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Abstract

Strange nonchaotic attractors (SNAs), which are realized in many quasiperi-

odically driven nonlinear systems are strange (geometrically fractal) but non-

chaotic (the largest nontrivial Lyapunov exponent is negative). Two such

identical independent systems can be synchronized by in–phase driving: be-

cause of the negative Lyapunov exponent, the systems converge to a common

dynamics which, because of the strangeness of the underlying attractor, is

aperiodic. This feature, which is robust to external noise, can be used for

applications such as secure communication. A possible implementation is dis-

cussed, and its performance is evaluated. The use of SNAs rather than chaotic

attractors can offer some advantages in experiments involving synchronization

with aperiodic dynamics.

Pecora and Carroll [1] showed that identical (or nearly identical) nonlinear systems can

be made to synchronize if coupled by a common drive signal. If one considers the overall

system as separated into drive and response subsystems, then a necessary and sufficient

condition for synchronization to occur is that the Lyapunov exponents corresponding to

the response subsytem are all negative. This property is robust, and is easy to realize

in the laboratory [1–3], even when the dynamics of the drive is chaotic and unstable. An

application of chaotic synchronization that has been extensively explored is the possibility of

secure communications: a number of different schemes based on a variety of coding principles

1

http://arXiv.org/abs/chao-dyn/9709026v1


have been proposed [4–7].

The property of synchronization of nonlinear systems is extremely general. One situation

where this is most easily achieved is between quasiperiodically driven systems in the regime

wherein the dynamics lies on strange nonchaotic attractors (SNAs) [8,9]. The purpose of

this report is to suggest that such systems possess advantages that make them ideal for

applications in communications which use aperiodic signals.

SNAs, which are found in quasiperiodically driven systems, are geometrically strange,

namely they are fractal, but the largest nontrivial Lyapunov exponent is negative, and hence

the dynamics is not chaotic. They can be created through a variety of mechanisms [10], and

exist over a range of parameter values (i.e. they are not exceptional or nongeneric). SNAs

have been observed in several experimental systems [11,12], and have been verified through

the use of power spectral methods and attractor dimension estimates. Although the largest

nontrivial Lyapunov exponent is negative, the dynamics is aperiodic since the underlying

attractor is strange: this makes it difficult to deduce the Lyapunov exponents, or indeed the

nonchaoticity, by attractor reconstruction using standard methods.

Synchronization of two such systems is trivial because of the negative Lyapunov expo-

nents. Regardless of where the systems are started, they eventually converge to the same

dynamics so long as the phase of the quasiperiodic driving is matched. There is no require-

ment of coupling the systems (other than the coupling implicit in the matched phase; see

below).

As an example of this behaviour, consider the following system first introduced by Zhou,

Moss and Bulsara [13], which describes a driven-damped SQUID,

ẍ + kẋ = −(x + β sin 2πx) + q1 sin ω1t + q2 sin ω2t (1)

where the ratio of frequencies is taken to be irrational, ω1/ω2 = (
√

5 + 1)/2. This system

(and related variants) has been extensively studied in both numerical as well as analog

simulations, and is thus a typical example of a system that can be experimentally realized.

An identical copy of this system with phase–difference φ has the equation of motion
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ÿ + kẏ = −(y + β sin 2πy) + q1 sin ω1(t + φ) + q2 sin ω2(t + φ). (2)

The two systems can be synchronized regardless of the initial values of x, ẋ, y, ẏ, so long as

there is no phase–lag, φ = 0 and the parameters (here k, β and q1, q2) are such that the

dynamics is on a SNA. Explicitly, it is observed that |x(t) − y(t)| → 0 rapidly, and results

for a typical orbit are shown in Fig. 1a.

Rewriting the above system in autonomous form

ẋ1 = x2

ẋ2 = −kx2 − (x1 + β sin 2πx1) + q1 sin ω1x3 + q2 sin ω2x3

ẋ3 = 1

ẏ1 = y2

ẏ2 = −ky2 − (y1 + β sin 2πy1) + q1 sin ω1y3 + q2 sin ω2y3 (3)

ẏ3 = 1

makes it evident that phase matching corresponds to replacing y3 in Eq. (3) by x3 and thereby

coupling the two systems. This then conforms to the general framework of synchronization

in the manner of Pecora and Carroll [1] with the ‘x’ system the drive and the ‘y’ effectively

the response.

In other parameter ranges, the system in Eq. (1) can be chaotic. In such a case, both

the drive and the response have positive Lyapunov exponents, and synchronization cannot

occur—see (Fig. 1b). When there is a phase mismatch, namely if φ 6= 0 in Eq. (2), again

synchronization does not occur (Fig. 1c), even when the parameters correspond to SNA

dynamics.

Secure communications using aperiodic dynamics has been implemented in several ways

[4–7], and the technique of synchronization with SNAs rather than chaotic attractors can

be employed in several of them. It should be mentioned, however, that some of the sim-

pler schemes have been shown susceptible to unmasking [14] by inference of the underlying

attractor.
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The most direct method of secure communication through the use of chaotic synchro-

nization uses a chaotic signal to mask information [4]. The alternate strategy suggested here

is to use the signal from a strange nonchaotic system in an analogus manner, by transmitting

the low-amplitude information-bearing signal, m(t) which is added to (and masked by) the

output from the first system, x(t), namely x′(t) = x(t) + m(t). It is also necessary to simul-

taneously transmit a means of phase-locking, say a train of δ−function pulses. Recovery of

m(t) can be effected by allowing the systems to synchronize and subtracting the output of

the second system ı.e. x′(t) − y(t).

Since the two systems evolve independently, the effect of additive noise is minimal: noise

added to x′(t) will be unchanged upon subtraction. On the other hand, the mismatch

between the transmitter system and the response is necessary to consider in some detail. One

way to explore the effect of such mismatch is by introducing fluctuations in the parameters

of the response,

µ = µ0(1 + σξ(t)) (4)

where σ is the noise amplitude and ξ(t) is a δ–correlated random variable with zero mean,

and µ0 is the value of the parameter in the transmitter system. For the response system

in Eq. (2), we consider µ ≡ q2, β and ω2. Results are shown in Fig. 2 for the case of noise

amplitude σ = 10−2 for the three parameters indicated above. The plot of x vs. y shows

that the degree of synchronization in the presence of noise is fairly good, except for the

case of µ ≡ ω2, namely when the quasiperiodic driving frequency is subject to fluctuations.

Indeed, variation of the parameters q2 and β by up to 10% does not significantly alter the

synchronization except for short bursts in time. The drive frequency is much more sensitive

to fluctuations, and only by reducing the noise amplitude to 10−4 is it possible to greatly

improve the synchronization in this case (Fig. 2d).

The viability of the above scheme is demonstrated using the SNA of Eqs. (1–2), and the

results are shown in Fig. 3, wherein the signal to be communicated is a sinusoidal form.

In the absence of noise, the recovery of the signal is exact (and is therefore not shown);
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with noise added following Eq. (4) in the driving frequency or in the other parameters,

the recovery of the signal is of good quality. Indeed, even when the parameters of the two

systems do not match, signal recovery can be effected: in Fig. 3a the parameters q2 of the x

and y systems differ by 10%. The occasional errors due to loss of synchronization that are

apparent in Fig. 3 do not persist over long times.

Note that it is important for this means of application that interception of x′(t) can have

no potential value in the absence of knowledge of the underlying dynamical system, since

the dynamics is intrinsically aperiodic. One can use standard methods to reconstruct the

dynamics [15], but the extraction of reliable values for (small) negative Lyapunov exponents

from experimental time–series data for SNAs has proven to be difficult [11,12]. Thus it

may be more problematic to reliably reconstruct the underlying attractor, in contrast to the

example of the Lorenz system which was considered by Perez and Cerdeira [14].

Related schemes that use chaotic attractors, as for example the modulation/detection

procedure described by Cuomo and Oppenheim [4] can be similarly adapted to the case of

SNAs. A somewhat different implementation of secure communication using SNAs which

transmits digital information by switching parameter values has also been proposed recently

[16].

The synchronizing property arises directly from the use of a common in–phase driv-

ing: the negative Lyapunov exponents alone do not guarantee that the x and y signals

will coincide. (In the extreme case when both systems are integrable, in the absence of a

common driving term, there will be no synchronization.) Other applications that use the

synchronization of chaotic systems [17] can also be effected using strange nonchaotic sys-

tems. In general, as a consequence of the negative Lyapunov exponents, the stability and

robustness using SNAs is greater than that with comparable chaotic attractors. This may

make quasiperiodically driven systems particularly suitable for applications that involve the

synchronization of large numbers of nonlinear dynamical systems.
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FIGURES

Fig. 1 Time series of the signals from the two systems, x1(t) (solid line) and y1(t) (dashed

line). The parameters are set at k = β = 2, q1 = 2.768, ω1 = 2.25. a) When q2 = 0.88 and

φ = 0, the dynamics is on a SNA, and the two systems synchronize. b) When q2 = 0.38 and

φ = 0, the dynamics is on a chaotic attractor. The Lyapunov exponents are all positive, and

synchronization is not possible. c) When q2 = 0.88 and φ 6= 0, the dynamics is on a SNA,

but synchronization does not occur.
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Fig. 2 Robustness of synchronization with respect to noise which alters the parameters

of the response system, as described in the text. The values of the parameters are k =

β = 2, q1 = 2.768, q2 = 0.88, ω1 = 2.25, and the noise strength is σ = 10−2, for a) µ ≡ β

(See Eq. 4), b) µ ≡ q2, and c) µ ≡ ω2. Reduction of the noise strength improves the

synchronization in the last case, d) where σ = 10−4 and µ ≡ ω2.
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Fig. 3 Demonstration of the viability of the secure communication scheme. a) The signal

being communicated is m(t) = 0.1 sin ω2t (dotted line) which is added to the output from

the SNA, i.e. x′(t) (solid line). The parameter q2 of the response system differs from that

of the drive by 10%. Other SNA parameters are as in Fig. 1a and the recovered signal is the

dashed curve. b) The signal being communicated is m(t) = 0.1 sin ω2t sin ω1t (dotted line)

which is added to the output from the SNA (solid line). The frequency ω2 of the response

system has fluctuations, with σ =10−3. Other SNA parameters are as in Fig. 1a. The

recovered signal is the dashed curve. The δ–function spikes in x′(t) are used by the response

system for phase matching.
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