13188... (W2 in Fig. 2), namely on the edge of region C2.

B. From SNAs to Chaos

On variation of a parameter, a SNA can be transformed into a chaotic attractor if the

largest Lyapunov exponent becomes positive. This transition, which is also not associated

with any bifurcation, is not as dramatic as from the torus to a SNA. Typically there is a

smooth variation in the Lyapunov exponent.

At the SNA→ chaos transition, all the Lyapunov exponents of the system are zero. Since

Λ [Eq. (5)] is a global average, it is of interest to know how the individual terms in Eq. (3)

cancel out so as to give a value zero. Consider the partial finite sums [32],

λ+

N =
1

N+

∑

i

yi, yi > 0, (8)

and

λ−

N =
1

N−

∑

i

yi, yi < 0, (9)

namely the separate contributions to the local Lyapunov exponent. These are obtained by

partitioning a trajectory into N+ points on expanding regions, where the stretch exponents

are positive, and N− points on contracting regions where the stretch exponents are negative

with N = N+ + N−. Clearly λN = N+

N
λ+ + N

−

N
λ−, and with the limits

lim
N→∞

λ±

N → λ± (10)

(cf. Eqs. (4) and (5)) Λ = λ+ + λ−.

If there are symmetries in the system [33,34], then λ+ and λ− can equal each other and

thereby yield Λ = 0. In such situations, there is a term–by–term cancelation of positive

and negative stretch exponents [34]. At torus bifurcations, for instance, or at the blowout

bifurcation transition to SNAs [3,14] this situation applies.

On the other hand, there can be an “accidental” equality, namely, since both λ+ and

λ− will be functions of parameters α and ǫ, it may happen that they are both equal in
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magnitude for some choice of parameters, and thereby lead to a zero value for the Lyapunov

exponent.

At the SNA to chaos transition, this latter situation obtains. Lai [16] investigated the

transition from SNAs to chaotic attractors and found that this transition occurs only when

the contraction and expansion rates for infinitesimal vectors along a typical trajectory on

the attractor (namely λ+ and λ−) become equal; the LE passes through zero linearly as in

Fig. 7(a).

There are, however, subtler effects that become apparent when examining fluctuations

in the local Lyapunov exponents. The variance of the distribution shows a small increase

across the transition [Fig. 7(b)]. There is an increase in the fluctuations in the transition

from torus attractors to SNA as well (from essentially zero to some finite value). At the

SNA to chaos transition, the scale of fluctuations doubles, and is therefore noticeable on this

scale. The SNA → Chaotic attractor transition is not accompanied by any major change

in the form or shape of the attractor, and the Lyapunov exponent itself changes only from

being negative to positive. Yet the fluctuations on the chaotic attractor are always larger

than those on the nonchaotic attractor.

This enhancement in fluctuations in Λ can be analyzed via the invariant density on the

attractors. Shown in Fig. 8 is the difference in the invariant density on a SNA and a chaotic

attractor symmetrically placed about the SNA → Chaos transition. While it is clear that

the morphology of the attractor does not change significantly, it can also be seen that on the

SNA, the invariant density is enhanced in the regions where stretch exponents are mainly

negative. Since these span the range from −∞ to 0 within the region [x−(θ), x+(θ)], they

contribute significantly to the variance without greatly affecting the mean: the Lyapunov

exponent, thus, does not change significantly, but the fluctuations show an increase.

Crises which occur after the transition to chaos appear to be very similar to analogous

phenomena in systems without forcing [8,29]; Λ has a power–law dependence on the param-

eter, Λ − Λc ∝ (α − αc)
β. For example the widening crisis due to saddle node bifurcation
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along ǫ′ = 0.02, across the transition point αc = 3.85226.. is observed where the value of β

is ≈ 0.67 which is larger than the unforced case [29].

IV. SUMMARY

In this paper we have studied different dynamical transitions that occur in the quasiperi-

odically driven logistic map, the main focus being on the quasiperiodic analogues of crisis

phenomena.

SNAs are formed via several different routes, and coexist with chaotic as well as other

nonchaotic attractors. As a result there are interesting transformations of one type of at-

tractor to another. The torus to SNA transitions have been extensively described previously

[1,6]. Fractalization, which is the most common scenario for the formation of SNAs is a

“P2C2E” [35]: no explicit bifurcation mechanism has been identified with this route. How-

ever, fractalized SNAs can be transformed into intermittent SNAs upon collision with an

unstable torus in an analogue of the interior crisis, and also undergo merging at the analogue

of a merging crisis.

In all these transitions, the nontrivial Lyapunov exponent is a good order–parameter, and

furthermore, its fluctuations the distributions of finite–time exponents provide additional

signatures for these transitions. In order to understand the nature of the variations of these

quantities, however, it is necessary to study the the invariant measure on SNAs. We show

that they have support even in regions which are locally unstable.

At many of the transitions that involve such attractors, there is no particular change in

form or morphology. However, by examining differences in the invariant density at different

parameter values, it becomes clear that at these transitions, the manner in which the dy-

namics explores the attractor can change drastically, and small changes in the density can

lead to significant effects in the fluctuation properties of such attractors.

Typical attractors in dynamical systems are nonuniform, both with respect to the natural

invariant measure as well as in the rate at which nearby trajectories—locally—diverge or
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converge. If the measure on converging regions exceeds that on the diverging regions, then

the attractor is asymptotically nonchaotic and will be characterized by a negative Lyapunov

exponent. External modulation can be one method of altering the invariant measure, and

this method of creating nonchaotic dynamics [32,36] therefore provides a new means of

synchronization and control. In this context, therefore, studies of the bifurcations and

transformations of SNAs give further insights into the interplay between global stability and

local instability.
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FIGURE CAPTIONS

Figure 1: (a) A SNA in the driven logistic map at ǫ′ = 0.75. and α = 3.26774, and (b) the

corresponding invariant density (scaled ×103) in the phase space. The solid lines (in (a))

and the dashed lines (in (b)) are the loci of x±(θ), Eqn. (6).

Figure 2:Schematic phase diagram for a small region in parameter space, for the forced

logistic map see details in Ref . [6] . T and C correspond to regions of torus and chaotic

attractors. SNAs are mainly found in the shaded region along the boundary of T and C

(marked S). W denotes the region where widening crises occur (see the txt).

Figure 3: (a) Variation of Λ as a function of α for fixed ǫ′ = 0.595. Note the highly

oscillatory structure indicative of several transitions in the system. These are clearly shown

in (b) which is a ‘partial’ bifurcation diagram with θ = 0.5 and dθ = 0.0001. The regions of

torus attractors as well as strange behavior can be easily seen. (c) The variance in Λ. The

symbol T and C correspond to torus and chaotic attractors while S stands for SNA.

Figure 4:Variation of Λ at a band–merging bifurcation (shown by the arrow) from a

two–band (fractalized) SNA to a one–band (Heagy–Hammel) SNA along ǫ = 0.05 at

αc ≈ 3.387439. (b) The corresponding ‘partial’ bifurcation diagram of the second itera-

tion for x in the interval (θ, θ+dθ), θ = 0.3 and dθ = 0.01, and (c) the difference in densities

(scaled ×103) after merging (α = 3.389) and SNA before merging (α = 3.386) along ǫ = 0.05.

The subscripts 2bs and 1bs refer, respectively, to 2–band and 1–band SNAs.
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Figure 5: (a) The SNA before widening along ǫ′ = 1 at α = 3.4449 and (b) the SNA

after the widening crisis at α = 3.44498; (c) the variation of Lyapunov exponent, Λ, across

the transition point αc = 3.444955..; (d) the variance in Λ, and (e) the distribution of finite-

time Lyapunov exponents at α = 3.44498, showing the stretched exponential tail which is

characteristic of intermittency.

Figure 6:(a) The fractalized SNA (before widening) along ǫ′ = 0.614 at α = 3.13192

and (b) the intermittent SNA after the widening crisis at α = 3.13184.

Figure 7:The transition from SNA to a chaotic attractor along ǫ′ = 0.3. (a) The Lya-

punov exponent across the transition, and (b) its fluctuations.

Figure 8:The difference in densities (scaled ×103) between a chaotic attractor (α = 3.515)

and SNA (α = 3.508) along ǫ′ = 0.3. The plot of x±(θ) (for α = 3.508) of Eqn. 6 is super-

imposed as a dashed line.
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